

基于纯 Csl 的中微子相干探测在 40K 低温下的 SiPM 特性表征

总结

□ CEvNS: 中微子相干弹性散射 □ 理论预测大约在50年前, 2017年得到证实

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Science

REPORTS

Cite as: D. Akimov *et al.*, *Science* 10.1126/science.aa00990 (2017).

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov,^{1,2} J. B. Albert,³ P. An,⁴ C. Awe,^{4,5} P. S. Barbeau,^{4,5} B. Becker,⁶ V. Belov,^{1,2} A. Brown,^{4,7} A. Bolozdynya,² B. Cabrera-Palmer,⁸ M. Cervantes,⁵ J. I. Collar,⁹* R. J. Cooper,¹⁰ R. L. Cooper,^{11,12} C. Cuesta,¹³⁺ D. J. Dean,¹⁴ J. A. Detwiler,¹³ A. Eberhardt,¹³ Y. Efremenko,^{6,14} S. R. Elliott,¹² E. M. Erkela,¹³ L. Fabris,¹⁴ M. Febbraro,¹⁴ N. E. Fields,⁹‡ W. Fox,³ Z. Fu,¹³ A. Galindo-Uribarri,¹⁴ M. P. Green,^{4,14,15} M. Hai,⁹§ M. R. Heath,³ S. Hedges,^{4,5} D. Hornback,¹⁴ T. W. Hossbach,¹⁶ E. B. Iverson,¹⁴ L. J. Kaufman,³|| S. Ki,^{4,5} S. R. Klein,¹⁰ A. Khromov,² A. Konovalov,^{1,2,17} M. Kremer,⁴ A. Kumpan,² C. Leadbetter,⁴ L. Li,^{4,5} W. Lu,¹⁴ K. Mann,^{4,15} D. M. Markoff,^{4,7} K. Miller,^{4,5} H. Moreno,¹¹ P. E. Mueller,¹⁴ J. Newby,¹⁴ J. L. Orrell,¹⁶ C. T. Overman,¹⁶ D. S. Parno,¹³¶ S. Penttila,¹⁴ G. Perumpilly,⁹ H. Ray,¹⁸ J. Raybern,⁵ D. Reyna,⁸ G. C. Rich,^{4,14,19} D. Rimal,¹⁸ D. Rudik,^{1,2} K. Scholberg,⁵ B. J. Scholz,⁹ G. Sinev,⁵ W. M. Snow,³ V. Sosnovtsev,² A. Shakirov,² S. Suchyta,¹⁰ B. Suh,^{4,5,14} R. Tayloe,³ R. T. Thornton,³ I. Tolstukhin,³ J. Vanderwerp,³ R. L. Varner,¹⁴ C. J. Virtue,²⁰ Z. Wan,⁴ J. Yoo,²¹ C.-H. Yu,¹⁴ A. Zawada,⁴ J. Zettlemoyer,³ A. M. Zderic,¹³ COHERENT Collaboration#

Akimovet al.,Science357, 1123–1126 (2017)

总结

Science 357, 1123–1126 (2017)

总结

硅光电倍增管(SiPM)作为低温纯 Csl 中微子相干探测的核心光电传感器, 其工作性能 直接决定闪烁体光产额的测量精度。我们前期的研究在液氮温度下使用纯 Csl 闪烁体 和 SiPM 读出,光产额是常温下的 3 倍,预计它在 40K 温度下的性能会更好。然而 在 40K 温区的性能特征仍有待探索。

□ 自主搭建了一套 30K 至 293K 可调温控 系统,以研究SiPM在不同温度下的关键 性能参数。 □ 重点考察了 40K 温区下 SiPM 的关键性 能参数,以评估其在该温区用于光产额 测量的可行性。

DCR 在低温下大幅度下降,
获得了3款SiPM (Broadcom,
Hamamatsu, NDL) 在不同
温度下的参数变化趋势以及
最佳工作条件。

总结

Cryogenic CsI+SiPM+TPB

3款 SiPM

Hamamatsu S14161-6050HS-04 Broadcom AFBR-S4N66P024M 2×1 NDL EOR20 11-6060-E-P

□将同型号 SiPM 对称安 装于冷盘两侧。

□通过双通道数据比对,
降低单点测量误差,提
升实验结果的准确性。

测试系统

□ 前置放大器的原理图
□ 通过调节 R7 控制放大倍数

基线稳定 幅度小

总结

□ SiPM 光电子能谱 □ SiPM 的电荷-幅度散点分布

总结

研究背景

□ 击穿电压随温度的变化 Gain 拟合 □√I-V曲线拟合击穿电压

□ DCR 随温度的变化曲线 (同一款 SiPM 保持同一过电压) □ 40K 下 DCR 随过电压的变化

研究背景

Institute of High Energy Physics Chinese Academy of Sciences

低温系统搭建

总结

研究背景

□ 40K 下后脉冲概率随过电压的变化 □ SiPM 单光电子分辨率 (SPE)

总结

□ 纯 Csl 晶体产生的典型 光子波长在室温下峰值 是 310nm; □ 液氮是 340nm。

□ 将波长位移材料 TPB(1,1,4,4-四苯基-1,3-丁二烯)涂覆在 SiPM 表面; □ 可将 340nm 光子转化为 420nm, 150 µg/cm2, 30.1 P.E/kev。

低温系统搭建

研究背景

SiPM测试

总结

- □ SiPM 在低温下都能正常工作, NDL SiPM 在 40K 下工作电压范围较小, 易 发生二次击穿;
- □ 得到了 SiPM 在不同温度下的参数变化趋势, 以及 40K 下的最佳工作条件;
- □ Broadcom SiPM有更高的 PDE, 用 2-inch 阵列 (8×8) 测试纯 CsI 在 40K 下的光产额;
- □通过 TPB 镀膜 (340nm→420nm), 对应 SiPM 最高的 PDE, 提高纯 Csl 晶体的光产额。

