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Scattering amplitudes connect theory and experiment

Collider predictions: how to get there

Structure of the 
proton, Q~GeV, 
non perturbative

From quark/gluons to 
colour-singlet hadrons, 
non perturbative

𝒜

High-energy scattering, 
perturbative

From Fabrizio Caola’s talk at Amplitudes 2023, CERN]
‚Scattering Amplitudes: the most perfect microscopic 
structures in the Universe [Lance Dixon, arXiv:1105.0771]

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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Les Houches

NNLO QCD and NLO EW Les Houches Wishlist

Wishlist part 1 - Higgs (V=W,Z)

Process known desired motivation

H d\sigma @ NNLO QCD 
d\sigma @ NLO EW 
finite quark mass effects @ NLO

d\sigma @ NNNLO QCD + NLO EW 
MC@NNLO 
finite quark mass effects @ NNLO

H branching ratios and
couplings

H+j d\sigma @ NNLO QCD (g only) 
d\sigma @ NLO EW

d\sigma @ NNLO QCD + NLO EW 
finite quark mass effects @ NLO

H p_T

H+2j \sigma_tot(VBF) @ NNLO(DIS) QCD
d\sigma(gg) @ NLO QCD 
d\sigma(VBF) @ NLO EW

d\sigma @ NNLO QCD + NLO EW H couplings

H+V d\sigma(V decays) @ NNLO QCD 
d\sigma @ NLO EW

with H→bb @ same accuracy H couplings

t\bar
tH

d\sigma(stable tops) @ NLO QCD d\sigma(NWA top decays) 
@ NLO QCD + NLO EW

top Yukawa coupling

HH d\sigma @ LO QCD finite quark mass
effects 
d\sigma @ NLO QCD large m_t limit

d\sigma @ NLO QCD finite quark mass
effects 
d\sigma @ NNLO QCD

Higgs self  coupling

Wishlist part 2 - jets and heavy quarks

Process known desired motivation

t\bar t \sigma_tot @ NNLO
QCD 
d\sigma(top decays) @
NLO QCD 
d\sigma(stable tops) @
NLO EW

d\sigma(top decays) 
@ NNLO QCD + NLO EW

precision top/QCD, 
gluon PDF 
effect of  extra radiation at high rapidity 
top asymmetries

t\bar t+j d\sigma(NWA top
decays) @ NLO QCD

d\sigma(NWA top decays) @
NLO QCD + NLO EW

precision top/QCD, top asymmetries

single-top d\sigma(NWA top
decays) @ NLO QCD

d\sigma(NWA top decays) @
NNLO QCD (t channel)

precision top/QCD, V_tb

dijet d\sigma @ NNLO d\sigma @ NNLO QCD + Obs.: incl. jets, dijet mass 3Johannes M. Henn

‘Les Houches wishlist’ gives an idea of what is 
needed from an experimental viewpoint

Scattering amplitudes at next-to-next-to-leading-order (NNLO) and 
even beyond are needed to match the experimental precision.

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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State of the art Feynman integrals and amplitudes
Dramatic progress for massless 5-particle scattering 

4

Analytic results for all Feynman integrals 
[Gehrmann, Henn, Lo Presti 2015;  

Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser 2018; 

Abreu, Page, Zeng 2018; Chicherin, Henn, Mitev 2018; 

Abreu, Dixon, Herrmann, Page, Zeng 2018; 

Chicherin, Gehrmann, Henn, Wasser, Zhang, SZ 2018]

Special function basis

Analytic results for scattering amplitudes 

[Abreu, Febres-Cordero, Ita, Page, Sotnikov 
2021; Badger, Brönnum-Hansen, Bayu 
Hartanto, Peraro, Moodie, SZ, to appear]

[Agarwal, Buccioni, von Manteuffel, 
Tancredi 2021 x2; Chawdhry, Czakon, 
Mitov, Poncelet 2021]

[Abreu, Page, Pascual, Sotnikov 2020; 
Chawdhry, Czakon, Mitov, Poncelet 2021]

[Badger, Brönnum-Hansen, Chicherin, 
Gehrmann, B. Hartanto, Henn, Marcoli, 
Moodie, Peraro, SZ 2021]

planar
3j

 
planar

3γ

 
full 

colour

2γ + j

 [Kallweit, Sotnikov, Wiesemann 2020; Chawdhry, Czakon, Mitov, Poncelet 2020] 

 [Chawdhry, Czakon, Mitov, Poncelet 2021; Badger, Gehrmann, Marcoli, Moodie 2021] 

 [Czakon, Mitov, Poncelet 2021; Chen, Gehrmann, Glover, Huss, Marcoli 2022]

pp → 3γ
pp → 2γ + j
pp → 3j

 @NNLO QCD:dσ

[see M. Marcoli’s talk]

[Gehrmann, Henn, Lo Presti ’18; Chicherin, Sotnikov ’20]

[slide from S. Zoia, LoopFest 2022]

This talk: towards six-particle scattering amplitudes at NNLO.

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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Challenge: Proliferation of rational coefficients

[slide from H. Ita, 
LoopFest 2025]

This talk: insights on coefficients from N=4 super Yang-Mills.

Challenge
• Rationality of integral coefficients in momenta


,   


,    


 linear in numerical coefficients 


• Linear systems constructed from multiple numerical computations of 





 linear system for required coefficients  and 


• Bottleneck:


• Run times


• Complexity of coefficients = number of unknowns 

𝒩i( ⃗p) = ∑⃗
α

ni, ⃗α (sα1
12 sα2

23 . . . ) 𝒟i( ⃗p) = ∑⃗
α

di, ⃗α (sα1
12 sα2

23 . . . )

ri( ⃗p) = 𝒩i( ⃗p)
𝒟i( ⃗p) sij = (pi + pj)2

↪ ni, ⃗α ∈ ℚ

ri( ⃗p)

⃗p → { ⃗p1, ⃗p2, . . . } ∈ ℚ

↪ ni, ⃗α di, ⃗α

ni, ⃗α

9

 Five-gluon amplitudes


 [De Laurentis, Ita, Klinkert, Sotnikov ’23]      

dim(basis)

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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Perturbative structure in quantum field theory
f = ∑

i,j

ci,j rn,i gj

Challenges:

- Complicated two-loop six-particle master integrals

- Proliferation of leading singularities

Coefficients /
Leading singularities  
(rational, algebraic)

Constants 
(kinematic-
independent)

Special functions

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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All massless planar two-loop six-particle Feynman 
integrals computed

[JMH, Antonela Matijašić, Julian Miczajka, Tiziano Peraro, Yingxuan Xu, 
Yang Zhang, Phys. Rev. Lett. 135 (2025) 3, 031601;

JHEP 08 (2024) 027; JHEP 01 (2023) 096

Also Samuel Abreu, Pier Monni, Johann Usovitsch, JHEP 03 (2025) 112]

4.11. EVALUATIONOFMULTI-LOOP FEYNMAN INTEGRALS AND SCATTERING AMPLITUDES49

Figure 4.8: All two–loop planar Feynman dia-
grams with generic six-particle kinematic depen-
dence were evaluated, removing an important bot-
tleneck for obtaining scattering amplitudes.

4.11 Evaluation of multi-loop Feyn-
man integrals and scattering
amplitudes

The group brings together unique expertise in
quantum field theory calculations, including the
canonical di↵erential equations method, which has
become a standard tool in the field. Building on
this foundation, as well as the advancements de-
scribed in the previous section 4.10, the group
has performed a series of cutting-edge calcula-
tions of Feynman integrals and scattering ampli-
tudes. These results are relevant to both Quan-
tum Chromodynamics (QCD) and maximally su-
persymmetric Yang-Mills theory.

4.11.1 Milestone for six-particle scatter-
ing

(Johannes M. Henn, Antonela Matijašić, Julian
Miczajka)

A key achievement in this area is the paper [1],
which, for the first time (in parallel to a com-
peting paper), provides the full function space
for planar, two-loop massless six-particle Feyn-
man integrals, cf. Fig. 4.8. This work builds
upon Antonela Matijašić’s PhD thesis work, cf.
[2, 3, 4] and represents a milestone in the eval-
uation of Feynman integrals for QCD scattering
amplitudes. Overcoming the associated techni-
cal challenges required new structural insights of
Feynman integrals, which will be valuable for fu-
ture research. Our results are of relevance to re-
searchers interested in the formal studies of am-
plitudes, as well as to phenomenology. On the
formal side, for instance, the symbol alphabet

we provide elucidates the singularity structure of
scattering amplitudes and provides input for clus-
ter algebra structures and bootstrap approaches.
Phenomenologically, this work lays the ground-
work for new amplitude and cross-section calcula-
tions. Indeed, when the corresponding five-point
results, cf. Phys.Rev.Lett. 116 (2016) 6, 062001
and Phys.Rev.Lett. 123 (2019) 4, 041603, be-
came available, this led to a similar process, which
ultimately enabled the celebrated NNLO cross-
sections of three-jet production, Phys.Rev.Lett.
127 (2021) 15, 152001.

4.11.2 Form factors and Higgs plus jet pro-
duction

(Johannes M. Henn, Jungwon Lim, William T.
Bobadilla)

Johannes M. Henn, Jungwon Lim, William T.
Bobadilla, together with collaborators at TUM
and the University of Zurich, evaluated integrals
relevant for three-loop form factor integrals with
three on-shell states, or, equivalently, for Higgs
plus jet production [5, 6, 7]. The team used those
results to evaluate form factors in N = 4 sYM
theory. This allowed, for the first time, to verify
by first-principle QFT methods the bootstrap re-
sults obtained by Lance Dixon and collaborators.
The results obtained also opens the door to fur-
ther applications to Higgs plus jet amplitudes at
three loops.

4.11.3 Space-like collinear limit of multi-
particle scattering amplitudes

(Johannes M. Henn)

The study of collinear behavior for gauge theories
in the spacelike region is of great phenomenologi-
cal and theoretical importance. In reference [8],
we analytically calculate the two-loop spacelike
splitting amplitude for the full color N = 4 super-
Yang-Mills theory. Two complementary methods
starting from the known amplitude are employed:
one based on a discontinuity analysis and the other
on analytic continuation. Our result explicitly
shows terms that violate naive factorization. How-
ever we show that factorization is restored at the
level of color-summed unpolarized squared am-
plitudes at next-to-next-to-next-to leading order.
We conjecture that the two-loop tripole terms in
the generalized splitting amplitudes in QCD are
identical to what we obtain in N = 4 super Yang-
Mills theory.

PDF file created at 13:12:04 on Sat 07-Jun-2025

1

• Differential equations method used

• Most complicated integrals not needed in D=4

• Analytic result, proof-of-concept numerical 

evaluation

Our result removes an important bottleneck for obtaining two-to-
four scattering amplitudes at next-to-next-to-leading order.

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025

[cf. Yang Zhang’s talk 
at this conference]
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Plan for this talk.

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025

In this talk, we are going to benefit from maximally 
supersymmetric Yang-Mills theory to learn something 
about six-particle scattering in pure Yang-Mills theory.

We benefit from a correspondence between scattering 
amplitudes and Wilson loops in this theory. This allows 
us to define interesting finite observables. We will use a 
bootstrap approach to determine the answer.



Wilson loop/MHV scattering amplitude duality 
in planar N=4 sYM

−…
+

−
⟷

…
x0

p1

p2

p3 p4

p5

p6 p1

p2

p3
p4

p5

p6

Null Wilson loop MHV scattering amplitude

+
+

+

x1

x2

x3
x4

x5

x6

Wn ∼ An/A(0)
n

(Dual) conformal 
symmetry in x-space

Conformal 
symmetry in p-space

xi+1 − xi = piDual variables: 

Wilson loop has ultraviolet divergences, amplitude has infrared 
divergences. Better formulate duality at level of integrands!

9Johannes M. Henn

Wilson loop / scattering amplitudes duality in 
planar N=4 super Yang-Mills

Null Wilson loop (MHV) scattering amplitude

Dual variables xi+1 − xi = pi

(Dual) conformal 
symmetry in x space.

Conformal symmetry in p space.

[Alday, Maldacena; Drummond, Korchemsky, 
Sokatchev; +JMH; Brandhuber, Heslop, Travaglini] 

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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Why are Wilson loops with Lagrangian insertion 
(in planar, N=4 super Yang-Mills) interesting?

1. Well-defined, finite quantities, similar to hard functions in QCD. 
Integrand is described, to all loop orders, by the Amplituhedron.

2. Same kinematic space as Yang-Mills amplitudes. May shed 
light on leading singularities and functions space in QCD.

3. Many surprising features, such as conformal symmetry, 
positivity properties, and duality to all-plus amplitudes.

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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Definition and key properties of Wilson loop ratioOverview different Wilson loop correlators

Divergent Finite Finite

Anomalous dual conformal 
symmetry

Exact dual conformal 
symmetry

Exact dual conformal 
symmetry

Transcendental functions Transcendental functions Rational

… …

…
…

⟨Wnℒ(y1)…ℒ(yL)⟩Born
⟨Wnℒ(x0)⟩

⟨Wn⟩
⟨Wn⟩

Fn(xi; x0) =
⟨Wnℒ(x0)⟩

⟨Wn⟩
.

Divergences cancel in ratio. Dual conformal symmetry.

Same kinematics and function space as Yang-Mills amplitudes:

Contains information about cusp anomalous dimension.
[Alday, JMH, Sikorowski, 2013; JMH, Korchemsky, Mistlberger, 2019; Arkani-Hamed, 
JMH, Trnka, 2021; Bargheer, Bercini, Gonçalves, Fernandes, Mann, 2024]

[Alday,  Tseytlin, 2011; Alday, Buchbinder, Tseytlin, 2011]

fn(p1, …, pn) = lim
x0→∞

(x2
0)4 Fn(p1, …, pn; x0)

F (equivalently, f) depends on (3n-10) dimensional variables.
‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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Expected structure in perturbation theory
f (L)
n = ∑

i,j

ci,j rn,i g(2L)
j

We benefit from two recent advances: 

- All relevant two-loop six-particle master integrals evaluated

- All-loop classification of leading singularities 

Leading singularities 
(rational, algebraic)

Constants 
(kinematic-
independent)

Pure transcendental 
functions of weight 2L.

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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Bootstrapping the hexagonal Wilson loop with 
Lagrangian insertion

[Sergio Carrôlo, Dima Chicherin, JMH, Qinglin Yang, Yang Zhang, 2505.01245]

Based on the insights on leading singularities and on the two-
loop function space, our goal is to ‚bootstrap‘ the answer.

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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What is known about the function space?

n Number of 
variables Variables Known loop order Alphabet letters Function space

4 2 s, t 3 {s,t,s+t} Harmonic polylogarithms 
[Gehrmann, Remiddi; Maître]

5 5 2 20 parity-even letters

5 parity-odd letters

Pentagon functions 

[Gerhmann, JMH; LoPresti; Chicherin, 

Sotnikov]

6 8
One Gram condition

2 245 letters [JMH, Matijašić, Miczaijka, Peraro, Xu, 
Zhang; Abreu, Monni, Page, Usovitsch]

si,i+1

si,i+1; si,i+1,i+2

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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All-loop leading singularities from Amplituhedron
Proof of conjecture on form and number of leading singularities:

[Brown, JMH, Mazzucchelli, 
Trnka, 2503.1785]

[Chicherin, JMH, 2022]n 5 6 7 8 9 10 11 12

L “ 1 npn´3q
2 5 9 14 20 27 35 44 54

L • 2 pn´1qpn´2q2pn´3q
12 6 20 50 105 196 336 540 825

Table 1. The number of linearly independent leading singularities of F pLq
n , as conjectured in ref.

[64], and proven in the present work.

3 Main results and their derivation

The main results of this paper are summarized in Subsection 3.1. The other subsections

are dedicated to the the explaining how our proof works: Subsection 3.2 concerns the

classification of leading singularities into di↵erent families, Subsection 3.3 gives a short

summary of the proof’s structure and Subsection 3.4 is about the Exclusion Result, Proposition

1, one of the main ingredients in the proof.

3.1 Main results

The main result of this paper is the proof of the following conjecture from ref. [64].

Claim 1. All leading singularities of F pLq
n for n • 4 and L • 1 can be expressed as

linear combinations of Kermit forms (2.16).

From Claim 1 we deduce the following important corollaries.

• The linear space generated by all LS at fixed n coincides with the space generated

by all Kermit forms from L • 2. In particular, the dimension of this space saturates

at L “ 2. The count is presented in Table 1; the proof of this last part is in

Appendix D.1.

• In the frame where AB is mapped to the infinity twistor I8 :“ ✏ 9↵ 9� , i.e. for AB Ñ I8,

all LS of F pLq
n multiplied by the Parke-Taylor factor (2.1) are conformally invariant,

see Proposition 5 in Subsection 4.4.

Claim 1 itself is a consequence of the following Claim 2, which we state here with the

intent of connecting to the mathematics literature on the m “ 2 Amplituhedron [35, 84].

Claim 2. Every LS of F pLq
n for n • 4 and L • 1 is the sum of canonical functions of

a one-loop Amplituhedra Ap1q
n parametrised by AB, with additional constraints on

the signs of twistor brackets xABirjry, for a collection of non-crossing arcs tpirjrqu

of an n-gon, see Figure 2.

3.2 Taxonomy of leading singularity configurations

In this paper we study leading singularities of F pLq
n from a geometric viewpoint. Thanks

to the Amplituhedron-like construction given by the negative geometry expansion (2.25),

– 14 –
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ra1b1c1; a2b2c2s “

a1

b1

c1 a2

b2

c2

rabcds “

a

b

c

d

Figure 1. Pictorial representation of bicolored subdivisions of type p2, nq associated to Kermit
forms at n points, where the circle represents an n-gon.

2.3.2 Kermits

In order to compute the canonical form (2.6) one can tile the Amplituhedron into smaller

pieces, which simple canonical form. If, for instance, the geometry was a polytope, one

would triangulate it by simplices, whose form is straightforward to compute [81]. In the

context of Amplituhedron, the objects analogous to simplices are called Kermits, for L “ 1.

Then, the canonical function can be expressed as [79]

⌦p1q
n “

n´1ÿ

j“i`2

n´3ÿ

i“2

r1ii`1; 1jj`1s , (2.15)

where the terms in the sum are called Kermit forms, and are more generally given by

ra1b1c1; a2b2c2s “
xABpa1b1c1q X pa2b2c2qy

2

xABa1b1yxABb1c1yxABa1c1yxABa2b2yxABb2c2yxABa2c2y
, (2.16)

with the special case

rabcds :“ rabc; bcds “ ´
xabcdy

2

xABabyxABbcyxABcdyxABday
. (2.17)

Kermits are in bijection with a class of combinatorial objects called bicolored subdivisions

of type p2, nq, which are pairs of non-overlapping black triangles inside an n-gon, labeled

by their vertices tai, bi, ciu lying on the n-gon, for i “ 1, 2 [35]. Such triangles either share

at most one vertex, or they share one face, and therefore form a quadrilateral ta, b, c, du. In

the former case, the associated Kermit has six codimension-one boundaries and its form is

given by eq. (2.16), while in the latter case it has four codimension-one boundaries and its

form is given in (2.17). This combinatorial characterization of Kermits and of their forms

appears in Figure 1. Then, (2.15) is a special case of

⌦p1q
n “

ÿ

�1,�2 ÄT

r�1; �2s , (2.18)

where the notation means that we sum over all non-overlapping triangles �1 “ ta1, b1, c1u

and �2 “ ta2, b2, c2u with arcs in a triangulation T of the n-gon. The fact that (2.18)

is true for any triangulation T of the n-gon, reflects the fact that there are many ways

of tiling Ap1q
n into Kermits. The triangulation involving all arcs passing through vertex 1

yields (2.15).

– 9 –

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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Idea of the proof

We evaluate the residues (leading singularity values) for all remaining 
configurations. Using triangulation identities, we show that a basis is given 
by certain Kermit forms.

[Brown, JMH, Mazzucchelli, Trnka, 2503.1785]

Leading singularities are maximal residues of the Amplituhedron form. 
We classify all leading singularity configurations that are allowed by the 
Amplituhedron geometry. 

r1234s

1

r1345s r1346s

` cycl.

r123; 145s r123; 156s r123; 146s r124; 156s r134; 156s

Figure 14. A LS basis for F pLq
6 at L • 2. “+ cycl” in the first row means that there are 6 elements

of [1234] type, 6 of [1345] type, 3 of [1346] type, so that together with the 5 elements from the
second row we have 20 basis elements in total.
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Hippel, A. J. McLeod and G. Papathanasiou, The Steinmann Cluster Bootstrap for N = 4
Super Yang-Mills Amplitudes, PoS CORFU2019 (2020) 003, [2005.06735].

[10] A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for
Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605, [1006.5703].

[11] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix,
JHEP 03 (2010) 020, [0907.5418].

– 45 –

For example, an explicit basis for 
the 20 leading singularities at n=6:

[cf.  Dennen, Prlina, Spradlin, Stanojevich, Volovich, 1612.02708]
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Symbol Bootstrap (1/2)

[Carrôlo, Chicherin, JMH, Yang, Zhang, 2505.01245]

We make an ansatz with free coefficients. We then determine them 
from symmetry and physical requirements. 

f (L)
n = ∑

i,j

ci,j rn,i g(2L)
j

20 leading singularities. 945 weight-four symbols.
Transcendental weight 1 2 3 4

# All symbols 9 62 319 945

# Two-loop six-point symbols 9 62 266 639

# Two-loop five-point one-mass symbols 9 59 263 594

# One-loop squared symbols 9 59 221 428

# Genuine two-loop six-point symbols 0 0 3 45

Table 2. Counting of independent symbols for two-loop six-point massless planar Feynman
integrals, cf. also reference [74].

increases. The basic idea of symbol bootstrap is that one can construct the function space

and ansatz for the observable from symbol letters and integrability conditions. One can

impose physical conditions the observable satisfies, get rid of the unnecessary candidates,

and finally arrive at the result. Great progress has been made in bootstrapping scattering

amplitudes of planar N “ 4 sYM theory [21–27, 48–51, 55] following this idea, both at the

symbol and function level, and also for form factors in this theory [52–54, 56, 82].

2.4 Basis of planar six-point two-loop functions

The relevant two-loop six-particle function space was recently computed in a series of

works [74, 75, 83–85]. Here we collect the relevant information at symbol level.

We remark that in the usual symbol bootstrap approach one starts from a given symbol

alphabet, and assembles integrable symbols up to a certain transcendental weight, as

described in the previous subsection. In the present situation, thanks to the results of

the above references, we can bypass this step and directly read o↵ the symbols from the

analytic results of the two-loop Feynman integrals computed there. A similar approach

was taken in reference [78] for certain form factor integrals. We also include symbols

corresponding to products of one-loop integrals, as those are relevant to the Wilson loop

observable. This information has been conveniently assembled in reference [74].

Up to the weight four (assuming external four-dimensional kinematics, and retaining

terms up to and including the finite part only), these integrals contain 245 symbol letters.

In the notation of ref. [74], they are a subset of tW1, . . .W289u which refer to the two-loop

six-point alphabet with D-dimensional kinematics. The letters are closed under dihedral

symmetry. 156 letters are parity even while 89 are parity odd. Out of these letters, 232

letters are from two-loop five-point integrals with one massive particle, while 13 letters are

– 10 –

[JMH, Matijašić, Miczaijka, Peraro, 
Xu, Zhang, 2501.01847]

[Brown, JMH, Mazzucchelli, Trnka, 
2503.1785]
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Symbol Bootstrap (2/2)

Constraints:

[Carrôlo, Chicherin, JMH, Yang, Zhang, 2505.01245]

weight 0 1 2 3 4
unknowns in
dihedral ansatz 5 22 139 644 1892

genuine unknowns 4 20 125 585 1718

constraints:

soft 3 20 116 515 1439

collinear 3 20 121 551 1539

spurious s24 “ 0 1 12 76 360 1044

spurious s25 “ 0 1 6 36 165 483

scaling dimension 0 4 20 125 585

triple collinear 1 5 31 134 353

total constraints 4 20 125 585 1718

unfixed unknowns 0 0 0 0 0

Table 4. Numbers of constraints following from each physical condition.

It is also worth mentioning that due to the linear dependencies (2.20) between the

Ri, the number of unknown coe�cients that are actually independent is lower than that

of the unknowns in our ansatz (3.4). This can be seen in Table 4. However, employing

a redundant ansatz brings extra homogeneous freedom to the result, which can help us

organize the result in a better manner, as we will show.

Our strategy is to impose the following constraints, in order to fix the unknowns in

the ansatz:

1. Dihedral symmetry of the observable.

2. Overall scaling dimension.

3. Cancellation of spurious singularities.

4. Consistency with soft limit.

5. Consistency with collinear limit.

6. Consistency with triple collinear limit.

We first construct a dihedral basis for each G
p2q
i in (3.4), starting from the 945 basis

functions and dihedral behavior in Table 1. We then discuss the above constraints 2.-6.

in more detail. In principle one can impose those constraints in any order. We find

it interesting to count the number of independent constraints coming separately from

each condition, cf. Table 4. Of course, some of these constraints are not independent.

However, after combining all constraints together, we find that all independent unknowns

are completely fixed. Specifically, the bootstrap procedure successfully reproduces the

tree-level and one-loop results (taking weight zero and two symbols as input, respectively),

and it gives a unique answer at two loops. We now discuss the constraints and their

implementation in more detail.

– 13 –

- Dihedral symmetry

- Scaling dimension

- Cancellation of spurious 

singularities

- Consistency with soft limit

- Consistency with (double 

and triple) collinear limit 

f (L)
n = ∑

i,j

ci,j rn,i g(2L)
jAnsatz:

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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Discussion of the result

3) Some leading singularity contributions are extremely simple:

It is worth mentioning that, in the final result, the functions accompanying R11, R12

and R13 are particularly simple: they can be expressed in terms of products of one-loop

chiral pentagons as follows,

G
p2q
11

“ Pent2,6 ˆ Pent3,5, G
p2q
12

“ Pent1,3 ˆ Pent4,6, G
p2q
13

“ Pent1,5 ˆ Pent2,4 . (3.23)

It would be interesting to find a simple explanation of this observation, and perhaps an

all-n generalization of it.

Our symbol result captures the full dependence on seven dimensionless variables in

the four-dimensional on-shell six-particle kinematics. In the process of bootstrapping this

result, we have already explored various important physical limits. However, there may

be other limits of interest. Here we restrict ourselves to mentioning Appendix B, which

explores the multi-Regge limit. We leave a more detailed analysis, possibly also including

beyond-the-symbol terms, or other interesting limits, to future work.

3.4 Duality to all plus YM amplitudes and Steinmann relations

Besides the Wilson loop/scattering amplitude duality that exists withinN “ 4 sYM theory,

Wilson loops with a Lagrangian insertion have also been observed [40, 41] to be dual to

the maximal transcendental part of amplitudes in pure YM theory where all gluons have

the same helicity. This duality is expressed in the following relation,

x0|WnLpx0q|0yx0Ñ8 „ A
YM
n p1`

, . . . , n
`q

A
YM,p1q
n p1`, . . . , n`q

, (3.24)

where the RHS is divided by the rational one-loop all-plus amplitude A
YM,p1q
n to ensure

that the total helicity weight is zero. Moreover, the „ sign indicates that the relation is

established for the leading transcendental parts of both sides in the planar limit, modulo

scheme di↵erences. These scheme di↵erences can be made explicit by writing the all-plus

amplitude as a product of two terms as follows,

A
YM
n

A
YM,p1q
n

“ Z
YM

IR p✏qHYM

n , (3.25)

where the first term encompasses the IR-subtraction scheme, while the second is the finite

remainder function. As explained previously, Wilson loops are also dual to MHV scattering

amplitudes in N “ 4 sYM theory, which is translated in the relation

x0|Wn|0y „ A
MHV
n

A
MHV,tree
n

“ Z
MHV

IR p✏qHMHV

n , (3.26)

where, once again, we have decomposed the MHV amplitude into a product of an IR-scheme

factor Z with a finite remainder function H
MHV. Since the duality of all-plus amplitudes

is established exclusively at the level of maximal transcendental weight, then, by virtue of

the maximal transcendentality principle, we can simply set the subtraction schemes to be

equal, as well as being a pure function of two-particle invariants si,i`1. This implies that

the subtracted remainder functions H satisfy the Steinmann relations. Hence, combining
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1) Only 137 of the 245 alphabet letters are needed. The two-loop letters that appear are 
associated to the following integral sectors:

(a) tWi`10ui“0,¨¨¨ ,5 (b) tWi`34ui“0,¨¨¨ ,11

p1

p6p5

p4
p3 p2

(c) tWi`58ui“0,¨¨¨ ,11

(d) tWi`76ui“0,¨¨¨ ,11 (e) tWi`100ui“0,¨¨¨ ,5

Figure 1. Six-point planar Feynman integral sectors corresponding to genuine two-loop
singularities that we see in the observable.

Let us now turn to the parity-odd letters. 36 of them involve ✏pi, j, k, lq, namely

tW182, ¨ ¨ ¨ ,W190,W194, ¨ ¨ ¨ ,W211,W218, ¨ ¨ ¨ ,W220,W242, ¨ ¨ ¨ ,W247u . (3.20)

Taking products of their numerators and denominators gives us parity-even expressions.

It is interesting to know which singular locus the latter correspond to. We find that 18 of

the letters correspond to one-loop singularities only, while the other 18 encode two-loop

singularities (specifically ones related to the last two dihedral families in (3.18)). Finally,

there are 7 ` 7 odd letters that involve the three-mass-triangle roots

r1“
a
�ps12, s34, s56q , r2“

a
�ps23, s45, s16q , (3.21)

where �pa, b, cq :“ a
2`b

2`c
2´2ab´2ac´2bc. Interestingly, these letters appeared already

at one loop (cf. [84]). They read

tW157, ¨ ¨ ¨ ,W166,W275, ¨ ¨ ¨ ,W278u . (3.22)

Note that last four of these odd letters contain ri and ✏pi, j, k, lq simultaneously.

Let us make the following comments. All genuine six-point letters, cf. eq. (2.28),

except for W138 “ �6, appear in the final result. Note that of the 137 letters, 123 are

rationalized if we employ momentum twistors or spinor-helicity variables, and only the 14

letters of eq. (3.22) involve square roots.
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2) Duality to all-plus Yang-Mills amplitudes implies nontrivial Steinmann relations:

both of the duality statements above, we can establish a relation between observable Fn

and the two remainder functions at leading color in the maximal-transcendental weight,

FnH
MHV „ H

YM
. (3.27)

Furthermore, we can expand each contribution to the duality above in the coupling in order

to get an order-by-order statement of the duality. For the observable F6, the LHS can be

expanded as

F6 ˆ H6 “ g
2
F

p0q
6

` g
4

´
F

p1q
6

` F
p0q
6

H
p1q
6

¯
` g

6

´
F

p2q
6

` F
p1q
6

H
p1q
6

` F
p0q
6

H
p2q
6

¯
` Opg8q ,

(3.28)

which, at each order in the perturbative expansion, coincides with the maximal transcendental

piece of HYM,pLq. Combining this with the fact that the H
MHV,pLq satisfy the Steinmann

relations by themselves, we expect the following constraint at two loops

Disc
si,i`1,i`2“0

Disc
si´1,i,i`1“0

´
F

p2q
6

` F
p1q
6

H
p1q
6

¯
“ 0 . (3.29)

Indeed, we can easily verify that our bootstrapped result for F6 satisfies (3.29). Furthermore,

we have also verified the conjecture made in [26, 27] regarding extended Steinmann relations.

In particular, we found that, for any non-negative integer k, any k-fold discontinuity of the

physical combination F
p2q
6

` F
p1q
6

H
p1q
6

also satisfies Steinmann relations.

4 Summary and Outlook

In this work, we computed hexagonal Wilson loop with a Lagrangian insertion in planar

N “ 4 sYM theory at two-loop order by six-point two-loop planar massless function

space and symbol bootstrap approach. Started from a redundant ansatz containing 22

leading singularities, where each leading singularity was expected to be accompanied by a

weight-four multi-polylogarithmic function, we constructed our functional basis based on

945 two-loop planar hexagon functions from recent canonical di↵erential equation result.

Furthermore, through imposing physical conditions as dihedral symmetry, dual conformal

invariance, special physical limits etc., the observable was fixed at the symbol level. As

an analog for calculating scattering amplitude from symbol bootstraps at six points, our

calculation shared a similar manner with the former procedure, but the result we got enjoys

a richer function space and singularity structure. More importantly, our result is the first

physical observable that lives in the new two-loop six-point planar function space, and

sheds new light on the frontier of QCD perturbative calculations.

Besides having provided new insights, our work also uncovers the following critical

questions for future research.

1. Extension of the result to function level.

In this work, we explored the observable at symbol level only. This means that certain

beyond-the-symbol terms are currently not included. While these are not expected to

fundamentally change the structure of the result, they are required for numerical evaluation,

for example. It is therefore natural to extend this analysis to function level. A natural
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Discussion and outlook
Our symbol result provides a first amplitude-type observable 
that uses the novel two-loop hexagon function space. Via the 
conjectured duality, this predicts the leading-weight terms of 
the three-loop all-plus scattering amplitude.

Interestingly, only 137 of the 245 alphabet letters are needed. 
Does this have an explanation in terms of cluster algebras?

Can one use the same method for bootstrapping 
pure Yang-Mills scattering amplitudes?

‚Bootstrapping hexagonal Wilson loops‘, July 19, 2025
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https://indico.mpp.mpg.de/e/symbology15
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