

# Bootstrapping hexagonal Wilson loops

Johannes M. Henn (Max Planck Institute for Physics)

Plenary talk at International Workshop on Opportunities for Particle Physics, IHEP, July 19, 2025

### Scattering amplitudes connect theory and experiment



From Fabrizio Caola's talk at Amplitudes 2023, CERN]



,Scattering Amplitudes: the most perfect microscopic structures in the Universe [Lance Dixon, arXiv:1105.0771]



# 'Les Houches wishlist' gives an idea of what is needed from an experimental viewpoint



#### NNLO QCD and NLO EW Les Houches Wishlist

Wishlist part 1 - Higgs (V=W,Z)

| Process     | known                                                                        | desired                                                               | motivation                       |
|-------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------|
| Н           | d\sigma @ NNLO QCD d\sigma @ NLO EW finite quark mass effects @ NLO          | d\sigma @ NNNLO QCD + NLO EW MC@NNLO finite quark mass effects @ NNLO | H branching ratios and couplings |
| H+j         | d\sigma @ NNLO QCD (g only)<br>d\sigma @ NLO EW                              | d\sigma @ NNLO QCD + NLO EW finite quark mass effects @ NLO           | Н р_Т                            |
| H+2j        | \sigma_tot(VBF) @ NNLO(DIS) QCD d\sigma(gg) @ NLO QCD d\sigma(VBF) @ NLO EW  | d\sigma @ NNLO QCD + NLO EW                                           | H couplings                      |
| H+V         | d\sigma(V decays) @ NNLO QCD<br>d\sigma @ NLO EW                             | with H→bb @ same accuracy                                             | H couplings                      |
| t\bar<br>tH | d\sigma(stable tops) @ NLO QCD                                               | d\sigma(NWA top decays) @ NLO QCD + NLO EW                            | top Yukawa coupling              |
| НН          | d\sigma @ LO QCD finite quark mass effects d\sigma @ NLO QCD large m_t limit | d\sigma @ NLO QCD finite quark mass effects d\sigma @ NNLO QCD        | Higgs self coupling              |

Scattering amplitudes at next-to-next-to-leading-order (NNLO) and even beyond are needed to match the experimental precision.



### State of the art Feynman integrals and amplitudes

#### Dramatic progress for massless 5-particle scattering



[slide from S. Zoia, LoopFest 2022]

This talk: towards six-particle scattering amplitudes at NNLO.



## Challenge: Proliferation of rational coefficients

#### Challenge

• Rationality of integral coefficients in momenta

$$\mathcal{N}_{i}(\vec{p}) = \sum_{\vec{\alpha}} n_{i,\vec{\alpha}} \left( s_{12}^{\alpha_{1}} s_{23}^{\alpha_{2}} \dots \right), \quad \mathcal{D}_{i}(\vec{p}) = \sum_{\vec{\alpha}} d_{i,\vec{\alpha}} \left( s_{12}^{\alpha_{1}} s_{23}^{\alpha_{2}} \dots \right)$$

$$r_i(\vec{p}) = \frac{\mathcal{N}_i(\vec{p})}{\mathcal{D}_i(\vec{p})}, \quad s_{ij} = (p_i + p_j)^2$$

 $\hookrightarrow$  linear in numerical coefficients  $n_{i \vec{\alpha}} \in \mathbb{Q}$ 

• Linear systems constructed from multiple numerical computations of  $r_i(\vec{p})$ 

$$\vec{p} \to \{\vec{p}_1, \vec{p}_2, \dots\} \in \mathbb{Q}$$

- $\hookrightarrow$  linear system for required coefficients  $n_{i,\vec{\alpha}}$  and  $d_{i,\vec{\alpha}}$
- Bottleneck:
  - Run times
  - Complexity of coefficients = number of unknowns  $n_{i,\vec{\alpha}}$

Five-gluon amplitudes

[De Laurentis, Ita, Klinkert, Sotnikov '23]

| Helicity                 | dim(basis)   | ansatz size |
|--------------------------|--------------|-------------|
| remainder                | ullil(basis) |             |
| $R^{(2),(2,0)}_{+++}$    | 31           | 21,910      |
| $R_{++-+-}^{(2),(2,0)}$  | 54           | 54,148      |
| $R_{+++}^{(2),(1,0)}$    | 274          | 163,635     |
| $R_{+-++-}^{(2),(1,0)}$  | 270          | 241,156     |
| $R_{+++}^{(2),(1,0)}$    | 203          | 82,180      |
| $R^{(2),(1,1)}_{+++}$    | 31           | 21,910      |
| $R_{++-+-}^{(2),(1,1)}$  | 54           | 54,148      |
| $R_{+++}^{(2),(0,1)}$    | 226          | 118,880     |
| $R_{+-++-}^{(2),(0,1)}$  | 240          | 209,018     |
| $R_{+++}^{(2),(0,1)}$    | 157          | 76,845      |
| $R_{+++}^{(2),(-1,1)}$   | 25           | 5,320       |
| $R^{(2),(-1,1)}_{++-+-}$ | 35           | 9,384       |

[slide from H. Ita, LoopFest 2025]

)

This talk: insights on coefficients from N=4 super Yang-Mills.



## Perturbative structure in quantum field theory



#### Challenges:

- Complicated two-loop six-particle master integrals
- Proliferation of leading singularities

#### All massless planar two-loop six-particle Feynman integrals computed

- Differential equations method used
- Most complicated integrals not needed in D=4
- Analytic result, proof-of-concept numerical evaluation







[JMH, Antonela Matijašić, Julian Miczajka, Tiziano Peraro, Yingxuan Xu, Yang Zhang, *Phys. Rev. Lett.* 135 (2025) 3, 031601;

JHEP 08 (2024) 027; JHEP 01 (2023) 096

Also Samuel Abreu, Pier Monni, Johann Usovitsch, JHEP 03 (2025) 112]

Our result removes an important bottleneck for obtaining two-tofour scattering amplitudes at next-to-next-to-leading order.

[cf. Yang Zhang's talk at this conference]

#### Plan for this talk.

In this talk, we are going to benefit from maximally supersymmetric Yang-Mills theory to learn something about six-particle scattering in pure Yang-Mills theory.

We benefit from a correspondence between scattering amplitudes and Wilson loops in this theory. This allows us to define interesting finite observables. We will use a bootstrap approach to determine the answer.



#### Wilson loop / scattering amplitudes duality in planar N=4 super Yang-Mills [Alday, Maldacena; Drummond, Korchemsky,

Sokatchev; +JMH; Brandhuber, Heslop, Travaglini]



Null Wilson loop

(MHV) scattering amplitude

Dual variables  $x_{i+1} - x_i = p_i$ 

symmetry in x space.

Conformal symmetry in p space.

# Why are Wilson loops with Lagrangian insertion (in planar, N=4 super Yang-Mills) interesting?

- 1. Well-defined, finite quantities, similar to hard functions in QCD. Integrand is described, to all loop orders, by the Amplituhedron.
- 2. Same kinematic space as Yang-Mills amplitudes. May shed light on *leading singularities and functions space* in QCD.
- 3. Many surprising features, such as conformal symmetry, positivity properties, and *duality to all-plus amplitudes*.



## Definition and key properties of Wilson loop rat

$$F_n(x_i; x_0) = \frac{\langle W_n \mathcal{L}(x_0) \rangle}{\langle W_n \rangle}.$$



Divergences cancel in ratio. Dual conformal symmetry.

[Alday, Tseytlin, 2011; Alday, Buchbinder, Tseytlin, 2011]

Contains information about cusp anomalous dimension.

[Alday, JMH, Sikorowski, 2013; JMH, Korchemsky, Mistlberger, 2019; Arkani-Hamed, JMH, Trnka, 2021; Bargheer, Bercini, Gonçalves, Fernandes, Mann, 2024]

Same kinematics and function space as Yang-Mills amplitudes:

$$f_n(p_1, ..., p_n) = \lim_{n \to \infty} (x_0^2)^4 F_n(p_1, ..., p_n; x_0)$$

F (equivalently, f) depends on (3n-10) dimensional variables.



## Expected structure in perturbation theory



#### We benefit from two recent advances:

- All relevant two-loop six-particle master integrals evaluated
- All-loop classification of leading singularities

# Bootstrapping the hexagonal Wilson loop with Lagrangian insertion

Based on the insights on leading singularities and on the two-loop function space, our goal is to ,bootstrap' the answer.

[Sergio Carrôlo, Dima Chicherin, JMH, Qinglin Yang, Yang Zhang, 2505.01245]









# What is known about the function space?

| n | Number of variables | Variables                                           | Known loop order | Alphabet letters                               | Function space                                                                   |  |  |
|---|---------------------|-----------------------------------------------------|------------------|------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| 4 | 2                   | s, t                                                | 3                | {s,t,s+t}                                      | Harmonic polylogarithms<br>[Gehrmann, Remiddi; Maître]                           |  |  |
| 5 | 5                   | $S_{i,i+1}$                                         | 2                | 20 parity-even letters<br>5 parity-odd letters | Pentagon functions<br>[Gerhmann, JMH; LoPresti; Chicherin,<br>Sotnikov]          |  |  |
| 6 | 8                   | $S_{i,i+1}$ ; $S_{i,i+1,i+2}$<br>One Gram condition | 2                | 245 letters                                    | [JMH, Matijašić, Miczaijka, Peraro, Xu,<br>Zhang; Abreu, Monni, Page, Usovitsch] |  |  |



### All-loop leading singularities from Amplituhedron

Proof of conjecture on form and number of leading singularities:

|                 | n                              | 5 | 6  | 7  | 8   | 9   | 10  | 11  | 12  |
|-----------------|--------------------------------|---|----|----|-----|-----|-----|-----|-----|
| L=1             | lacksquare                     |   |    |    |     | 27  |     |     |     |
| $L \geqslant 2$ | $\frac{(n-1)(n-2)^2(n-3)}{12}$ | 6 | 20 | 50 | 105 | 196 | 336 | 540 | 825 |

[Chicherin, JMH, 2022]

**Table 1.** The number of linearly independent leading singularities of  $F_n^{(L)}$ , as conjectured in ref. [64], and proven in the present work.

$$[a_1b_1c_1; a_2b_2c_2] = \frac{\langle AB(a_1b_1c_1) \cap (a_2b_2c_2) \rangle^2}{\langle ABa_1b_1 \rangle \langle ABb_1c_1 \rangle \langle ABa_1c_1 \rangle \langle ABa_2b_2 \rangle \langle ABb_2c_2 \rangle \langle ABa_2c_2 \rangle}, \quad (2.16)$$

Claim 1. All leading singularities of  $F_n^{(L)}$  for  $n \ge 4$  and  $L \ge 1$  can be expressed as linear combinations of Kermit forms (2.16).



[Brown, JMH, Mazzucchelli, Trnka, 2503.1785]

## Idea of the proof

Leading singularities are maximal residues of the Amplituhedron form. We classify all *leading singularity configurations* that are allowed by the Amplituhedron geometry. [cf. Dennen, Prlina, Spradlin, Stanojevich, Volovich, 1612.02708]

We evaluate the <u>residues (leading singularity values)</u> for all remaining configurations. Using triangulation identities, we show that a basis is given by certain Kermit forms.

For example, an explicit basis for the 20 leading singularities at n=6:



**Figure 14**. A LS basis for  $F_6^{(L)}$  at  $L \ge 2$ . "+ cycl" in the first row means that there are 6 elements of [1234] type, 6 of [1345] type, 3 of [1346] type, so that together with the 5 elements from the second row we have 20 basis elements in total.



# Symbol Bootstrap (1/2)

#### 20 leading singularities. 945 weight-four symbols.

[Brown, JMH, Mazzucchelli, Trnka, 2503.1785]

| Transcendental weight                  | 1 | 2  | 3   | 4   |
|----------------------------------------|---|----|-----|-----|
| # All symbols                          | 9 | 62 | 319 | 945 |
| # Two-loop six-point symbols           | 9 | 62 | 266 | 639 |
| # Two-loop five-point one-mass symbols | 9 | 59 | 263 | 594 |
| # One-loop squared symbols             | 9 | 59 | 221 | 428 |
| # Genuine two-loop six-point symbols   | 0 | 0  | 3   | 45  |

Table 2. Counting of independent symbols for two-loop six-point massless planar Feynman integrals, cf. also reference [74].

[JMH, Matijašić, Miczaijka, Peraro,
Xu, Zhang, 2501.01847]

$$f_n^{(L)} = \sum_{i,j} c_{i,j} r_{n,i} g_j^{(2L)}$$

We make an ansatz with free coefficients. We then determine them from symmetry and physical requirements. [Carrôlo, Chicherin, JMH, Yang, Zhang, 2505.01245]

# Symbol Bootstrap (2/2)

Ansatz: 
$$f_n^{(L)} = \sum_{i,j} c_{i,j} r_{n,i} g_j^{(2L)}$$

#### Constraints:

- Dihedral symmetry
- Scaling dimension
- Cancellation of spurious singularities
- Consistency with soft limit
- Consistency with (double and triple) collinear limit

| weight                         | 0 | 1             | 2   | 3   | 4    |
|--------------------------------|---|---------------|-----|-----|------|
| unknowns in<br>dihedral ansatz | 5 | 22            | 139 | 644 | 1892 |
| genuine <b>unknowns</b>        | 4 | 20            | 125 | 585 | 1718 |
| constraints:                   |   |               |     |     |      |
| soft                           | 3 | 20            | 116 | 515 | 1439 |
| collinear                      | 3 | 20            | 121 | 551 | 1539 |
| spurious $s_{24} = 0$          | 1 | 12            | 76  | 360 | 1044 |
| spurious $s_{25} = 0$          | 1 | 6             | 36  | 165 | 483  |
| scaling dimension              | 0 | $\mid 4 \mid$ | 20  | 125 | 585  |
| triple collinear               | 1 | 5             | 31  | 134 | 353  |
| total constraints              | 4 | 20            | 125 | 585 | 1718 |
| unfixed unknowns               | 0 | 0             | 0   | 0   | 0    |

Table 4. Numbers of constraints following from each physical condition.

#### Discussion of the result

1) Only 137 of the 245 alphabet letters are needed. The two-loop letters that appear are associated to the following integral sectors:



2) Duality to all-plus Yang-Mills amplitudes implies nontrivial Steinmann relations:

$$\operatorname{Disc}_{s_{i,i+1,i+2}=0} \operatorname{Disc}_{s_{i-1,i,i+1}=0} \left( F_6^{(2)} + F_6^{(1)} \mathcal{H}_6^{(1)} \right) = 0.$$

3) Some leading singularity contributions are extremely simple:

$$G_{11}^{(2)} = \text{Pent}_{2,6} \times \text{Pent}_{3,5}, \ G_{12}^{(2)} = \text{Pent}_{1,3} \times \text{Pent}_{4,6}, \ G_{13}^{(2)} = \text{Pent}_{1,5} \times \text{Pent}_{2,4}.$$

#### Discussion and outlook

Our symbol result provides a first amplitude-type observable that uses the novel two-loop hexagon function space. Via the conjectured duality, this predicts the leading-weight terms of the *three-loop all-plus scattering amplitude*.

Interestingly, only 137 of the 245 alphabet letters are needed. Does this have an explanation in terms of *cluster algebras*?

[Cf. talks by Anastasia Volovich and Mark Spradlin]

Can one use the same method for bootstrapping pure Yang-Mills scattering amplitudes?





https://indico.mpp.mpg.de/e/symbology15





# Thank you!

henn@mpp.mpg.de www.positive-geometry.com

universe+ is a cooperation of











