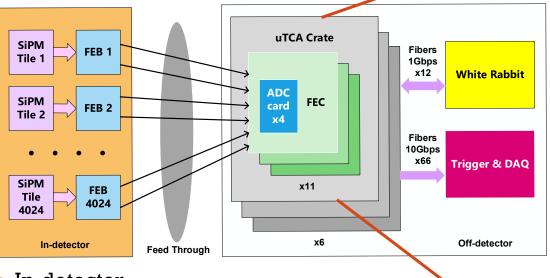


Jie Zhang on behalf of the electronics team Institute of High Energy Physics, CAS

^{*}Institute of High Energy Physics Chinese Academy of Sciences

CONSIDERATION


- Up to thousands of channels
- Custom front-end electronics
 - Custom pre-amplifier
 - Single p.e. to ?
 - or TOT
 - ADC or TDC or ADC+TDC
 - Compatible with ASIC scheme or discrete device scheme
 - ADC >=12 bits (SNR, range)
 - TDC <= 20 ps
 - Adjustable multi-channel bias voltage (<200V)
- Universal back-end FPGA readout system
 - White-Rabbit clock synchronization and timing
 - External trigger input for beam or cosmic-ray test
- Universal cable between front-end and back-end
 - Analog or digital signals
 - LV and HV power supply

DISCRETE DEVICE SCHEME

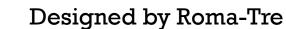
Commercial pre-amplifier, ADC or TDC

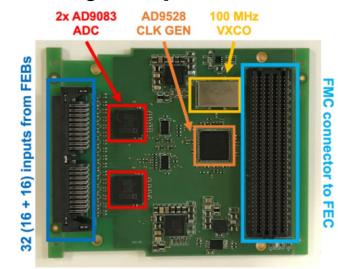
EXAMPLE: JUNO TAO READOUT ELECTRONICS

- In-detector
 - Discrete readout: 2 channels/SiPM tile
 - 8064 ch
- Off-detector
 - 6 uTCA.4 crates
 - Each crate has 12 slots and will be mounted with **11 FEC boards**
 - 9 FEC boards with 4 ADC FMC cards
 - Each ADC FMC card supports 32 channels
 - 2 FEC board with 3 ADC FMC cards and 1 WR FMC card
 - l spare slot is reserved for redundancy/debugging
 - 80 FEC under mass-production
 - 66 for CD, 3 for TVT, 11 for spares (13.75%)

Block diagram of clock distribution in uTCA crate

- High reliability consideration in uTCA crate
 - Redundant crate power supplies
 - Redundant WR nodes
- Interface to trigger & DAQ system

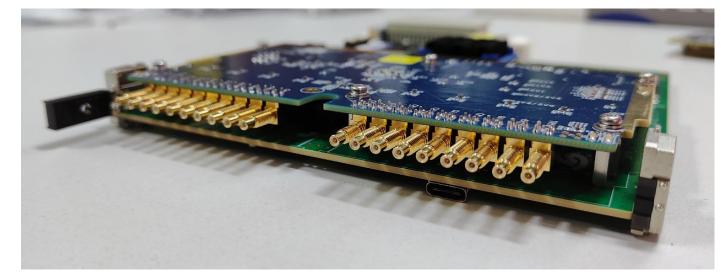



Photo of uTCA with FPGA cards ⁴

HIGH-DENSITY READOUT

- Samtec high-density connection
 - Up to 128 ch ADC per FPGA board
 - ADC card designed and produced by Roma-Tre
- Status
 - Hardware completed the small system test (60 ch)
 - u4FCP, uRTM, Mini-WR and ADC card
 - Passed PRR, under mass-production
 - Firmware
 - Complete the framework and basic functions, upgrade to 128-channel readout
 - ADC JESD204B interface
 - Q/T calculation
 - Data format
 - Aurora 64b/66b
 - WR timestamp decode
 - Scripts
 - Online configuration through UDP

2x ADC BOARD (rear) FEC BOARD (max 128 channels) 2x ADC BOARD (front)


5

LOW-DENSITY READOUT

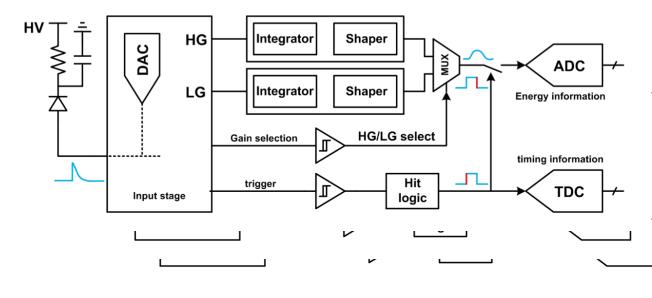
Jie Zhang @ IHEP

- Easy to debug or test
- Coaxial inputs
- I6 ch or 32 ch per FPGA board

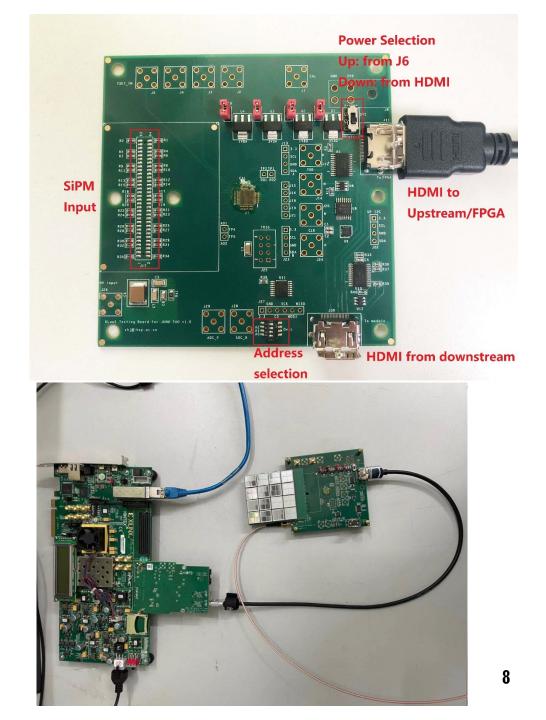
ADC FMC board

- 16 single-end channels
- 125 MHz analog bandwidth
- DC coupled analog input
- 12/16-bit Σ-Δ ADC
- Raw sample rate up to 2 GSps

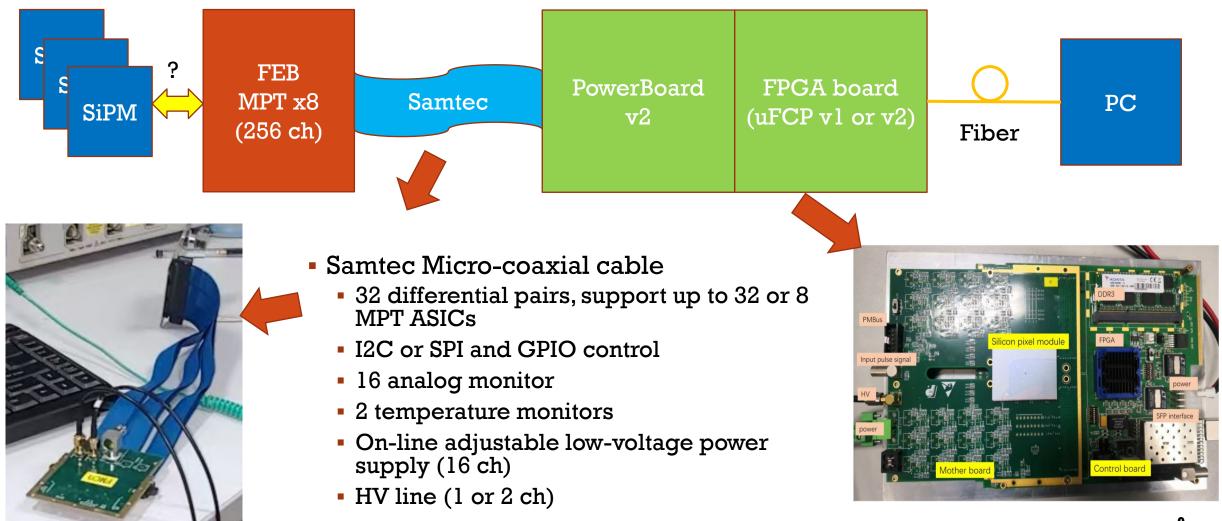
ASIC SCHEME


Put ASIC close to SiPM

Jie Zhang @ IHEP


ASIC SCHEME

Prototype


- MPT or KLauS
 - Multi-ch inputs
 - ADC+TDC

x 36

ASIC SCHEME (PLAN)

BACK-END READOUT SYSTEM

FPGA, MicroTCA, WR, Trigger

Jie Zhang @ IHEP

UNIVERSAL BACK-END FPGA READOUT SYSTEM

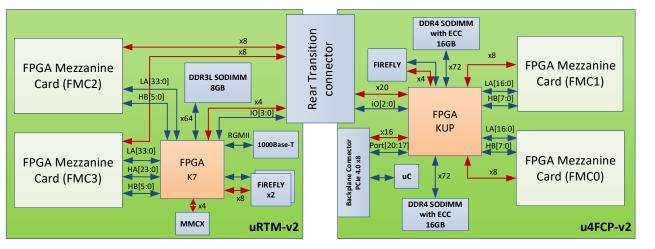
MicroTCA or stand-alone on desktop

Name	Form factor	Controller	Power Supply	JTAG	AMC	RTM
NATIVE-R9	9U, 19"	2 double full- size NAT- MCH with 1 NAT-MCH- RTM	6 double full- size NAT-PM , two of them as Rear Power Module	NAT-JSM	12 double mid- size	12 double mid- size
NATIVE-C8	8U, 19"	2 double full- size NAT-MCH	3 double full- size NAT-PM	1 double compact- size <u>JSM</u> module	10 single mid- size or 12 double mid-size	None
NATIVE-R5	5U, 0.5x 19"	1 double full- size NAT- MCH with NAT- MCH-RTM	1 double full- size NAT-PM	None	6 double mid- size + 1 double full-size	6 double mid- size + 1 double full-size
NATIVE-C5	5U, 0.5x 19"	1 double full- size NAT-MCH	1 double full- size NAT-PM	None	6 double mid- size + 1 double full-size AMCs	None
NATIVE-R2	2U, 19"	1 double full- size NAT- MCH with NAT- MCH-RTM	1 double full- size NAT-PM	1 single mid- size NAT-JSM	5 double mid- size + 1 double full-size	5 double mid- size

R5

R9

R5


and all the second seco									Plan)
uF(• •	• 840 DSP PCIe2.0 x4 8GB DDR3 8001	on System Logic	 0.65 2928 4*PCIe 2*16GE 	Jltrascale+ 16nn Million System L DSP 4.0 x4 + PCIe4. DDR4 1200MH 100G High-Spee	.ogic 0 x8 Iz SDRAM ECC	u4FCP v2 • Kintex Ultrascale+ • 1.14 Million Syst • 1968 DSP • SAMTEC Firefly x3 • 2* 16GB DDR4 120 • 8*40G/100G High-	tem Logic 3 + PCIe4.0 x8 00MHz SDRAM ECC	 3.78 M 12288 SAMTEC 2* 16GB 	trascale+ 14 nm/16 n /illion System Logic DSP C Firefly x3 + PCIe4.0 DDR4 SDRAM ECC 100G High-Speed Se) x8
	Name	Instance Specs Status		FPGA	Memory	FMC	NVMe	PCIe BW	Network	

Name	Instance Specs						
	Status	FPGA	Memory	FMC	NVMe	PCIe BW	Network
uFC v2	Ready	7K325T	8GB	HPC x2	-	2 GB/s	10GbE
uFCP v1	Ready	KU11P	2*16GB	HPC x4	4*(up to 4TB)	8 GB/s	40/100GbE
uFCP v2	Under Mass-production	KU15P	2*16GB	HPC x4	-	8 GB/s	40/100GbE
uFCT	Plan	VU13P	2*16GB	HPC x2 (<mark>FMC+</mark>) HPC x2	-	8 GB/s	40/100GbE

uFC Series Board

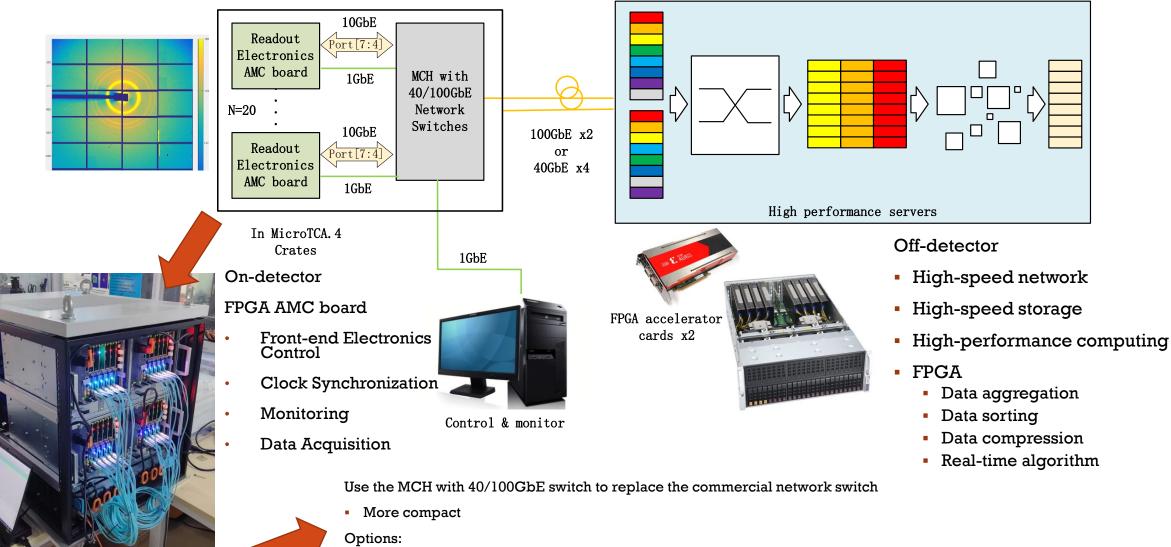
FPGA BOARD (AMC+RTM)

• u4FCP-v1

• uRTM-v2

u4FCP & uRTM:

FPGA-based MicroTCA compatible AMC board

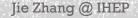

- For generic system control and data acquisition in HEP/HEPS experiments
- Conceived to serve a mid-sized system residing either
 - inside a MicroTCA crate or
 - **stand-alone** on desktop with high-speed optical links or Ethernet to PC
- HPC FMC sockets
 - Provide additional clock signals, user-specific I/O and high-speed transceivers that can be used to extend the connectivity as well as the I/O bandwidth
- The red lines are high-speed serial links connected to the <u>gigabyte transceivers</u> (<u>GTY/GTH/GTX</u>) of the FPGA. The blue lines are the general input/ outputs connected to the High Performance (HP), High Range (HR) or High Density (HD) banks of the FPGA.
- More details:
 - https://github.com/palzhj/u4FCPv2

FMC CONNECTION

 Although the FMC standard defines LA, HA, HB and DP differential ports, only parts of them are connected to FPGA due to limited IO resources. The table below summarizes the connections of FMC

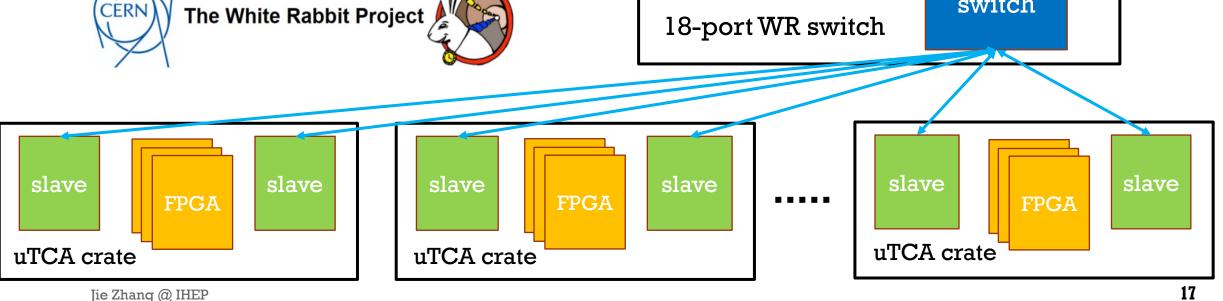
		HPC								
	FMC	LPC								
		LA[16:0]	LA[33:17]	DP[0]	DP[9:1]	HA[16:0]	HA[23:17]	HB[16:0]	HB[21:17]	
	FMC0	HP bank (1.0V~1.8V)	-	1 GTY	7 GTY	-	-	HD bank (3.3V), 8 ADC Channels	-	
	FMC1	HP bank (1.0V~1.8V)	-	1 GTY	7 GTY	-	-	HD bank (3.3V), 8 ADC Channels	-	
	FMC2	HR bank (1.2V~3.3V)	HR bank (1.2V~3.3V)	1 GTH	7 GTH	-	-	HR bank (2.5V), 5 ADC Channels	-	
P	FMC3	HR bank (1.2V~3.3V)	HR bank (1.2V~3.3V)	1 GTH	7 GTH	HR bank (1.2V~3.3V)	HR bank (1.2V~3.3V)	HR bank (2.5V), 5 ADC Channels	-	

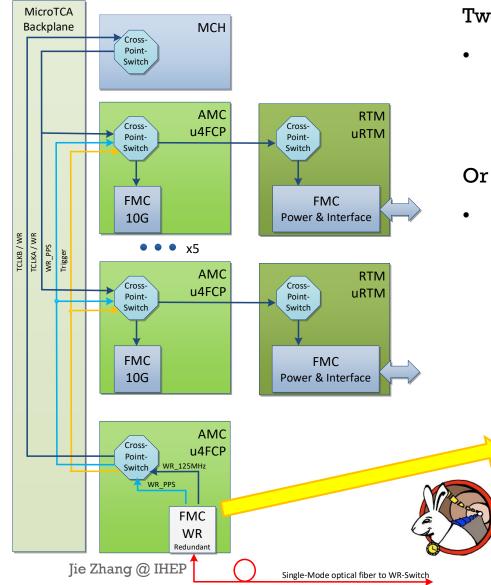
ELECTRONICS SYSTEM ARCHITECTURE



To be upgrade with internal switch

NAT, NAT-HUB-E (wait to deliver)
Vadatech, UTC056-500-212-110 (under test)

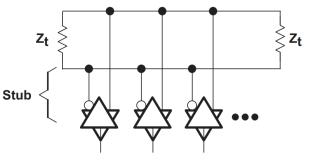

WR(White Rabbit)


CLOCK REDUNDANCY CONSIDERATION

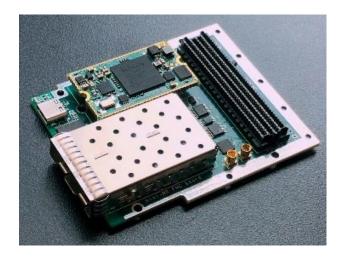
- Due to the life limit of fiber optic transceivers, we plan to use a redundant WR clock
- Each uTCA crate has two WR slave nodes
- Clock source selection
 - WR node report the loss of lock
 - DCS get the report, and configure the hardware to switch to the redundant node

Ref clock master

CLOCK DISTRIBUTION IN MICROTCA



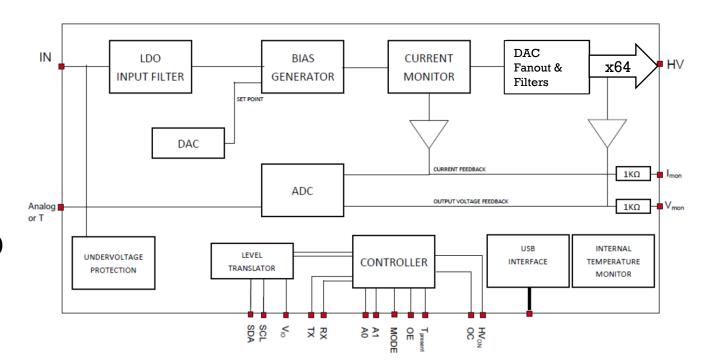
Two clock allocation schemes inside the crate


• Port 17 ?

TCLK?

- Native R9 crate with WR Support
- MLVDS multi-drop connection

• TCLKB (slot12)-> MCH (NAT-MCH-PHYS80) -> TCLKA (slot1-11)

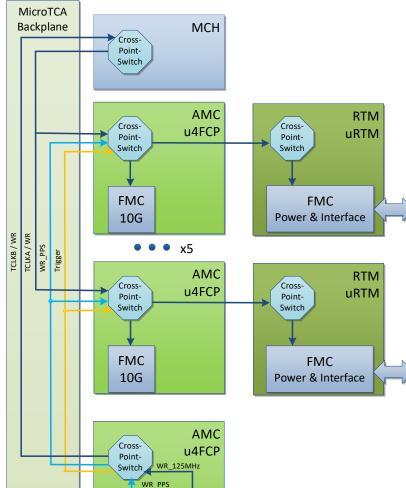

BIAS VOLTAGE

Multi-channel, each channel independent adjustable

ADJUSTABLE MULTI-CHANNEL BIAS VOLTAGE (PLAN)

- MicroTCA card mechanics
 - 64 ch outs
 - 2 x 64 pin IDC connectors
 - up to 200V/ch
 - up to 550uA/ch
 - 2 x 14bit DAC chips
 - Output voltage monitor (24bit ADC)

HARDWARE STATUS

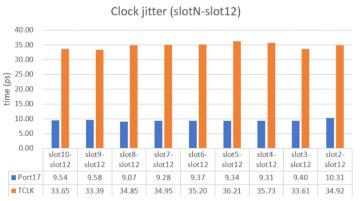

	Name	Status
ASIC scheme	FEB (Front-end board) with 8 MPT ASIC (256 ch)	Not started
	Powerboard v2	Ready
	FEB with pre-amplifier	Prototype
Discrete device	ADC card low-density (16 or 32 ch)	Ready
scheme	ADC card high-density (128 ch)	Under mass-production by Roma-Tre
	FPGA board (uFCP v1 and uRTM v2)	Ready
	FPGA board (uFCP v2 and uRTM v2.2)	Under mass-production
Back-end	FPGA board (uFCT and uRTM v2.2)	Not started
	WR node	Ready or on-shelf product
	External trigger node	Ready
Bias voltage	64 ch bias voltage(<200V)	Not started

SUMMARY

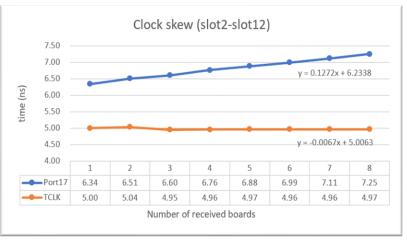
- MicroTCA architecture
 - Suitable for small and medium-sized experiments
- uFC series boards
 - FPGA-based MicroTCA compatible AMC board for generic system control and data acquisition in physics experiments
 - HPC FMC sockets
 - Provide additional clock signals, user-specific I/O and high-speed transceivers that can be used to extend the connectivity as well as the I/O bandwidth
- Support discrete device scheme and ASIC scheme for SiPM readout in one system

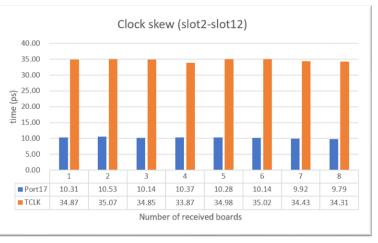
CLOCK DISTRIBUTION IN MICROTCA AMC with mini-WR fixed in slot 12, move AMC receiver

FMC

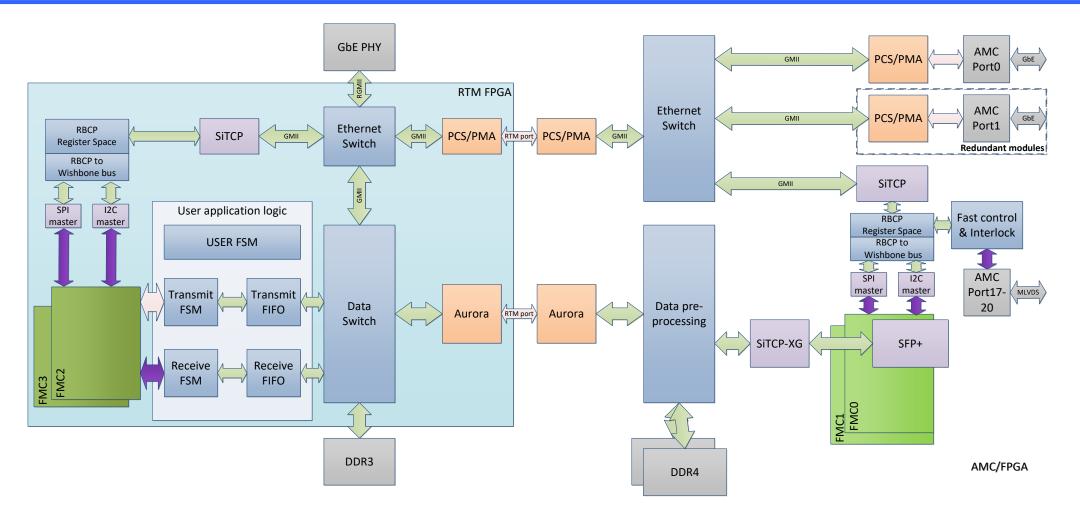

WR Redundant

Single-Mode optical fiber to WR-Switch


Jie Zhang @ IHEP


Clock skew (slotN-slot12) 8.00
7.50
7.00
7.00
9
6.50
9
(y = 0.223x + 4.22)
9
25.00
9
(y = 2.203x + 4.22)
9
(y = 2.200)
9
(y = 0.223x + 4.22)
9
(y = 0.22

Receiver is fixed at slot 2, add more adjacent AMC boards



- TCLK scheme has deterministic skew, but more jitter
- Port17 scheme has smaller jitter, but the skew is related to the location and receiver quantity ²⁵

FPGA Firmware

- Config & monitor via UDP/IP
- Readout via TCP/IP

FEASIBILITY

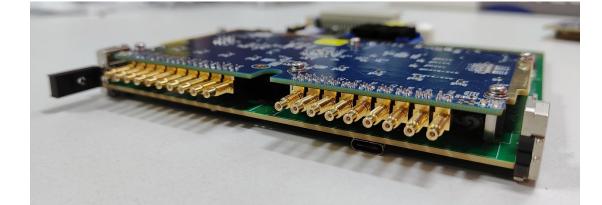
- AMC+RTM boards
 - With various FMC cards

FPGA node

Mini-WR FMC

SFP+x4

QSFP28 x2



QSFP28 x2

QSFP28 x2

ADC FMC board

- 16 single-end channels
- 125 MHz analog bandwidth
- DC coupled analog input
- 12/16-bit Σ - Δ ADC
- Raw sample rate up to 2 GSps

