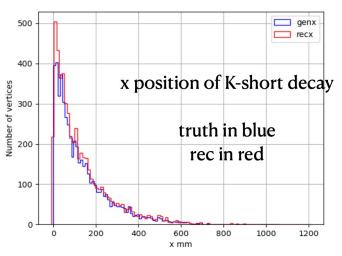
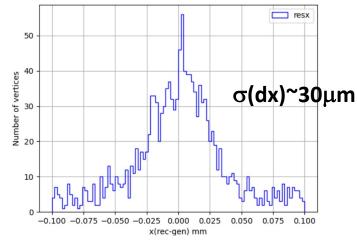

Vertex Performance

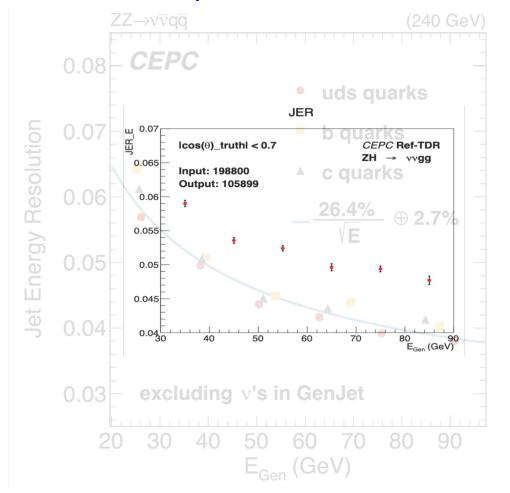
Package for vertex fit migrated, good performance seen in preliminary studies


Primary vertex resolution vs.
 number of tracks



- For secondary vertex
 - 10k particle-gun K-short, pT=2GeV,

$$\theta = 85^\circ, \phi = 0^\circ$$


- 70% $K_s^0 \rightarrow \pi^+\pi^-$ events
- Displaced vertices were reconstructed

Jet Performance

Significantly improved w.r.t. previous version, BMR now reaches ~ 3.8%, though Barrel only

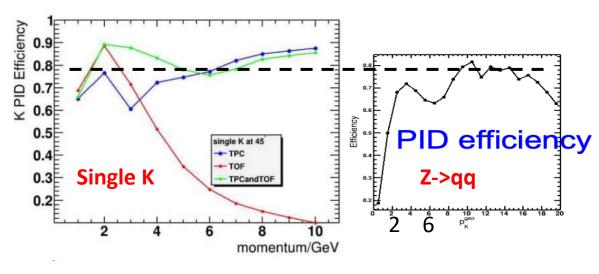
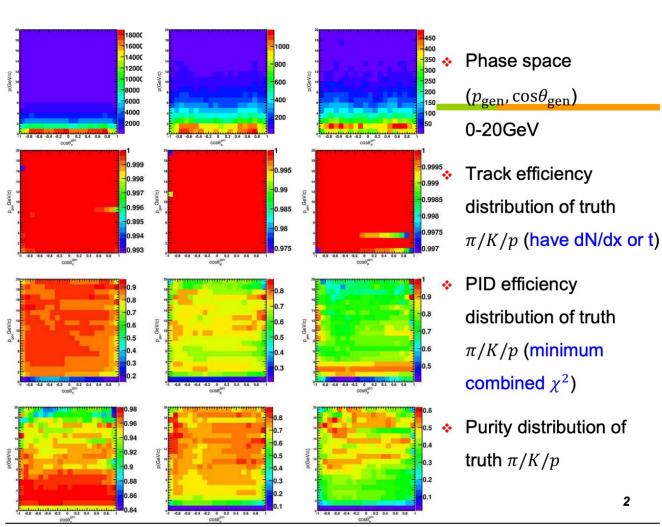

P	Process		$ZH \rightarrow \nu \nu bb$	ZH → vvcc
Cumulative	$\Sigma Pt_{\rm ISR} < 1{\rm GeV}/c$	95.3	95.3	95.4
efficiency /%	$\Sigma Pt_{\nu} < 1 \text{GeV}/c$	89.8	39.5	66.5
	$\left \cos\theta_{\mathrm{jet}}\right < 0.7$	53.1	22.0	38.0
DSCB BMR/%		3.99 ± 0.02	3.84 ± 0.04	4.04 ± 0.03

Table 3. Higgs boson mass resolution (sigma/Mean) for different decay modes with jets as final state particles, after event cleaning.


$H \rightarrow bb$	$H \rightarrow cc$	$H \rightarrow gg$	$H \rightarrow WW^*$	$H \rightarrow ZZ^*$
3.63%	3.82%	3.75%	3.81%	3.74%

PID Performance

- First look at PID @ $Z \rightarrow qq$. Last week $H \rightarrow gg$ (Xiaotian Ma)
- PID Code for CyberPFO submitted (Chenguang Zhang)

Kaon PID efficiency in Z->qq ~15% lower than that from single particle gun study

Backup

Status of Performance @ 20241203

Tracking

- Thanks to SW group, the shift of momentum now fixed (with refined magnet field map)
- Issue of tracking resolution at low pT understood, being fixed by SW group

Vertexing

- ACTS package of vertexing fit integrated in CEPCSW, preliminary results look good
- Study ongoing for physics events and building secondary vertex

Jet Performance

- Working on performance evaluation: differential JER/JES/JAR/JAS, BMR
 - Latest development of CyberPFA (can reach ~3.8% BMR) now integrated in the CEPCSW release (tdr24.12.0 last mid-night).
- Next priority for SW group: Geometry/Digi/Reconstruction of Endcap Calo

PID

- Now working on PID performance in physics processes, while dN/dX algorithm optimization ongoing
- Shanzhen and Xuhao working on evaluation of the impact from different ECAL granularity, PID: lamda_c -> p K pi , boosted tau

Chapter content

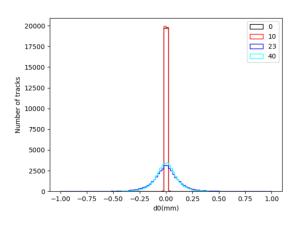
Physics Performance	2
1.1 Introduction	2
1.2 Recap of sub-detector performance	2
1.3 Detector global performance	2
1.3.1 Tracking	3
1.3.2 Particle Identification: Photon, Electron and Muon ID	6
1.3.3 PID for K, pi, p	8
1.3.4 Jet Flavour Tagging	8
1.3.5 Jet Energy and Boson Mass Resolution	9
1.4 Benchmark Physics studies	10
1.4.1 Event Generation	
1.4.2 Analysis Tools	12
1.4.3 Higgs mass and production cross-section through recoil mass	
1.4.4 Branching ratios of the Higgs boson: h -> bb, cc, ss, WW, gg, $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$	ı َ14
1.4.5 More Benchmarks	
1.5 Challenges & Plan	
1.5.1 Methods & Considerations for Calibration, Alignment	
1.5.2 Strategy for the measurement of absolute luminosity	
1.5.3 Plan of the use of resonant depolarization for W/Z mass	21
1.5.4 Brief mention how the physics performance studies influ	ence further
technology decisions/detector optimization	
1.6 Summary	22

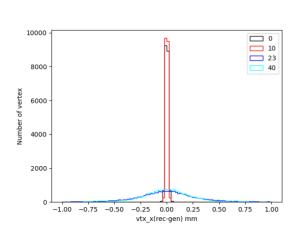
Comments/Recommendations on Performance

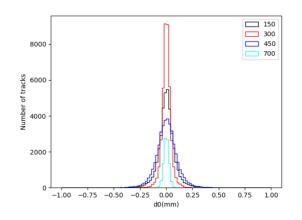
- The planned list of channels looks a bit too high for a few months of work, better to focus on demonstrating that the reference detector reaches adequate performance for physics
 - Select fewer channels, aimed at demonstrating that the reference detector reaches adequate performance for physics. Include some simple topology (e.g. Z→mumu). Encompass H, Z, W and top physics.
 - Foresee in the TDR results and figures about performance on basic objects (leptons, photons, jets) as a function of energy and polar angle
 - A measurement of V_cs during the WW run is probably a more relevant benchmark than V_cb;
 - The channel to be used for the electroweak mixing angle measurement should be clarified

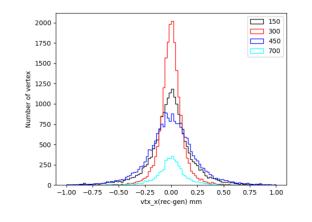
Plans:

Priority: working closely with software team for the development and performance studies of basic objects


	+				
H→ss/cc/sb	←	Process @ c.m.e←	Domain←	Relevant Det. Performance←	4
H→inv Vcb	Z→µµ←	Z@ 91.2 GeV←	Z←¹	lepton ID, tracking←	↩
W fusion Xsec	Η→γγ<	qqH←	Higgs←	photon ID, EM resolution←	↩
α_{S} CKM angle γ –2 β	Higgs recoil←	ℓℓH<	Higgs←	Lepton ID, track dP/P←	←
Weak mixing angle	H→ss←	ννΗ @ 240 GeV [←]	Higgs←	PID, Vertexing, PFA + JOI←	↩
Higgs recoil H→bb, gg	H→inv←	qqH←	Higgs/NP←	PFA, MET←	←
Η→μμ	Vcs/Vcb←	WW→ℓvqq @ 240/160 GeV←	Flavor←	PFA, JOI + PID (lepton, tau)←	↩
Η→γγ	H→LLP←	<i>ℓℓ</i> H<-	NP←	TPC, TOF, calo, muon detectors←	↩
W mass & width Top mass & width		(2			↩
Bs→ννφ	Н→µµ←	qqH←	Higgs←	lepton ID, tracking, OTK←	↩
$Bc \rightarrow \tau \nu$	Top mass & width←	Threshold scan @ 360 GeV←	EW←	Beam energy←	4
$ \begin{array}{c} B_0 \rightarrow 2\pi^0 \\ H \rightarrow LLP \end{array} $	Weak mixing angle←	Z→bb @ 91.2 GeV←	EW←	JOI←	←
H→aa→4γ		-	L	I	1_


Vtx resolution vs. decay position


Particle-gun muon pair from (x, 0, 50)phi=0~60, theta=80~90


Layer	R(mm)	muon pair x position
		0, 10
VXD-L1	12.5~18	
		23
VXD-L2	28~35	
		40
VXD-L3	45~53	
		150
ITK-L1	240	
		300
ITK-L2	350	
		450
ITK-L3	570	
TPC	600-1800	
		700
OTK	~1800	

Vtx

- d_0 and vertex have the same order of precision variation with position
- From x=10 to x=23, the precision decreases too rapidly
- x=300 is better than x=150 because it is closer to the corresponding first hit than x=150 (to adjust particle-gun position)
- If muon pair originates at x=700, TPC more likely to return a single track. Htrk=2 applied, note its normalisation