

应用于CMOS像素探测器的高性能 锁相环电路设计

施展1, 王小龙1, 王雨颉1, 张子音1, 周扬2

1: 大连民族大学 2: 中科院高能所

2025.07.17

➤ CMOS像素探测 器

□ 高空间分辨率

□ 低功耗

CEPC探测器(r-z方向)

LHCb实验

□ 时钟同步

➢ 锁相环(PLL)

□ 高速时钟@串行传输电路

 $f_{OUT} = N \times f_{IN}$

➤ PLL性能需求

- □ 串行传输速率~1.2 Gb/s → PLL频率 600 MHz
 - fin=40 MHz, fout=160M~640M Hz, 倍频值可编程
- □ 低物质量→低功耗@55nm, Vdd=1.2V, I↓
- □ 传输数据误码率 → 抖动 ↓
- □ 大探测面积、低成本→ 面积↓

- ▶ PLL电路拓扑结构: 电荷泵锁相环
- □ 低参考杂散
- □ 更好的相位噪声
- □ 快速稳定
- □ 灵活的环路

参数设计

1. VCO设计

▶ 设计考虑
 □ 大调节范围,小面积
 →环形振荡器

□ 低功耗

- 3级延时单元
- 伪差分结构

缺点: 噪声较大

VCO	功耗	相位噪声	K _{vco} /s
160 MHz	0.45 mW	-111.2 dBc/Hz@1MHz	470 MHz/V
320 MHz	0.83 mW	-107.8 dBc/Hz@1MHz	1040 MHz/V
640 MHz	1.62 mW	-104.4 dBc/Hz@1MHz	1490 MHz/V

第四届全国辐射探测微电子学术年会

2025/7/17

▶ 设计考虑

D触发器

→改进与非门

5. 环路滤波器

6. 可编程分频器

7. 整体后仿真

指标	后仿(tt)		[1]	[2]	[3]	
工艺	SMIC 55nm CMOS		180nm	55nm	65nm	
输出频率	160 MHz	320 MHz	640 MHz	512 MHz	5.12 GHz	1.2 GHz
功耗(mW)	1.68	2.69	4.05	8.1	27	0.35
Rms jitter	8.3 ps	4.9 ps	3.2 ps	4.8 ps	0.38 ps	2.9 ps
(10K~10MHz)	(1.3 mUI)	(1.6 mUI)	(2.1 mUI)	(2.5 mUI)	(0.19 mUI)	(1.3 mUI)
锁定时间	6.7 μs	5.8 μs	5.3 μs	4.7 μs	2 μs	3.4 μs
芯片面积	0.125 mm ²		0.28 mm ²	1.26 mm ²	1.29 mm²	
FOM(dB)	-219.4	-221.9	-223.8	-217.4	-234.6	-236

$$ext{FOM} = 10 \cdot \log \left(rac{ ext{Phase Noise} \cdot ext{Power} \cdot f_{ ext{ref}}^2}{f_{ ext{out}}^2}
ight) \quad [ext{dB}]$$

[1] Sun, Hanhan, et al. "A radiation tolerant clock generator for the CMS endcap timing layer readout chip." Journal of Instrumentation. 17.03 (2022): C03038.

[2] Li, Xiao-Ting, et al. "A 5.12-GHz LC-based phase-locked loop for silicon pixel readouts of high-energy physics." Nuclear Science and Techniques 33.7 (2022): 82

[3] Tavakoli, Javad, Hossein Miri Lavasani, and Samad Sheikhaei. "An Ultra Low Power Integer-N PLL with a High-Gain Sampling Phase Detector for IOT Applications in 65 nm CMOS." Journal of Low Power Electronics and Applications 13.4 (2023): 65. 2025/7/17

shizhan@dlnu.edu.cn

- ▶ 高性能锁相环设计
- □ 输入频率40MHz
- □ 输出频率160M-640MHz (可配置)
- □ 最大功耗: 4mW
- □ 面积: 0.125mm²

初步测试结果

感谢大家聆听!

(b)
$$r - \phi$$
 view

(a)
$$r-z$$
 view

