メンチャーション Worthwestern Polytechnical University

第四届全国辐射探测微电子学术交流会,西安 (NME'2025)

用于暗物质粒子探测的多通道 14 位 3MS/s 混合型 ADC 芯片研制进展

喻春杨、杨博源、程静思、董红娇、任政宇、高 武*

*通信作者: gaowu@nwpu.edu.cn

西北工业大学

2025年7月17日

口 用于暗物质探测卫星电荷测量ADC

> 探测系统原理

- ・高能伽马射线入射粒子→塑闪阵列探测器→模拟前端读出AISC →<mark>多通道ADC</mark> →数据采集系 统
- > 需求分析
 - ・大规模探测器阵列 → 抗辐射多通道
 - ・ 高时间、空间、能量分辨率 → 高分辨率
 - ・ 高动态范围 → 高有效位数
 - ・ 时域信号稀疏 → 事件驱动ADC

	参数	设计指标			
	供电	3.3 V / 1.8 V			
	通道数	16 0.5 V ~ 2.5 V <mark>14 bit</mark> 12 bit			
	输入电压范围				
•	分辨率				
	有效位				
	采样率	1 MSPS/channel			
	输入时钟频率	100 MHz 2			
	DNL	< 1 LSB			

口 高分辨率SAR/TDC ADC设计技术

国内外研究单位采用SAR/TDC混合架构致力于提升高分辨率、高采样率和面效比

口多通路14位 3Msps ADC设计指标

- ≻ 研究目标
- ≻ 提出架构: SAR+两级时间域TDC → 14位、3Msps
 - ・通道内: 采样保持电路、DAC、<mark>双功能比较器</mark>、斜坡发生器、TDC
 - ・通道外: I2C接口、延迟锁相环、数字读出控制

)研究进展1

口 4通路14位混合架构ADC设计与仿真

- > 工艺: CMOS 180nm MS 3.3/1.8V
- ≻ MPW流片时间: 2021.8
- ▶ 裸片尺寸: 2.45 × 2.55 mm²
- ➤ 主要性能: 4通道、14 bits、1~3 Msps
- ≻ 创新点:
 - ・ SAR+2级TDC混合架构
 - ・双功能比较器:静态+动态
 - ・支持事件驱动

口 16 通路 14 位混合架构 ADC 设计与测试

- > 工艺: CMOS 180nm MS 3.3/1.8V
- ≻ MPW流片时间: 2023.9
- ▶ 裸片尺寸: 2.85 × 3.35 mm²
- ≻ 主要性能: 16通道、14bits、1~3Msps
- ≻ 创新点:
 - ・ SAR+2级TDC混合架构
 - 双功能比较器:静态+动态
 - 低功耗时序控制设计

Input Frequency(MHz)@Fs=3MHz

2.85mm

(Chuyang Yu, IEEE TNS 2025, Accepted)

口 暗物质探测AFE前端与ADC联合测试

- ▶ 0.2pC~1pC 电荷注入下16通道ADC 0.65V~2.5V 输出
 - ・大部分通道线性度线性度良好
- > 线性度误差置信区间
 - ・大部分通道的误差在95%置信带内

口 与同类型ADC性能对比

设计者	韩国 汉阳大学	中国 国立台湾大学	中国 电子科技大学	中国 天津大学	美国 布朗大学	中国 北京工业大学	本工作
年份	2016	2016	2019	2019	2020	2021	2025
CMOS工艺	90nm	28nm	180nm	65nm	180nm	180nm	180nm
架构SAR+TDC	6+6	6+6	6+5	7+3+3	结构可编程	6+4	5+4+5
分辨率	12bits	12bits	10bits	13bits	10bits	10bits	14bits
采样率	0.37 MS/s	100 MS/s	30 MS/s	20MS/s	1.25MS/s	1 MS/s	3 MS/s
功耗	56µW	0.35mW	1.54mW	82µW	36µW	127.26μW	1.6mW/ch
微分非线性DNL	-0.45/+0.84	-0.53 / +0.53	NA	±0.74	+0.60/0.61	-0.37/+0.37	0.67/-0.58
积分非线性INL	-1.5/+0.74	-0.82 / + 0.79	NA	±1.31	+0.82/0.89	-0.375/+1.5	2.3/-0.91
信噪比SFDR	NA	67.2dB	NA	NA	NA	60.49dB	81.59dB
信噪失真比SNDR	NA	64.43dB	49.8	71.5	56.55 dB	67.03dB	69.3dB
有效位ENOB	NA	10.41bits	NA	11.62bits	9.1bits	9.44bits	11.22bits
应用	CMOS 图像 传感器	CMOS 图像传 感器	微型三维超声 探头	无线通信	CMOS 图像传 感器	CMOS 图像传 感器	暗物质探测

8

口总结

- > 完成了2款14位、3Msps 的混合架构ADC的设计和芯片测试,通道数分别为4和16,正在开展 封装应用测试;
- > 测试结果测得到单通道ADC的DNL为+0.67/-0.58 LSB, INL为+2.3/-0.91 LSB, SFDR为 81.59 dB, ENOB为11.22 bits, FoM为223.58 fJ/conv。

口下一步计划

- > 优化SAR/TDC混合型ADC的数字校准算法,提升有效位;
- > 对ADC进行抗辐射加固设计,应用于暗物质探测卫星。

