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But Riess suspects that the mystery can't be solved by observations alone. "We won't really resolve it until 
some brilliant person, the next Einstein-like person, is able to get the idea of what's going on," he said.

So he issued a plea to the theorists: "Keep working," he said. "We need your help. ... It's a very juicy 
problem, it's hard, and you'll win a Nobel Prize if you figure it out. In fact, I'll give you mine."

https://www.nbcnews.com/science/cosmic-log/physics-prize-highlights-puzzles-flna6c10402772
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Dark Energy in String Theory
• Simplest possibility is  . Sophisticated string theory scenarios for realizing dS vacua have 

been developed (KKLT, LVS, …), but a fully explicit construction remains elusive.

• Root of the challenge: source of cosmic acceleration should be derived (not just postulated) in a 
UV complete theory of gravity. 

• It is a formidable task to demonstrate that the microphysics which stabilizes all moduli would lead 
to a theoretically controlled metastable de Sitter vacuum.

• The Dine-Seiberg problem highlights the difficulty in finding parametrically weakly-coupled vacua.
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To roll or not to roll?
Current cosmic acceleration can be realized by:
• a de Sitter minimum, 
• a de Sitter maximum, or

• a runaway potential with ϵ ≡ −
·H

H2
< 1

Asymptotic runaway potentials
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If the universe underwent a rolling phase before, 
why not again? (main hurdle: 5-th force constraint)

Unlike inflation which needs to last 60 e-folds to 
solve the flatness & horizon problems, the current 
acceleration may last only an e-fold or less.

Recent DESI results gave a tantalizing hint of 
varying dark energy, though it is too early to tell.

Generally  due to non-negligible kinetic energy. 
How do we bound  w/o knowing on-shell solutions?

ϵ ≠ ϵV
ϵ



Asymptotic Dark Energy

• Could the current acceleration be realized by rolling 
towards the asymptotic regions of the landscape? Andriot, 
Cremonini, Calderon-Infante, Hebecker, Rajaguru, Revello, Ruiz, Schreyer, 
GS, Tang, Tonioni, Tran, Tsimpsis, Valenzuela, Van Riet, Venken, Wrase, …

• Does not require terms of different order to compete, in 
contrast to the Dine-Seiberg problem for vacua. 

• A tower of states becomes light as we approach the 
asymptotic. Entropy bound  potential has an 
exponential falloff [Ooguri, Palti, GS, Vafa] 

• But solving multi-field dynamics is much more difficult than 
taking derivatives of potential!

• As in many dynamical systems, the late-time regime 
exhibits some universal behaviors. This allows us to prove 
bounds on acceleration [GS, Tonioni, Tran].

⇒

Field-space boundaries

𝜙 ∼ ∞(𝑔 ∼ 0)

|𝜙| ≪ ∞(𝑔 ≫ 0)
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(weak couplings, approximate 
symmetries, , …)V → 0

explain small numbers in Nature?



Multi-field Quintessence
• String theoretical potentials generically take the form (also argument by [Ooguri, Palti, GS, Vafa]):

after canonically normalizing the scalar fields to .

• ,  depend on the microscopic origin of ,  = -dim. gravitational coupling. Potentials 
from e.g. internal curvature, fluxes, branes/O-planes, Casimir-energy, etc take this form.

• Given a multi field quintessence model, how do we diagnose if it can support acceleration 
without solving for the time-dependent solutions? [STT1, STT2].

• We consider scalars rolling towards the field space boundary: axions with a compact field 
space are assumed to be stabilized above. The saxions can then be canonically normalized. 

• In the presence of dynamical axions, the field space metric is curved but in certain classes of 
models, the bounds we derived continue to apply [STT4].

ϕa, a = 1,…, n
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We investigate whether an accelerating universe can be realized as an asymptotic late-time solution
of FLRW-cosmology with multi-field multi-exponential potentials. Late-time cosmological solutions
exhibit a universal behavior which enables us to bound the rate of time variation of the Hubble
parameter. In string-theoretic realizations, if the dilaton remains a rolling field, our bound singles
out a tension in achieving asymptotic late-time cosmic acceleration. Our findings go beyond previous
no-go theorems in that they apply to arbitrary multi-exponential potentials and make no specific
reference to vacuum or slow-roll solutions. We also show that if the late-time solution approaches a
critical point of the dynamical system governing the cosmological evolution, the criterion for cosmic
acceleration can be generally stated in terms of a directional derivative of the potential.

I. INTRODUCTION

The discovery of dark energy presents a deep challenge
for quantum gravity. While a number of sophisticated
scenarios for realizing de Sitter vacua in string theory
have been developed (for a recent review, see ref. [1] and
references therein), it is fair to say that a fully explicit
construction remains elusive. The root of the challenge
is that the source of cosmic acceleration should be de-
rived (rather than postulated) in a fundamental theory
of gravity. It is a formidable task to demonstrate that the
microphysics which stabilizes all moduli would lead to a
theoretically controlled metastable de Sitter vacuum.

The Dine-Seiberg problem highlights the di�culty in
finding parametrically weakly-coupled vacua [2]. To
avoid runaway to asymptotic regions of the moduli space
(where the coupling is arbitrarily weak), di↵erent-order
terms in the moduli potential necessarily compete. Hav-
ing arbitrarily weak coupling would mean that there exist
infinitely many vacua, or hidden parameters not related
to vacuum expectation values of any field. This makes
asymptotic runaway potentials an interesting alternative
[3, 4]. Indeed, the observed small numbers and the ap-
proximate symmetries in nature suggest that the current
universe may be approaching an asymptotic region of
the field space. In this work, we study such asymptotic
regions and prove a no-go theorem for an accelerating
universe. As in many dynamical systems, the late-time
regime exhibits some universal behaviors: this allows us
to prove a bound on the rate of change of the Hubble pa-
rameter with only knowledge of the dimension of space-
time. The way we formulate this no-go statement also
makes it clear how to evade it.

The main results of our paper are the following. (i) We
find a bound on the rate of time variation of the Hub-
ble parameter at late time irrespective of whether sta-
tionary (vacua) or scaling solutions (which are the pos-
sible critical points of the dynamical system of inter-

est) are reached. (ii) This bound, when checked against
string-theoretic constructions, imposes a generic obstacle
to acceleration if the dilaton is one of the rolling fields.
This also suggests ways out: for instance, if the dilaton
is stabilized, or rolling in the non-asymptotic region, or if
there are su�ciently many terms in the scalar potential
(with terms of both signs necessarily present), the bound
on acceleration is not automatically violated. (iii) If a
critical point is reached, we can express the proper defi-
nition of the acceleration parameter – defined as the Hub-
ble-parameter time variation – in terms of a directional
derivative, without assuming that a single term domi-
nates in the potential or whether the kinetic or potential
term dominates. We emphasize that in general, the pa-
rameter ✏ = �Ḣ/H

2, rather than the gradient of the po-
tential commonly used as a swampland criterion, is the
proper diagnostic for whether accelerating universes can
occur. The bound (i) and the obstacle (ii) observed go
beyond previous no-go results as we allow for quantum
e↵ects and we encompass vacua, non-vacua, slow-roll and
non-slow roll solutions. Detailed mathematical proofs are
provided in the supplemental material.

II. CONSTRAINTS ON FLRW-COSMOLOGIES

String compactifications typically give rise to low-
energy e↵ective theories in which a number of
canonically-normalized scalar fields �

a, for a = 1, . . . , n,
are subject to a scalar potential of the form

V =
mX

i=1

⇤i e
�d�ia�

a

. (1)

Here, ⇤i and �ia are constants that depend on the mi-
croscopic origin of the scalar-potential, while d is the
d-dimensional gravitational coupling. The set of scalars
�
a includes minimally the d-dimensional dilaton �̃ and



Multi-field Quintessence
• We are not considering transient acceleration even though it is all we need observationally.

• Our aim is to identify the roots of the apparent obstruction to an  phase that lasts; lessons 
learned can potentially point us to viable models with shorter accelerating periods.

ϵ < 1

Asymptotic runaway potentials

𝜑
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Cosmological Equations

• Non-compact -dim. spacetime is characterized by the FLRW metric:

• Hubble parameter: . The proper diagnostic for cosmic acceleration is                                             

to be distinguished from the slow-roll parameter .

• Scalar field equations and Friedmann equations:

d

H ≡
·a
a

ϵ ≡ −
·H

H2
< 1

ϵV =
d − 2

4
κ2

d ( ∇V
V )

2

2

a radion �̃ that controls the string-frame volume, unless
these fields are stabilized at high energy scales. This
general class of potentials subsumes e.g. generalized as-
sisted inflation [5, 6]. Let the non-compact d-dimensional
spacetime be characterized by the usual FLRW-metric

ds̃
2
d
= �dt2 + a

2(t) dl2Rd�1 ,

with the Hubble parameter defined as H = ȧ/a. One can
reformulate the scalar-field and d-dimensional Einstein
equations in terms of an autonomous system of n + m

ordinary di↵erential equations.
An accelerated cosmological expansion can only be

achieved if the total scalar potential is positive: there-
fore, from now on we focus on the scenario in which, at
least asymptotically, V > 0; scenarios where the sign of
the potential oscillates indefinitely are not contemplated
here. Let ⇤i+ > 0 and ⇤i� < 0 denote the positive-
and negative-definite scalar-potential coe�cients, respec-
tively, distinguishing by the indices i = i+, i�. For each
field �

a, let �a

+ = mini+ �i+
a and �a

� = maxi� �i�
a, and

let �a

+ = maxi+ �i+
a and �

a

� = mini� �i�
a: if their or-

dering is such that �a

+ � �a

� or �a

� � �a

+, we are able to
bound the acceleration parameter ✏ at su�ciently late
times.

Let �
a

+ � �a

�, with (�+)2  4 (d� 1)/(d� 2): if
�
a

+ > 0, let �a

1 = �
a

+; else, let �
a

1 = 0. Then, we are able
to prove that, at all times t > t1, where t1 is a su�-
ciently large time, the acceleration parameter is bounded
from below as

✏ � d� 2

4
(�1)2. (2)

Of course, the acceleration parameter is also bounded
from above as ✏  d� 1. If �a

� � �a

+, then one can re-
define the field as �̂a = ��

a and find the same bound in
terms of the flipped �-coe�cients. All these statements
are proven in the supplemental material: see corollary
2.2 and remarks 6.2-6.3. If (�1)2 > 4 (d� 1)/(d� 2), ir-
respective of the ordering of the �

a

±- and �a

±-coe�cients,
then the acceleration parameter asymptotically ap-
proaches the specific value ✏ = d � 1. Again, we refer
to the supplemental material for a proof: see lemma 3
and remark 6.4.

A special situation is the one in which all terms in the
potential are positive, i.e. ⇤i > 0. In this case, there
are no �

a

�- and �a

�-coe�cients to compare with, and the
bound in eq. (2) is automatically true. This already goes
beyond the condition known for the limited case of a sin-
gle scalar potential: for a single term V (�) = ⇤ e�d��,
the late-time Hubble parameter takes the form H = q/t,
with q = max {1/(d� 1), 4/

⇥
(d� 2)�2

⇤
}, depending on

the magnitude of � [7]; we also emphasize that it is gen-
erally not correct to assume that one exponential po-
tential will dominate over the others, since for instance
scaling solutions are such that all terms fall over time
in exactly the same way. In view of the bound in eq.

(2), if the condition (�1)2 � 4/(d� 2) holds, there can-
not be accelerated expansion. It should be noticed that
the bound becomes trivial for all cases in which �

a

1 = 0
for all fields �

a: this is the case, for instance, of (gen-
eralized) assisted inflation. However, in string-theoretic
constructions, this contrived situation is not encountered
in the standard potentials generated by non-trivial cur-
vature, NSNS-fluxes, heterotic Yang-Mills fluxes, type-II
RR-fluxes, type-II D-brane/O-plane sources and generic
Casimir-energy terms. In fact, here the d-dimensional
dilaton �̃ always appears with a �-coe�cient such that

�
2
�̃
� 4

d� 2
. (3)

This can be motivated as a consequence of the fact that
all interactions in any string-frame e↵ective action, in
terms of the 10-dimensional dilaton �, are weighed by
string-coupling powers of the form f(�) = e��E�, with
�E being the Euler number that weighs the perturbative
order via the string-worldsheet topology: as the mini-
mum value, for tree-level interactions, corresponds to a
sphere �E(S2) = 2, one can never violate eq. (3). Be-
cause (�1)2 � �

2
�̃
, this necessarily rules out late-time ac-

celerated expansion in all string-theoretic constructions
with positive-definite scalar-potential terms in which the
dilaton appears as one of the rolling scalar fields.
In a more general scenario where some of the scalar-

potential terms are negative-definite, the bound in eq.
(2), together with the dilaton coupling in eq. (3), does
not automatically give an insurmountable obstruction. It
is indeed harder to draw general conclusions because the
dilaton could appear in such a way as to satisfy neither
of the requirements �

�̃

± � ��̃

⌥. An exception to this im-
passe is the simple situation with only two terms in the
potential, a positive and a negative one: in this case, one
has �

�̃

± = ��̃

±, and one of the two inequalities �
�̃

± � ��̃

⌥
is necessarily in place. Therefore, an accelerating uni-
verse involving a rolling dilaton would minimally require
at least three terms in the potential, not all of the same
sign.
Although the dilaton field is in principle coupled to all

the scalar-potential terms, it could be stabilized. If the
dilaton is not a rolling scalar, then we cannot draw fully
general conclusions based on eq. (2) since the other fields,
such as radions and complex-structure moduli, are not
characterized by universal features but rather depend on
the structure of the internal space. Evidently, the same
can also be said in other phenomenological constructions
that disregard a possible string-theoretic origin, since in
principle the exponential couplings are not necessarily
constrained by universal principles. Qualitatively, a gen-
eral expectation is the following: the presence of large
numbers of scalar-potential terms has a tendency to ease
the restrictions since, for all fields, it makes it harder to
fall in the condition �

a

1 > 0; conversely, a large number of
rolling fields tends to obstruct acceleration, since the co-
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We discuss the conditions under which scaling solutions are inevitable late-time cosmological
attractors of multi-field multi-exponential potentials. [...]

I. INTRODUCTION

[...]
A point that we highlight is the following: the ✏-

parameter is defined as ✏ = �Ḣ/H
2, which is the

physically-meaningful measure of the acceleration rate of
the scale factor.

[...]
All our conventions on reference frames and on our

dilaton and radion terminology are summarized in ap-
pendix A1. For completeness, a review of the string-
theoretic scalar potentials generated by non-trivial cur-
vature, NSNS-fluxes, heterotic Yang-Mills fluxes, type-II
RR-fluxes, type-II D-brane/O-plane sources and generic
Casimir-energy terms is in appendix A 2.

II. LATE-TIME COSMOLOGIES

String compactifications typically give rise to low-
energy e↵ective theories in which a number of
canonically-normalized scalar fields �

a, for a = 1, . . . , n,
are subject to a scalar potential of the form

V =
mX

i=1

⇤i e
�d�ia�

a

. (II.1)

Here, ⇤i and �ia are constants that depend on the mi-
croscopic origin of the scalar-potential,1 while d is the
d-dimensional gravitational coupling. The set of scalars
�
a includes minimally the d-dimensional dilaton �̃ and

a radion �̃ that controls the string-frame volume, unless
these fields are stabilized at high energy scales. This
general class of potentials subsumes e.g. generalized as-
sisted inflation [1, 2]. Let the non-compact d-dimensional
spacetime be characterized by the usual FLRW-metric

ds̃
2
1,d�1 = �dt2 + a

2(t) dl2Rd�1 , (II.2)

1 For completeness, we provide an overview of generic string-
theoretic multi-field multi-exponential potentials in app. A 2.

with the Hubble parameter H = ȧ/a. Then, it can be
shown that the scalar-field and Friedmann equations re-
duce to

�̈
a + (d� 1)H�̇

a +
@V

@�a

= 0, (II.3a)

(d� 1)(d� 2)

2
H

2 � 
2
d


1

2
�̇a�̇

a + V

�
= 0, (II.3b)

Ḣ = � 
2
d

d� 2


1

2
�̇a�̇

a � V

�
� d� 1

2
H

2
, (II.3c)

where for simplicity it has been assumed that the scalars
only depend on the FLRW-metric time parameter. A
combination of eq. (II.3b) with eq. (II.3c) gives

Ḣ = � 
2
d

d� 2
�̇a�̇

a
. (II.4)

One can reformulate the scalar-field and Friedmann equa-
tions in terms of an autonomous system of ordinary dif-
ferential equations.
A comment on canonical normalization is in order. In

string-theoretic realizations, the moduli space is not al-
ways flat, typically due to the presence of axions.2 For
instance, in type-II compactifications with N4 = 1 su-
persymmetries, typically such axions ✓ belong to chi-
ral supermultiplets as components of complex scalars
⇠ = ✓ + i el', where ' is one of the moduli that in our
models are canonically normalized, provided the constant
rescaling ' = (

p
24/

p
nl)�, here assumed to approach

the boundary as ' ! 1, and l and n are constants that
depend on the details of the fields, with Kähler poten-
tials of the form 

2
4K = �n ln [�i(⇠ � ⇠)]. In this case,

2 For instance, we can consider the type-IIB axio-dilaton ⌧ = C0+
i e�� and Kähler modulus ⇢ = a+ i e4! , where C0 and a are the
0- and 4-RR-form axions, respectively. In the presence of 3-form
flux G3 = F3 � ⌧H3, in a 4-dimensional Calabi-Yau orientifold
compactification, their purely kinetic action can be read o↵ the
Kähler potential [3, 4]

2

4K = �ln [�i(⌧ � ⌧)]� 3 ln [�i(⇢� ⇢)] + ln
2

⇡
.



Cosmology as a Dynamical System

• It is convenient to work with the rescaled variables:

• The cosmological equations can be formulated in terms of an autonomous system of ODEs 
given schematically as follows:

• Among the above ODEs is ; strategy is to bound the kinetic energy.

• Friedmann equation also takes a simple form:

ϵ = − ·H/H2 = (d − 1)x2

d ⃗z
dt

= g( ⃗z) , where ⃗z ≡ (x1, …, xn, y1, …, ym, H)

Cosmological equations as an autonomous system

▶ cosmological equations:

⎧{{{{⎨{{{{⎩
̈𝜙𝑎 + (𝑑 − 1)𝐻 ̇𝜙𝑎 + 𝜕𝑉𝜕𝜙𝑎 = 0(𝑑 − 1)(𝑑 − 2)2 𝐻2 − 𝜅2𝑑[12 ̇𝜙𝑎 ̇𝜙𝑎 + 𝑉] = 0𝐻̇ = − 𝜅2𝑑𝑑 − 2 ̇𝜙𝑎 ̇𝜙𝑎

▶ let 𝑥𝑎 = 𝜅𝑑√𝑑 − 1√𝑑 − 2 ̇𝜙𝑎𝐻 , 𝑦𝑖 = 𝜅𝑑√2√𝑑 − 1√𝑑 − 2 √𝑉𝑖𝐻
with 𝑓 = (𝑑 − 1)𝐻, 𝑐𝑖𝑎 = 12 √𝑑 − 2√𝑑 − 1 𝛾𝑖𝑎

Copeland, Liddle, Wands [gr-qc/9711068]
Coley, van den Hoogen [gr-qc/9911075]

Guo, Piao, Zhang [hep-th/0304048]
cosmological equations:̇𝑥𝑎 = [−𝑥𝑎(𝑦)2 + 𝑚∑𝑖=1 𝑐𝑖𝑎(𝑦𝑖)2] 𝑓, for

⎧{⎨{⎩
(𝑥)2 + (𝑦)2 = 1̇𝑓𝑓2 = −(𝑥)2

4 / 20(x)2 + (y)2 = 1



Geometric Bound on Cosmic Acceleration

• Define  vectors , one for each potential term with components m μi (μi)a = γia

Analysis of the acceleration bound
Further comments

• the late-time bound is basis-dependent
• we can maximize it by a field-space basis rotation

𝛾∞1

𝛾∞2

𝜇1
𝛾11

𝛾12
𝜇2

𝛾21

𝛾22
𝜇3

𝛾31

𝛾32
(𝛾∞)2 = (𝛾12)2

𝜙𝑎 = 𝜙1, 𝜙2
𝛾𝑖𝑎 = ⎛⎜⎜⎝𝛾11 𝛾12𝛾21 𝛾22𝛾31 𝛾32⎞⎟⎟⎠

𝛾∞1

𝛾∞2

𝜇1
𝛾11

𝛾12
𝜇2

𝛾21

𝛾22
𝜇3

𝛾31

𝛾32 ̂𝛾∞1

̂𝛾∞2
( ̂𝛾∞)2
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parameter can take. In practice, the optimal version of
the bound can be expressed as

✏ � d� 2

4
max

R2O(n)
[�1(R)]2, (II.7)

where R 2 O(n) indicates all possible O(n)-rotations in
the n-dimensional field-space basis and [�1(R)]2 repre-
sents the (�1)2-coe�cient computed in the R�1-rotated
field-space basis. Although this formulation of the bound
is even stronger than the previous one, there can still
be situations in which the bound happens to be trivial.
From now on, we will express the optimal bound in eq.
(II.7) by referring to the quantity

(�̂1)2 = max
R2O(n)

[�1(R)]2,

which specifies the bound assuming that we have rotated
the field-space basis in such a way as to reach the best
bound among all the possible ones. Of course, all con-
siderations made so far in terms of the quantity (�1)2

also immediately translate to the quantity (�̂1)2. A
schematic intepretation of the bound of eq. (II.7) is pro-
vided in figs. 4 and 5.

�
a = �

1
,�

2

�ia =

0

@
�11 �12

�21 �22

�31 �32

1

A

�11

�12

µ1

�11

�12

µ2

�21

�22

µ3

�31

�32 �̂11

�̂12

(�̂1)2

FIG. 4. A graphical representation of the optimal late-time
acceleration bound ✏ � [(d� 2)/4] (�̂1)2: lighter lines denote
the original field basis, while darker lines denote the basis
with the maximal lower bound.

�
a = �

1
,�

2

�ia =

✓
�11 �12

�21 �22

◆

�11

�12

µ1

�11

�12

µ2

�21

�22

µ3

�31

�32

(�̂1)2 = 0

FIG. 5. A graphical representation of a situation in which the
acceleration bound is trivial. In a scenario like this, we do not
see any obstruction for late-time acceleration (or even for de
Sitter vacua).

B. Alternative late-time acceleration bounds

As usual, we assume that the total scalar potential
is positive, but make no assumption on the sign of the
individual contributions. Let �(�)

a be the solutions to
the system of equations

�ia�
a = (�)2,

for each index i = 1, . . . ,m, where the �-subscript is
a label for each of the solutions. Then, if we define
�
2 = max�(�(�))

2 and �
2
1 = min{d� 1, �2}, we can show

that the late-time acceleration parameter is bounded
from below as

✏ � d� 2

4
�
2
1. (II.8)

A mathematical proof of this is in appendix B: see corol-
lary 2.1 and remark 2.3. Such a bound is generally dif-
ferent from the bound in eqs. (II.5, II.7): it requires
di↵erent conditions to apply and it may be more or less
restrictive, on a case-by-case basis.

III. LATE-TIME SCALING COSMOLOGIES

Although the bounds in eqs. (II.5, II.7) and eq. (II.8)
are strong and powerful ones, in certain conditions we
can do even more and compute the late-time ✏-parameter
analytically. This is going to be discussed below.

d − 1 ≥

pure kination



A Universal Obstruction
• String-theoretical potentials take the form:

RR fields are not weighed by  (effectively set ) but would not affect our argument.

• The -dim. dilaton  is a linear combination of the 10d dilaton  and Einstein frame volume.

• While the field basis choice is not unique, d-dimensional dilaton   has universal properties: 

• Ways out: 1)  is stabilized; 2)  is rolling but not in the asymptotic regions; 3)  contains at 
least three terms, not all of the same sign (e.g., from loop corrections).

• Living dangerously: structure of string theory couplings puts us on the borderline.

e−χEΦ χE = 0

d δ̃ Φ

δ̃

δ̃ δ̃ V

Dilaton obstruction
Universal bound and ways out

generic string-theoretic potential:𝑆 = − ∫
X1,9[𝐴𝑟 ∧ ⋆1,9𝐴𝑟] Λ10,𝑟 e−𝑘𝜎−𝜒EΦ = − ∫

X1,𝑑−1̃∗1,𝑑−1Λ e𝜅𝑑[𝛾 ̃𝛿(𝜒E) ̃𝛿−𝛾𝜎̃(𝜒E,𝑟,𝑘)𝜎̃]
- string frame: 𝜎, string-frame radion; Φ = ln 𝑔𝑠, 10-dim. dilaton
- Einstein frame: 𝜎̃, can. string-frame radion; ̃𝛿, can. 𝑑-dim. dilaton▶ universal ̃𝛿-coupling structure: 𝛾 ̃𝛿 = 𝑑√𝑑 − 2 − 12𝜒E

√𝑑 − 2
• upper bound on 𝛾 ̃𝛿: 𝜒E ≤ 2, so 𝛾 ̃𝛿 ≥ 2√𝑑 − 2
• lower bound on 𝜖: 𝜖 ≥ 𝑑 − 24 (𝛾∞)2 ≥ 𝑑 − 24 𝛾2̃𝛿 ≥ 1

different argument, but related conclusion, in Rudelius [hep-th/2101.11617]
ways out:

- theory not at weak string coupling
- stabilized dilaton
- presence of negative-definite potential terms:

bound takes a different form, less obvious but still restrictive!
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Scaling Solutions
• The cosmological autonomous system admits scaling solutions ( constant ):

• scale factor takes a power law form: 

• critical points of the autonomous system: 

• Analytic solution: for 

• field space trajectory:

• scale factor: 

• The kinetic term & every potential term have the same parametric dependence in time:

ϵ = > 0

a(t) ∼ tp

·xa = 0

rank γia = m

3

e�cient (�1)2 is additive. In fact, more scalar-potential
terms tend to flatten the total potential, whereas more
scalar fields tend to make it steeper, therefore these con-
siderations are not unexpected. Ultimately, one has to
check the bound in eq. (2) on a case-by-case basis.

Even with all the caveats above, we stress that the
bound applies only to quintessence-like proposals in
which one assumes that we are currently observing an
asymptotic regime of the cosmological evolution. It does
not inform us about inflation since the latter can be real-
ized as a transient solution, rather than as an asymptotic
attractor. As a final comment, we emphasize that the
bound in eq. (2) highlights the di�culty of satisfying the
slow-roll condition in a late-time accelerating phase.

III. PROPERTIES OF SCALING

COSMOLOGIES

Solutions to the cosmological equations where the scale
factor is of power-law form, i.e. scaling solutions, have a
special role: we have shown that, if �2

+  4 (d � 1)/(d �
2), due to eq. (2), at su�ciently late times, the scale
factor is bound from below and from above by power-law
evolution; if �2

+ > 4 (d� 1)/(d� 2), scaling solutions are
inevitable and q is forced to be q = 1/(d� 1).

More generally, the cosmological equations can be ex-
pressed in terms of an autonomous system of di↵erential
equations and scaling solutions correspond to the critical
points of this system. In fact, in general one can always
find scaling solutions of this kind that are perturbatively
stable and therefore perturbative late-time attractors [8].
For instance, for a single exponential term, scaling solu-
tions can be easily seen to be a late-time attractor [9]. For
all these reasons, although it is hard to prove that scal-
ing solutions always capture the inevitable late-time be-
havior of the complete solutions, they deserve a detailed
analysis. Moreover, scaling solutions are also relevant by
themselves because they can be transient solutions that
may describe di↵erent cosmological epochs.

Scaling solutions can be characterized analytically [10].
If the rank of the �ia-matrix matches the number of
terms in the scalar potential, i.e. if rank �ia = m, then
rolling-scalar solutions are general. Given the matrix
Mij = �ia�j

a, rolling-scalar solutions exist of the form

�
a

⇤(t) = �
a

0 +
2

d

 mX

i=1

mX

j=1

�i
a(M�1)ij

�
ln

t

t0
,

with a scale-factor power

q =
4

d� 2

mX

i=1

mX

j=1

(M�1)ij .

It can also be shown that in this case there are no de
Sitter vacua. If the rank of the �ia-matrix is smaller

than the number of terms in the scalar potential, i.e.
if rank �ia < m, then rolling-scalar solutions are not
general. One can see this as a consequence of the fact
that the scalar-potential terms outnumber the scalars
and therefore, generically, they tend to constrain their
dynamics into stationary points. Nevertheless, if they ex-
ist, such rolling solutions are mathematically analogous
to the ones above.
All in all, for a given time t1, let the generic scalar-

field trajectories corresponding to a scaling solution
a(t) = a1(t/t1)q, with q � 1/(d � 1), be parameter-
ized as

�
a

⇤(t) = �
a

1 +
1

d

↵
a ln

t

t1
.

Then, given the unit vector ✓
a

⇤ = ↵
a
/

p
↵b↵b, which fol-

lows the trajectory of the time evolution of the scalar
fields over the moduli space, we can show that the nor-
malized directional derivative of the scalar potential is
related to the expansion rate as

�⇤ = �


1

V (�⇤)
✓
a

⇤
@V

d @�
a
⇤
(�⇤)

�
=

2p
d� 2

p
✏. (4)

This can be proven by exploiting explicitly the analytic
properties of scaling solutions. Therefore, the power-
law scale-factor evolution is accelerated – meaning that
the condition ✏ < 1 holds – only if the directional scalar-
potential coe�cient is bounded as �⇤ < 2/

p
d� 2.

A point that should be emphasized is the follow-
ing: the ✏-parameter measures the rate of acceleration
of the FLRW-metric scale factor and it is defined as
✏ = �Ḣ/H

2. It can be estimated via the gradient of
the potential, i.e.

� =

p
�ab @aV @bV

dV
, (5)

only under the slow-roll approximation, by which one
may approximately write ✏ = �Ḣ/H

2 ' (d� 2) �2
/4.

For instance, for theories with finite �1-coe�cients, as
dictated by eq. (2), and for scaling scenarios, the slow-
roll approximation is generically invalid. For the former,
this is obvious as long as (�1)2 & 4/(d� 2). For the lat-
ter, the terms that should be dropped in the slow-roll
approximation, despite being numerically smaller by a
factor q(d� 1) � 1, decrease over time in the same para-
metric way as the terms that would be kept. Therefore,
the parameter � is not necessarily a meaningful quantity
to describe the expansion rate: in this case, the scalar-
potential shape determines the rate of acceleration via
the parameter �⇤ in eq. (4).
As scaling solutions can be characterized analytically,

we can easily discuss swampland conjectures in theories
of exponential-only scalar potentials.
To start, we highlight the fact that one can always

identify a single scalar field that serves as a measure ofT(t) = T(t0) ( t0
t )

2

, Vi(t) = Vi(t0) ( t0
t )

2

No slow-roll:

7

and the field equations thus read

✓̈ � 2l ✓̇'̇+ 3H ✓̇ +
22

4

n
e2l'

@V

@✓
= 0,

'̈+
1

l
e�2l'

✓̇'̇+ 3H'̇+
22

4

nl2

@V

@'
= 0,

3H2 � n

2

⇥
e�2l'

✓̇
2 + l

2
'̇
2 + V

⇤
= 0.

So, if the initial conditions are such that '0 � 1, then
the ✓-equation is dominated by the potential term, which
stabilizes the axion at a constant value, and the ✓-' mix-
ing term in the '-equation and the axion kinetic term
in the Friedmann equation are highly suppressed. As
the time evolution is consistent with dropping the same
terms at any time, it is consistent to neglect the axions.
In physical terms, one can see that the asymptotic field-
space metric is such that the axionic kinetic term is highly
suppressed, thus explaining the reason why the axion can
be assumed to be stabilized by the potential and disre-
garded.

III. LATE-TIME SCALING COSMOLOGIES

Although the bounds in eqs. (II.8, II.10) and eq.
(II.13) are strong ones, in certain conditions we can do
even more and compute the late-time ✏-parameter ana-
lytically. We discuss how to do this below.

A. Scaling cosmologies

Scaling cosmologies are defined as solutions to the
Friedmann equations in which the scale factor is of power-
law form, meaning that it evolves over time as

a(t) = a0

⇣
t

t0

⌘p

, (III.1)

where the constant and positive power p is related to
the Hubble parameter through the identity H = p/t and
to the ✏-parameter as ✏ = 1/p, which is necessarily con-
stant and positive. For a multi-field multi-exponential
potential, scaling cosmologies are well-known exact so-
lutions to the cosmological equations and, in particular,
they correspond to the critical points of the cosmologi-
cal autonomous system. In this subsection we consider
the scaling cosmologies that generically always exist, fol-
lowing the classification of ref. [15]; more details can be
found in appendix A: see lemmas 3 and 5.

In detail, we consider the case in which the rank of the
�ia-matrix matches the number of terms in the scalar
potential, i.e. rank �ia = m. This can easily be the
case whenever the number of fields is not smaller than
the number of scalar-potential terms, i.e. n � m. If

rank �ia = m and also n = m, then the scalar poten-
tial can be regarded as the non-trivial multi-field ex-
tension of a single-field exponential potential; if instead
rank �ia = m and n > m, the scalar fields outnumber the
scalar-potential terms, but then we can rotate the field-
space basis and obtain a theory where n�m scalars are
flat directions, thus reducing the problem to the previ-
ous case. If this rank-condition rank �ia = m is in place,
then, given the matrix Mij = �ia�j

a, rolling-scalar solu-
tions exist of the form

�
a

⇤(t) = �
a

0 +
2

d

 mX

i=1

mX

j=1

�i
a(M�1)ij

�
ln

t

t0
, (III.2)

where the scale-factor power is

p =
4

d� 2

mX

i=1

mX

j=1

(M�1)ij . (III.3)

It can also be shown that in this case there are no de
Sitter stationary points. Physically, this is because the
shape of the multi-dimensional exponential potential is
not complicated enough to constrain the fields into a sta-
tionary point. It may also be the case that n � m, but
rank �ia < m, in which case scaling solutions may exist
but are not of the form above. Scaling cosmologies in
cases with rank �ia < m are discussed in subsec. III E.
Before moving on, we stress an obvious but important

point: scaling cosmologies do not respect the slow-roll
approximation, by which one drops the second-derivative
term and the kinetic energy in eqs. (II.3a, II.3b, II.3c),
and thanks to which one manages to express the ✏-
parameter through the gradient of the scalar potential.
This is obvious from eq. (III.2) and it will be commented
on also in subsubsecs. III C 1 and III C 3. All this means
that, in a scaling cosmology, the slow-roll conditions are
not fulfilled. Nonetheless, accelerated expansion is still
possible if p > 1.

B. Scaling cosmologies as late-time attractors

Scaling cosmologies can be perturbatively-stable at-
tractors of theories with multi-field multi-exponential po-
tentials [17–23]. Moreover, at su�ciently late times, if
(�̂1)2  �2

d
, in view of eq. (II.10), the scale factor is

bounded from below and from above by power-law evolu-
tion; if (�̂1)2 > �2

d
, scaling solutions are inevitable, with

a power p = 1/(d� 1). In this paper, we extend these ob-
servations by proving that, under certain conditions, scal-
ing cosmologies are late-time attractors independently of
the initial conditions, thus going beyond a perturbative
analysis.
Given n canonically-normalized scalars �a, let a multi-

exponential potential of the form V =
P

m

i=1 ⇤i e�d�ia�
a

,
as in eq. (II.1), in a d-dimensional FLRW-metric, as in
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It can also be shown that in this case there are no de
Sitter stationary points. Physically, this is because the
shape of the multi-dimensional exponential potential is
not complicated enough to constrain the fields into a sta-
tionary point. It may also be the case that n � m, but
rank �ia < m, in which case scaling solutions may exist
but are not of the form above. Scaling cosmologies in
cases with rank �ia < m are discussed in subsec. III E.
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point: scaling cosmologies do not respect the slow-roll
approximation, by which one drops the second-derivative
term and the kinetic energy in eqs. (II.3a, II.3b, II.3c),
and thanks to which one manages to express the ✏-
parameter through the gradient of the scalar potential.
This is obvious from eq. (III.2) and it will be commented
on also in subsubsecs. III C 1 and III C 3. All this means
that, in a scaling cosmology, the slow-roll conditions are
not fulfilled. Nonetheless, accelerated expansion is still
possible if p > 1.

B. Scaling cosmologies as late-time attractors

Scaling cosmologies can be perturbatively-stable at-
tractors of theories with multi-field multi-exponential po-
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a power p = 1/(d� 1). In this paper, we extend these ob-
servations by proving that, under certain conditions, scal-
ing cosmologies are late-time attractors independently of
the initial conditions, thus going beyond a perturbative
analysis.
Given n canonically-normalized scalars �a, let a multi-
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as in eq. (II.1), in a d-dimensional FLRW-metric, as in

[Copeland, Liddle, Wands, ’97] 
[Collinucci, Nielsen, Van Riet, ’04]

Late-time attractor behavior 
proved in [STT2, STT4],

going beyond earlier analysis
of linear stability.



Field Space Curvature

• In the presence of axions, the field space metric is curved:

• It has been conjectured that the field space metric is generically negatively curved in the asymptotic limits 
[Ooguri, Vafa, ’06]; though  exceptions [Trenner, Wilson, ‘09];[Marchesano, Melotti, Paloni, ’23];[Raman, Vafa, ’24].

• The Kahler potential for a chiral multiplet  in  SUGRA typically takes this form:

• This kind of negatively curved field space metric is common in string compactifications. Irrespective of the UV 
origin, it has been used for quintessence model-building, offering rich pheno possibilities.

• But the multi-field dynamics is much more complicated, allowing for spirals in field space. There are two sets 
of coupling convex hulls, how do we bound  and find late-time attractors?

• We identified several geometric configurations for the potential and kinetic couplings for which the universal 
bounds for flat field spaces found earlier are still in place [STT4].

∃

ξ = θ + ielφ N = 1, D = 4

ϵ

2

our conclusions, we do not make any approximation on
the field equations, we do not need to find an explicit
solution to such equations, and we do not make reference
to the initial conditions: the bounds apply to all possible
fully-fledged time-dependent solutions of the cosmologi-
cal equations. Across the literature, this is unique to our
approach [22, 23]. Studies of analogous theories based
on the linear stability of exact solutions and numerical
checks appear e.g. in refs. [16, 33–38].1 As far as our
current investigation is concerned, these earlier studies
provide valuable examples to test our bounds. Another
aspect in which our results go beyond the existing liter-
ature [16, 33–38] lies in the fact that, for the cases we
constrain, they apply to non-diagonal kinetic couplings
and to arbitrary numbers of potential terms. Finally, we
stress that our methods are also applicable to the study
of cosmic contraction, as shown in ref. [43]. Models in-
volving exponential couplings in kinetic and negative po-
tential terms appear e.g. in refs. [44–49].

Although our results are independent of the stability
of critical-point solutions, we discuss the critical points
(known and new ones) as well, and speculate on which
one might presumably be the late-time attractor. A fully
general list of the critical points is in app. A. In app. B,
we report the scalings of the kinetic couplings of RR-
and NSNS-axions to the dilaton and the universal ra-
dion. This can serve as a testing ground for our results
in string compactifications; for complex-structure mod-
uli, more sophisticated tools are needed and we refer to
the literature; see e.g. refs. [50–52].

II. BOUNDS ON COSMIC ACCELERATION

In this section, we present and discuss three general
scenarios for axion-scalar cosmologies in which, at ar-
bitrarily late times, we can bound analytically the ✏-
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2

1,d�1
= �dt2 + a

2(t) dl2Rd�1 . (II.1)

Here, a is the scale factor, which defines the Hubble pa-
rameterH = ȧ/a, and Rd�1 is the flat (d�1)-dimensional
Euclidean space. In this article, we study cosmologies
involving n canonical scalars �

a and p axions ⇣
r, for

a = 1, . . . , n and r = 1, . . . , p.2 Assuming for simplic-

1 See also refs. [26–28]. For further recent studies, see e.g. refs. [19,
21, 24, 25, 39–42].

2 This terminology is motivated by the fact that string-theoretic
axions typically feature kinetic couplings of this kind. There is
no additional meaning to the word “axions” in this article.

ity that all variables only depend on cosmological time,
we consider the total kinetic terms of the form

T [�, ⇣] =
1

2

nX

a=1

(�̇a)2 +
1

2

pX

r=1

e�d
P

a �ra�
a

(⇣̇r)2, (II.2)

i.e. the scalars are kinetically-coupled to the axions as
parameterized by the couplings �ra. Here, we consider
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mX

i=1

⇤i e
�d

P
a �ia�

a

, (II.3)
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hence they do not contribute to the potential. However,
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scalars �a. This is a direct consequence of their origin as
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metric tensor fields, such as the NSNS- and RR-forms,
and the shift symmetry is a manifestation of the gauge
invariance of the original fields. E↵ects such as couplings
to localized sources and background fluxes might stabilize
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fields are the axions ⇣

r we study in this paper. In gen-
eral, however, the kinetic terms may not be diagonal in
the original basis of the moduli. Nonetheless, eqs. (II.2,
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The complete cosmological equations read

⇣̈
r � d⇣̇

r

mX

a=1

�ra�̇
a + (d� 1)H ⇣̇

r = 0, (II.4a)

3 For the roles of axions/saxions in constructing particle physics
models from string theory, see the recent review ref. [53].

4 This allows us to consider the ⇤i-terms to be constants. In gen-
eral, they can depend polynomially on such pseudoscalars, but
once in the minimum, such fields are constant. Multi-branched
flux potentials for axions appeared in the context of M-theory
compactifications on G2-manifolds [56]. They were later used to
generate potentials for axion monodromy inflation [57–60].

K = − n ln[−i(ξ − ξ̄)] ⇒ T[ϕ, ζ] =
n
4 [l2 ·φ2 + e−2lφ ·θ2] =

1
2

·ϕ2 +
1
2

e
− 2 2

n
ϕ ·ζ2

Field spaces with negative curvature

now we consider (pseudo)scalar theories with
• kinetic energy with multi-exponential couplings:𝑇 [𝜙, 𝜁] = 12 𝑛∑𝑎=1( ̇𝜙𝑎)2 + 12 𝑝∑𝑟=1 e− ∑𝑎 𝜆𝑟𝑎𝜙𝑎 ( ̇𝜁𝑟)2 𝛾1

𝛾2

𝛾3
𝜆1𝜆2 𝜆3

𝜆4

• multi-exponential scalar potentials:𝑉 [𝜙] = 𝑚∑𝑖=1 Λ𝑖 e− ∑𝑎 𝛾𝑖𝑎𝜙𝑎

some perspectives:
- simple field space with negative curvature, which may be expected in the asymptotics

see e.g. Ooguri, Vafa [hep-th/0605264]
not always the case though; see e.g. Marchesano, Melotti, Paoloni [hep-th/2311.07979]

for instance, any 4-dim. theory with 𝑁4 = 1 supersymmetry with Kähler potential𝐾 = −𝑛 ln [−i(𝜉 − 𝜉)] for a chiral multiplet 𝜉 = 𝜃 + i e𝑙𝜑 gives the kinetic action𝑇 = 𝑛4 [𝑙2𝜑̇2 + e−2𝑙𝜑 ̇𝜃2] = 12 ̇𝜙2 + 12 e− 2√2√𝑛 𝜙 ̇𝜁2
e.g. STU-models (𝑛 = 𝑝, diagonal 𝜆𝑟𝑎-matrix)
e.g. complex-structure moduli asymptotics
in type-II compactifications on Calabi-Yau orientifolds

e.g. Grimm, Li, Valenzuela [hep-th/1910.09549]
- this action can be used for richer model-building, independently of UV-completions
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DM/DE Coupling and SEC Violation

• A coupling of DM to DE induces an effective transient violation of NEC [Das, Corasaniti, Khoury, '05]. 
This DM/DE coupling has recently been revisited [Chakraborty, Chanda, Das, Dutta, ’25];[Khoury, Lin, Trodden, 
’25]; [Andriot, ’25] in light of the 2025 DESI results.

• The energy density of a cosmological fluid with constant state parameter w evolves as

• A NEC-violating fluid thus has a growing energy density. If there is a second fluid decaying into 
DE, then effectively the DE density may increase over time while still fulfilling the NEC.

• STT5: the DM/DE coupling may also induce an effective SEC violation, even though each 
component of the universe satisfies the SEC.

• This coupling dates back to the 90s [Wetterich, ’94];[Amendola, ’99] though with a different purpose.

ρ = ρ0 ( a0

a )
(d−1)(1+w)/2



Time-Dependent Potential Minimum

• The energy density of non-relativistic DM scales inversely with the volume and proportionally to 
the mass. For a field-dependent DM mass:

• The effect of the DM/DE coupling is an effective potential:

• Effective potential minimum shifts with time as universe expands (from darker to lighter orange).

• Exponential dependence is generic in string theory, consider for illustration the functional form:

2

2. DM/DE-COUPLED COSMOLOGY

DM may be composed of a gas of non-relativistic par-
ticles of mass m. If so, the DM energy density scales in-
versely with the volume and proportionally to the mass.
Let us assume the mass is not a constant, but rather a
function m(ω) of a field ω. Then, to accommodate for
the solution [11]

εDM = εDM,0

(
a0

a

)d→1 m(ω)

m(ω0)
, (1)

the continuity equation must be ε̇DM + (d → 1)HεDM =
εDM ω̇m

↑
/m, with ↑ = ϑ/ϑω. Consistency with the usual

Friedmann equation requires the scalar field equation
to also change, i.e. ω̈+ (d→ 1)Hω̇+ V

↑ = →εDM m
↑
/m.

Hence, practically, the e!ect of the coupling on the field
is the generation of the e!ective potential

U(ω) = V (ω) + εDM,0

(
a0

a

)d→1 m(ω)

m(ω0)
. (2)

If V and m have opposite slopes, the field experiences
an e!ective potential minimum; see fig. 1. Due to the
dependence on the scale factor, such a minimum shifts
with time. Yet, the kinetic energy of the field, and hence
the rate of deceleration, can be significantly reduced com-
pared to the one that would be induced by V alone. This
motivates us to consider ω as the field realizing DE.

ω
V

U

U

FIG. 1. The potential V = ! e→ωdεϑ (magenta) and the ef-
fective potential U = V + εDM,0 (a0/a)

d→1 eωdϖϑ for a smaller
(darker orange) and larger scale factor (lighter orange).

Now, let us consider a universe with two components:
(i) a barotropic fluid, with energy density ε and state
parameter w ↑ ] → 1, 1[, which, for generality, we do not
fix for now; (ii) a scalar sector, with a field ω and a
potential V . In the presence of the fluid/field coupling,
the cosmological equations read

ω̈+ (d→ 1)Hω̇+ V
↑ = →ε

m
↑

m
, (3a)

ε̇+ (d→ 1)(1 + w)Hε = ε ω̇
m

↑

m
, (3b)

H
2 =

2ϖ2
d

(d→ 1)(d→ 2)

[
1

2
ω̇
2 + V + ε

]
, (3c)

also implying Ḣ = →[2ϖ2
d/(d→ 2)]

[
ω̇
2
/2 + [(1 + w)/2] ε

]
.

From now on, we focus on exponential couplings

m = µ eωdεϑ, (4a)

V = ” e→ωdϖϑ, (4b)

where ϱ, ς are constants and µ,” > 0 are fixed reference
values. Without loss of generality, we fix ς > 0. In string
compactifications, exponential behaviors are in fact ubiq-
uitous, through string-coupling and volume expansions.
We define h = (d→ 1)H, b = ϱ/#d and c = ς/#d, with

#d = 2
↓
d→ 1/

↓
d→ 2, and

x =
ϖd↓

d→ 1
↓
d→ 2

ω̇

H
,

y =
ϖd

↓
2↓

d→ 1
↓
d→ 2

1

H

↓
” e→ωdϖϑ,

z =
ϖd

↓
2↓

d→ 1
↓
d→ 2

↓
ε

H
,

Then, eqs. (3a, 3b, 3c) become [19, 20, 28]

ẋ =

[
→(x→ c)(y)2 → 1→ w

2
x(z)2 → b(z)2

]
h, (5a)

ẏ =

[
(x)2 +

1 + w

2
(z)2 → cx

]
yh, (5b)

ż =

[
→1 + w

2
+ (x)2 +

1 + w

2
(z)2 + bx

]
zh, (5c)

ḣ = →
[
(x)2 +

1 + w

2
(z)2

]
h
2
, (5d)

jointly with the condition

(x)2 + (y)2 + (z)2 = 1. (6)

One can search for linearly-stable solutions by linearizing
the equations around the critical points (x, y, z) such that
(ẋ, ẏ, ż) = (0, 0, 0) [28]. Besides those where y = 0 and/or
z = 0, the equations admit the critical point [19, 20]

x =
1

2

1 + w

b+ c
, (7a)

(y)2 =
4b(b+ c) + (1→ w)(1 + w)

4(b+ c)2
, (7b)

(z)2 =
2c(b+ c)→ (1 + w)

2(b+ c)2
, (7c)

with the existence conditions c(b + c) > (1 + w)/2 and
b(b+ c) + (1→ w

2)/4 > 0. As shown in app. A, this is a
linearly-stable solution whenever it exists.
In physical variables, the linearly-stable critical point

is the time-dependent solution

ω(t) = ω0 +
2

ϖdς
ln

t

t0
, (8a)

ε(t) =
4

(1 + w)ς2

1

ϖ
2
dt

2

[
1

2

d→ 2

d→ 1

ς(ς + ϱ)

1 + w
→ 1

]
, (8b)

for suitable constants ω0 and t0, with

φ =
d→ 1

2

1 + w

1 + ϱ/ς
. (9)
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an e!ective potential minimum; see fig. 1. Due to the
dependence on the scale factor, such a minimum shifts
with time. Yet, the kinetic energy of the field, and hence
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pared to the one that would be induced by V alone. This
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Now, let us consider a universe with two components:
(i) a barotropic fluid, with energy density ε and state
parameter w ↑ ] → 1, 1[, which, for generality, we do not
fix for now; (ii) a scalar sector, with a field ω and a
potential V . In the presence of the fluid/field coupling,
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ḣ = →
[
(x)2 +

1 + w

2
(z)2

]
h
2
, (5d)

jointly with the condition

(x)2 + (y)2 + (z)2 = 1. (6)

One can search for linearly-stable solutions by linearizing
the equations around the critical points (x, y, z) such that
(ẋ, ẏ, ż) = (0, 0, 0) [28]. Besides those where y = 0 and/or
z = 0, the equations admit the critical point [19, 20]

x =
1

2

1 + w

b+ c
, (7a)

(y)2 =
4b(b+ c) + (1→ w)(1 + w)

4(b+ c)2
, (7b)

(z)2 =
2c(b+ c)→ (1 + w)

2(b+ c)2
, (7c)

with the existence conditions c(b + c) > (1 + w)/2 and
b(b+ c) + (1→ w

2)/4 > 0. As shown in app. A, this is a
linearly-stable solution whenever it exists.
In physical variables, the linearly-stable critical point

is the time-dependent solution

ω(t) = ω0 +
2

ϖdς
ln

t

t0
, (8a)

ε(t) =
4

(1 + w)ς2

1

ϖ
2
dt

2

[
1

2

d→ 2

d→ 1

ς(ς + ϱ)

1 + w
→ 1

]
, (8b)

for suitable constants ω0 and t0, with

φ =
d→ 1

2

1 + w

1 + ϱ/ς
. (9)

2

2. DM/DE-COUPLED COSMOLOGY

DM may be composed of a gas of non-relativistic par-
ticles of mass m. If so, the DM energy density scales in-
versely with the volume and proportionally to the mass.
Let us assume the mass is not a constant, but rather a
function m(ω) of a field ω. Then, to accommodate for
the solution [11]

εDM = εDM,0

(
a0

a

)d→1 m(ω)

m(ω0)
, (1)

the continuity equation must be ε̇DM + (d → 1)HεDM =
εDM ω̇m

↑
/m, with ↑ = ϑ/ϑω. Consistency with the usual

Friedmann equation requires the scalar field equation
to also change, i.e. ω̈+ (d→ 1)Hω̇+ V

↑ = →εDM m
↑
/m.

Hence, practically, the e!ect of the coupling on the field
is the generation of the e!ective potential

U(ω) = V (ω) + εDM,0

(
a0

a

)d→1 m(ω)

m(ω0)
. (2)

If V and m have opposite slopes, the field experiences
an e!ective potential minimum; see fig. 1. Due to the
dependence on the scale factor, such a minimum shifts
with time. Yet, the kinetic energy of the field, and hence
the rate of deceleration, can be significantly reduced com-
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Now, let us consider a universe with two components:
(i) a barotropic fluid, with energy density ε and state
parameter w ↑ ] → 1, 1[, which, for generality, we do not
fix for now; (ii) a scalar sector, with a field ω and a
potential V . In the presence of the fluid/field coupling,
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DM may be composed of a gas of non-relativistic par-
ticles of mass m. If so, the DM energy density scales in-
versely with the volume and proportionally to the mass.
Let us assume the mass is not a constant, but rather a
function m(ω) of a field ω. Then, to accommodate for
the solution [11]

εDM = εDM,0

(
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, (1)

the continuity equation must be ε̇DM + (d → 1)HεDM =
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/m, with ↑ = ϑ/ϑω. Consistency with the usual

Friedmann equation requires the scalar field equation
to also change, i.e. ω̈+ (d→ 1)Hω̇+ V
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Hence, practically, the e!ect of the coupling on the field
is the generation of the e!ective potential
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If V and m have opposite slopes, the field experiences
an e!ective potential minimum; see fig. 1. Due to the
dependence on the scale factor, such a minimum shifts
with time. Yet, the kinetic energy of the field, and hence
the rate of deceleration, can be significantly reduced com-
pared to the one that would be induced by V alone. This
motivates us to consider ω as the field realizing DE.
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Seeking String Realizations

• In string compactifications, the cutoff must lie below the species scale [Veneziano, ’01]; [Dvali, ’07]. which is 
expected to fall as:

• However, since we are treating DM as a cosmological fluid made out of non-relativistic matter 
constituents (classical source), it is not necessary for the DM mass to be below the cutoff.

• For example, consider a DM star made up of DM particles. If the DM particles have a field-dependent 
mass, it is not unreasonable to expect a DM star with .

• Moreover, although the DM mass grows exponentially, the universe expansion is still sufficient to 
dilute the DM energy density over time.

m(φ)

Λsp = mP,d e−κdλφ , λ ∼ 𝒪(1)

3

If ω > 0, for a su!ciently large ratio ω/ε, the ϑ-parameter
can be arbitrarily small.

We note that the solutions in eqs. (8a, 8b, 9) are dif-
ferent from those in refs. [11, 22–24], referred to inverse-
power law potentials. Also, refs. [25, 26] discuss transient
epochs of cosmic acceleration, computed as quasi-de Sit-
ter (dS) solutions through expansions near the minima
of a DM/DE-coupled e”ective potential, while the solu-
tions in eqs. (8a, 8b) are exact and linearly-stable. In
particular, the latter require no fine tuning of the initial
conditions and are not transient. Finally, as discussed be-
low, by construction they do not need an additional field
within the e”ective field theory (EFT) to realize DM.

3. SEEKING STRING EMBEDDINGS

In eq. (8a), the field evolves with ϖ̇ > 0. Hence, if
ω > 0, the DM particle gets heavier and heavier and,
eventually, it hits the theory cuto”. In string compact-
ifications, the cuto” must lie below the species scale
[29, 30], which is expected to fall as #sp = mP,d e→ωdεϑ,
where ϱ is an order-1 constant [31–33]. Therefore, at
best, the DM mass will hit the cuto” within a finite field-
space distance; see fig. 2. However, we also highlight the
following: since we are treating DM as a cosmological
fluid made out of non-relativistic matter constituents, it
is not necessary for the DM mass to be below the cuto”.
One does not need a microscopic field to describe DM:
the DM fluid can be treated as a classical source of energy
density. Moreover, as obvious from eq. (8b), although the
DM mass grows exponentially, the universe expansion is
still su!cient to dilute the DM energy density over time.
To add another perspective, we note that, although the
DM particle eventually becomes heavier than the cuto”,
the fact that it helps cosmic acceleration may be inter-
preted as a “renormalization” e”ect that manifests in an
e”ective flattening of the potential. Of course, the DE
degrees of freedom must instead always lie within the
EFT cuto”. Both the kinetic and the potential energy
fall over time with the same parametric dependence as
the squared Hubble constant [34]. Hence, we may simply
require that ςd

→
V ↑ #sp via eq. (3c) [7].

ϖEFT DM field

ςd

→
V

#sp

m

0

FIG. 2. The mass scale ωd

→
V associated to the scalar poten-

tial, the cuto! scale ”sp, and the DM mass m.

In the asymptotics of string compactifications, the po-
tential slope is expected to be bounded as ε ↓ 2/

→
d↔ 2

[8–10]. Below, we seek realizations of suitable growing
masses, too, setting w = 0.
According to the distance conjecture [35], string com-

pactifications involve towers of states that become light
as one approaches the field-space asymptotics ϖ = ↗,
with a mass gap

mDC(ϖ) = µDC e→ωdϖϑ, (10)

for an order-1 constant φ > 0 and a reference mass µDC.
Arguments exist supporting the bound φ ↓ 1/

→
d↔ 2 for

the gap rate [36]. Due to string dualities, towers of heavy
states emerging in the opposite regime, i.e. ϖ = ↔↗, are
also expected [36–39]. One may then identify DM with
a string heavy state by replacing φ ↘≃ ↔ω, with ω > 0.
As an example, we consider both the saturating values

ε = 2ω = 2/
→
d↔ 2. The stable solution delivers

ϑ =
d↔ 1

3
. (11)

Hence, ϑ < 1 only for d = 3. For d = 4, the accelerating
phase may be arbitrarily long-lived (ignoring the cuto”),
approaching ϑ = 1 from below, but the solution would
still not feature a cosmic horizon [40–42].1

A large ratio ω/ε favors a small ϑ. In fact, it is not
necessary for the bounds on ω and ε to be saturated
(and at the same time). There is therefore an obvious
chance to look for ϑ ↑ 1. For instance, let us consider a
4d compactification on the product S1⇐H5 of a circle and
a hyperbolic space. A candidate heavy state is a Kaluza-
Klein (KK) monopole [36, 45]. If we assume isotropy,
the curvature-induced potential and the KK monopole
mass only depend on the Einstein-frame radion ↼̃, with
ω =

√
3/2 and ε =

√
8/3. In the absence of the DM/DE

coupling, the orthogonal direction, i.e. the 10d dilaton
↽̃, would be frozen by Hubble friction [34]. Clearly, this
holds even with a DM/DE coupling that is aligned with
the potential; see also eq. (14). Then, eq. (9) gives

ϑ =
6

7
. (12)

Further candidate states with a growing mass are branes
with all their spatial directions wrapped on internal cy-
cles. These correspond to d-dimensional point particles
whose mass equals the dimensionally-reduced tension.2

1
The possibility that EFTs coupled to gravity with a cosmological

horizon cannot be UV-complete has been discussed in ref. [43];

see also refs. [41, 44].
2
Wrapped branes as DM were considered in ref. [46]. Their role as

heavy states was also explored by ref. [26]. However, note that

in our case we are not studying transient quasi-dS solutions, and

we do not need an EFT description of the DM field.
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for order 1 constant . Evidence for  [Etheredge, Heidenreich, Kaya, Qiu, Rudelius, ’22].
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Further candidate states with a growing mass are branes
with all their spatial directions wrapped on internal cy-
cles. These correspond to d-dimensional point particles
whose mass equals the dimensionally-reduced tension.2
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γ ≥ 2/ d − 2, β ≥ 1/ d − 2, ⇒ ϵ = (d − 1)/3



Seeking String Realizations

• It is not necessary for the bounds on β and γ to be saturated (and at the same time).

• As a specific example, a curvature-induced potential  & a KK-monopole  give .

• As before, we can generalize our results to multiple fields with potential and DM/DE coupling:

• There exists a solution to this dynamical system with

• The multi-field problem can be reduced to a single field problem by projecting onto .

V(φ) m(φ) ϵ = 6/7

γ∞
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4. ASYMPTOTICS WITH DM/DE COUPLINGS

There is a second way to exploit the DM/DE coupling,
beyond the one considered so far. In string compactifi-
cations, because of the string-coupling and volume ex-
pansions, negative potentials may push the EFT outside
of perturbative control. A coupling to a light tower of
states can however allow for a dynamical evolution to-
wards controlled regions.

In eqs. (4a, 4b), let ω = →ε < 0 and ! = →K < 0, still
with ϑ = ϑ→ > 0 and µ > 0. Then, the e”ective potential
in eq. (2) takes the form

U→(ϖ) = →K e→ωdε→ϑ + ϱDM,0

(
a0

a

)d→1
e→ωdϖϑ. (13)

If ϑ→ > ε, then U→ exhibits a runaway towards zero
energy at ϖ = +↑; see fig. 3. Instead, V = V→ alone
would only have a runaway towards negatively-infinite
energy at ϖ = →↑. The DM particle mass flows to zero,
too, remaining in the EFT.

As the scale factor is not fixed, the positive term in
eq. (13) e”ectively falls down much more quickly than
with the exponential rate ε. Even transient epochs can
never have ς ↓ 1, as is obvious from the dynamical sys-
tem, where now (y)2 < 0. If w = 0, because (x)2+(z)2 =
1→ (y)2 > 1, we have ς/(d→ 1) = (x)2 + (z)2/2 > 1/2.

To host epochs of cosmic acceleration, one should
also include positive-definite potentials. One such de-
formation simply requires an additional potential term
V+ = ! e→ωdε+ϑ, with ! > 0 and ϑ+ > ϑ→. Without the
DM/DE coupling, the potential would not be a runaway
towards ϖ = +↑ and the combination of only the pos-
itive potential and the DM/DE-term would just be an
exponential runaway. It is the combination of all three
e”ects that generates a positive-energy runaway towards
ϖ = +↑ along with a scale factor-dependent minimum
in the e”ective potential; see fig. 3.

ω
U→

V→ + V+

U U+

FIG. 3. At a fixed scale factor, the e!ective potential
U→ = →K e→ωdε→ϑ + εDM,0 (a0/a)

d→1e→ωdϖϑ (orange), with
a negative source and the DE/DM-coupling, the pure field
potential V→ + V+ = →K e→ωdε→ϑ + ” e→ωdε+ϑ (green), the
e!ective potential U+ = ” e→ωdε+ϑ + εDM,0 (a0/a)

d→1e→ωdϖϑ

(cyan) with a positive source and the DE/DM-coupling, with
ϑ+ > ϑ→ > ϖ > 0, and the full potential U combining all
terms, with a positive-energy minimum (magenta).

5. DISCUSSION

A DM/DE coupling can induce a long-lived SEC vio-
lation. The fundamental requirement is for the DM mass
and DE potential to depend on the DE field with oppo-
site slopes. If it exists, the solution is linearly stable, and
hence attainable without fine-tuned initial conditions and
arbitrarily long-lived in a mathematical sense. In the sce-
nario we considered, DM may be simply treated as a clas-
sical source, circumventing the upper bound set by the
EFT cuto”. Our results may open up new possibilities to
overcome the apparent limitations to long-lived SEC vio-
lations evidenced in the simplest string compactifications
evolving in the field-space asymptotics [8–10, 45, 47–55].

String dualities imply the presence of heavy states that
one would integrate out, but whose e”ects facilitate cos-
mic acceleration. Our results extend simply to multi-field
cosmologies. In the absence of additional fluids, for pos-
itive potentials V =

∑
i !i e→ωd εi·ϑ, the attractors are

straight lines in the field space ϖ = (ϖa), with the direc-
tion fixed by the minimal-length vector ϑ↑ joining the
origin to the µi-vectors’ convex hull [34]. In the pres-
ence of a coupled DM mass m = µ eωd ϱ·ϑ, there exists a
solution with

ς =
d→ 1

2

1 + w

1 +
ω · ϑ↑
(ϑ↑)2

, (14)

which is in fact equivalent to projecting the multi-field
problem onto ϑ↑; see fig. 4. We expect the attractor
to be the critical-point solution with the smallest ς [56].
Comparing with ς = [(d→ 2)/4] (ϑ↑)2, (d→ 1)(1 + w)/2,
we may thus predict the late-time solution as the one
with the smallest one among such ς-values. For instance,
a large-enough value ω · ϑ↑/(ϑ↑)2 > 0 will make eq. (14)
the late-time solution.

ϑ1

ϑ2

ϑ3

ϑ↑

ϱ

FIG. 4. A representation of the multi-field potential (teal) and
DM/DE (blue) couplings, with the asymptotic field direction
(purple).
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V = ∑
i

Λi e−κd γi⋅φ , m = μ eκd β⋅φ



Summary of Results

• Treating the universe as a dynamical system, we bound the rate of time variation of the Hubble 
parameter at late time [STT1]. The bound provides a useful diagnostic for dark energy models.

• Our bound when applied to string theoretic constructions identifies a generic obstacle to acceleration 
if the -dim. dilation is one of the rolling fields. We also suggest several ways out.

• We prove conditions under which scaling solutions are late-time attractors. Moreover, we prove that 
scaling solutions saturate our bound on  [STT2].

• Our results apply irrespective of whether the potential is generated classically or quantum 
mechanically, whether the kinetic term is negligible, & whether some potential term dominates.

• This program can be extended to quintessence models with dynamical axions as well [STT4].

• As a spinoff, we derived analogous bounds on ekpyrosis [STT3].

• DM/DE coupling relaxes these bounds. Some features can be realized in string theory, though a fully 
UV complete model that explains the current cosmic acceleration remains to be constructed. [STT5].
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