Frontiers of Multi-loop Multi-leg Feynman integrals

International Workshop on New Opportunities for Particle Physics 2025 2025.07.19

Yang Zhang University of Science and Technology of China

Based on

Feynman integral Integral evaluation

analytic computation of all 2loop 6point massless planar integrals is done The first analytic computation of 3loop 5-point Feynman integral family

Henn, Matijasic, Miczajka, Peraro, Xu, YZ, JHEP 08(2024) 027

Henn, Matijasic, Miczajka, Peraro, Xu, YZ, Phys. Rev. Lett. 135, 031601 Liu, Matijasic, Miczajka, Xu, Xu, YZ, 2411.18697 (Phys. Rev. D Editors' Suggestion)

Henn, Matijasic, Miczajka, Peraro, Xu, YZ, Phys. Rev. Lett. 135, 031601 Henn, Matijasic, Miczajka, Peraro, Xu, YZ, JHEP 08(2024) 027

3loop 5point collaborators

Liu, Matijasic, Miczajka, Xu, Xu, YZ, 2411.18697 PRD editors' suggestion

2

Based on package development

"NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals" Wu, Boehm, Ma, Xu, YZ, Comput. Phys. Commun. 295 (2024), 108999

> "Performing integration-by-parts reductions using NeatIBP 1.1 + Kira" Wu, Boehm, Ma, Usovitsch, Xu, YZ, arXiv: 2502.20778

NeatIBP collaborators

Introduction Methodology Analytic Feynman integral frontiers Case 2: Summary and Outlook

Outline

- Case 1: 2loop 6point Feynman integrals
 - 3loop 5point Feynman integrals

Precision physics

 $\sigma = \sigma^{LO} + \sigma^{NLO} + \sigma^{NNLO}$

6

Introduction

Julius Wess Jonathan Bagger

Supersymmetry and Supergravity

SECOND EDITION REVISED AND EXPANDED

Formal theory

N=8 supergravity UV finiteness

PRINCETON SERIES IN PHYSICS

Feynman integrals

Gravitational wave template computations

for instance, Driesse, Jakobsen , Klemm, Mogull, Nega, Plefka, Sauer, Usovitsch Nature 641 (2025) 8063, 603-607

- Numeric method slow or not available yet for some multi-loop multi-leg Feynman integral **3**loop **5**point Feynman integrals (numeric softwares do not finish the computing) • Theoretical aspects of quantum field theory for examples: 2loop N=4 SYM theory spacelike splitting amplitude Henn, Ma, Xu, Yan, YZ, Zhu, arXiv 2406.14604
- Quantum field theory computation of gravitational wave analytic continuation/ Fourier transform is sometimes needed

Why analytic?

Analytic Feynman integral computation and the methodology

"工欲善其事,必先利其器"

《论语.卫灵公》

A craftsman who wants to do his work well must first sharpen his tools. — The Analects: Duke Ling of Wei

Current status of analytic Feynman integral computation

	4-point	5-point	6-point	7-point	8-point
One-loop	known	known	known	known	known
Two-loop	most known	some results	9.	?	9
Three-loop	some results	9.	9.	9.	9.
Four-loop	some results	9.	9.	9.	9.

with dimensional regulation

Current status of analytic Feynman integral computation

	4-point	5-point	6-point	7-point	8-point
One-loop	known	known	known	known	known
Two-loop	most known	some results	9	9	9.
Three-loop	some results	9	9.	9	9
Four-loop	some results	?	9.	2	9.
with dimensional regulation					

Liu, Matijasic, Miczajka, Xu, Xu, YZ, arXiv:2411.18697 PRD editors' suggestion Henn, Matijasic, Miczajka, Peraro, Xu, YZ, PRL. 135, 031601 JHEP 08(2024) 027, arXiv:2501.01847 Henn, Peraro, Xu, YZ, JHEP 03 (2022) 056

Goal of analyticity

Feynman integral

Dimensional regularization parameter

For more complicated cases, iterative integral of elliptic functions, Calabi-Yau functions can appear

arguments related to Letters, algebraic function of kinematics

$$I = \sum_{i=-2L} \epsilon^{i} \sum_{\alpha} c_{\alpha} G(W_{\alpha_{1}}, \dots, W_{\alpha_{2L+i}}; z)$$

Goncharov polylogarithm function

$$G(\mathbf{0}_k; z) = \frac{1}{k!} (\log z)^k, \quad G(a_1, \dots, a_k; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_k; z) dt$$

well studied function with Hopf algebra structure

Canonical Differential Equation, new insights

Better Integration-by-parts (IBP) reduction

Alphabet searching

Solving differential equation

Blade, Guan, Liu, Ma, Wu 2024 Comput.Phys.Commun. 310 (2025) 109538 NeatIBP, Wu, Boehm, Ma, Xu, YZ 2023 Comput.Phys.Commun. 295 (2024) 108999

Effortless, Matijasic, Miczajka to appear https://github.com/antonela-matijasic/Effortless BaikovLetter, Jiang, Liu, Xu, Yang, 2401.07632 PLD, Fevola, Mizera, Telen Comput. Phys. Commun. 303 (2024) 109278 SOFIA Correia, Giroux, Mizera 2503.16601

Novel representation of one-fold integration Liu, Matijasic, Miczajka, Xu, Xu, YZ, 2411.18697

Using NeatIBP

"NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals" Wu, Boehm, Ma, Xu, YZ, Comput. Phys. Commun. 295 (2024), 108999

"Performing integration-by-parts reductions using Neatl Wu, Boehm, Ma, Usovitsch, Xu, YZ, arXiv: 2502.

Studies that used NeatIBP

Differential Equations for Energy Correlators One-loop amplitudes for $t\bar{t}j$ and $t\bar{t}\gamma$ productions at the LHC through $O(\epsilon^2)$ Two-loop Feynman integrals for leading color Two-loop QCD helicity amplitudes for $gg \rightarrow$ Full-color double-virtual amplitudes for $q\bar{q} \rightarrow$ Three-loop five-point pentagon-box-box Feyn Two-loop QCD corrections for $pp \to t\bar{t}j$ Two-loop amplitudes for $W\gamma\gamma$ production at NLO corrections to $J/\Psi c\bar{c}$ photoproduction Two-loop five-point two-mass planar integrals Two-loop integrals for $t\bar{t}j$ production at hadr in the leading color approximation

	Using algebraic geometry (see Kosowei
IBP 1.1 + Kira"	to find short IBP system,
.20778	2 or 3 orders of magnitudes shorter
	than that from Laporta algorithm.

	Reference
in Any Angle	arXiv:2506.02061
	arXiv:2505.10406
$Wt\bar{t}$ production	JHEP 07 (2025) 001
$gt\bar{t}$ at leading color	JHEP 03 (2025) 070
$b\bar{b}H$	JHEP 03 (2025) 066
man diagram	arXiv:2411.18697
	arXiv:2411.10856
LHC	JHEP 12 (2025) 221
	Phys.Rev.D 110 (2024) 9, 094047
S	JHEP 10 (2024) 167
on colliders	
	JHEP 07 (2024) 073

phenomenology application of NeatIBP

2100p 6point Feynman integrals

Henn, Matijasic, Miczajka, Peraro, Xu, YZ, *Phys. Rev. Lett. 135, 031601* Henn, Matijasic, Miczajka, Peraro, Xu, YZ, *JHEP 08(2024) 027*

2loop Feynman integral: Scale frontier

2loop 5point massless

2loop 5point one-mass

2loop 5point two-mass

2loop 6point massless

Gehrmann, Henn, Lo Presti 2015 Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia 2019

Papadopoulos, Tommasini, Wever 2019 Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020 6 scales Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 2023 Jiang,Liu,Xu,Yang 2024 Badger, Becchetti, Giraudo, Zoia 2024

Cordero, Figueiredo, Kraus, Page and Reina 2023 7 scales

for leading-Color pp→ttH amplitudes with a light-quark loop

Henn, Matijasic, Miczajka, Peraro, Xu, YZ, 2025 for NNLO 4 jets production, 2 jets+ 2 photons

8 scales!

5 scales

 $s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{16}, s_{123}, s_{345}$

All planar 2loop 6point integrals

J. Henn, A. Matijasic, J. Miczajka, T. Peraro, Y. Xu, YZ, PRL. 135, 031601

Momentum Twistor

external momenta

$$d=4$$

dual coordinates

$$\begin{array}{l} \mu_{A,\dot{\beta}} \\ \mu_{B,\dot{\beta}} \end{array} \quad (Z_A, Z_B) \to x \qquad (Z_i, Z_{i+1}) \to x_{i+1} \end{array}$$

 $\langle Z_A Z_B Z_C Z_D \rangle$ is dual conformally invariant

$$\frac{-1\rangle\mu_{i-1} + \langle i+1, i-1\rangle\mu_i + \langle i-1, i\rangle\mu_{i+1}}{\langle i, i+1\rangle\langle i-1, i\rangle}$$

Momentum Twistor

$$Z_i = \begin{pmatrix} \lambda_{i,\alpha} \\ \mu_{i,\dot{\beta}} \end{pmatrix}, \quad i = 1, \dots 6$$

A particular parameterization

$$Z = \begin{pmatrix} 1 & 0 & \frac{1}{x_1} & \frac{1}{x_2x_1} + \frac{1}{x_1} & \frac{1}{x_2x_1} + \frac{1}{x_2} \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & \frac{x_5}{x_2} & x_6 \\ 0 & 0 & 1 & 1 & x_7 \end{pmatrix}$$

Momentum parametrization rationalizes all pseudo scalars

$$\epsilon_{ijkl} \equiv 4i\epsilon_{\mu\nu\rho\sigma}p_i^{\mu}p_j^{\nu}p_k^{\rho}p_l^{\sigma}, \quad \epsilon_{ijkl}^2 = G_{ijkl}$$

external momenta d=4

$$\tilde{\lambda}_{i} = \frac{\langle i, i+1 \rangle \mu_{i-1} + \langle i+1, i-1 \rangle \mu_{i} + \langle i-1, i \rangle \mu_{i-1}}{\langle i, i+1 \rangle \langle i-1, i \rangle}$$

$$x_8 = \frac{s_{123}}{s_{12}}$$

17

Uniformly transcendental (UT) basis determination

Chiral numerator (Arkani-Hamed, Bourjaily, Cachazo, Trnka 2011) / Gram determinant correspondence

 $\Delta_6 = \langle 12 \rangle [23] \langle 34 \rangle [45] \langle 56 \rangle [61] - \langle 23 \rangle [34] \langle 45 \rangle [56] \langle 61 \rangle [12] .$

key step

$$I_{\mathrm{db},i} = \int \frac{d^{4-2\epsilon} l_1}{i\pi^{2-\epsilon}} \frac{d^{4-2\epsilon} l_2}{i\pi^{2-\epsilon}} \frac{N_i}{D_1 D_2 D_3 D_{10} D_{11} D_{12} D_{13}}, \quad i = 1,.$$

$$\begin{split} N_1 &= -s_{12}s_{45}s_{156} \,, \\ N_2 &= -s_{12}s_{45}(l_1 + p_5 + p_6)^2 \,, \\ N_3 &= \frac{s_{45}}{\epsilon_{5126}}G\left(\begin{array}{ccc} l_1 & p_1 & p_2 & p_5 + p_6 \\ p_1 & p_2 & p_5 & p_6 \end{array}\right) \,, \\ N_4 &= \frac{s_{12}}{\epsilon_{1543}}G\left(\begin{array}{ccc} l_2 - p_6 & p_5 & p_4 & p_1 + p_6 \\ p_1 & p_5 & p_4 & p_3 \end{array}\right) \,, \\ N_5 &= -\frac{1}{4}\frac{\epsilon_{1245}}{G(1,2,5,6)}G\left(\begin{array}{ccc} l_1 & p_1 & p_2 & p_5 & p_6 \\ l_2 & p_1 & p_2 & p_5 & p_6 \end{array}\right) \,, \\ N_6 &= \frac{1}{8}G\left(\begin{array}{ccc} l_1 & p_1 & p_2 \\ l_2 - p_6 & p_4 & p_5 \end{array}\right) + \frac{D_2D_{11}(s_{123} + s_{126})}{8} \,, \\ N_7 &= -\frac{1}{2\epsilon}\frac{\Delta_6}{G(1,2,4,5)D_{13}}G\left(\begin{array}{ccc} l_1 & p_1 & p_2 & p_4 & p_5 \\ l_2 & p_1 & p_2 & p_4 & p_5 \end{array}\right) \,. \end{split}$$

...,7

Chiral numerator to UT integral numerators

linear combination

 $\mathcal{N}_A = s_{45} \left(\langle 15 \rangle [52] + \langle 16 \rangle [62] \right) l_1 \cdot \left(\lambda_2 \tilde{\lambda}_1 \right),$ $\mathcal{N}_B = s_{45} \left([15] \langle 52 \rangle + [16] \langle 62 \rangle \right) l_1 \cdot \left(\lambda_1 \tilde{\lambda}_2 \right).$ $\begin{array}{l} \text{parity even} \\ \mathcal{N}_{A} + \mathcal{N}_{B} = -\frac{1}{2} s_{12} s_{45} (l_{1} + p_{5} + p_{6})^{2} + \frac{1}{2} s_{12} s_{45} s_{156} + \dots \\ \\ \text{parity odd} \\ \mathcal{N}_{A} - \mathcal{N}_{B} = \frac{-8 s_{45} G \left(\begin{array}{cc} l_{1} & p_{1} & p_{2} & p_{5} + p_{6} \\ p_{5} & p_{1} & p_{2} & p_{6} \end{array} \right)}{\epsilon_{5126}}, \end{array}$

Chiral numerator to UT integral numerators

parity even

$$\frac{1}{8}G\left(\begin{array}{ccc}l_1 & p_1 & p_2\\l_2 - p_6 & p_4 & p_5\end{array}\right) + \frac{D_2D_{11}(s_{123} + s_{126})}{8}$$

additional term added from the canonical DE construction parity odd

 $\Delta_6 = \langle 12 \rangle [23] \langle 34 \rangle [45] \langle 56 \rangle [61] - \langle 23 \rangle [34] \langle 45 \rangle [56] \langle 61 \rangle [12] .$

n
$$-\frac{1}{2\epsilon} \frac{\Delta_6}{G(1,2,4,5)D_{13}} G \begin{pmatrix} l_1 & p_1 & p_2 & p_4 \\ l_2 & p_1 & p_2 & p_4 \end{pmatrix}$$

2100p 6point top sector, UT integrals

J. Henn, A. Matijasic, J. Miczajka, T. Peraro, Y. Xu, YZ, PRL 135, 031601

5 MIs (this sector) 267 MIs (whole family)

245 letters in total except the 6D ones UT integrals list

$$I_1^{\text{DP-a}} = \int \frac{d^{4-2\epsilon}l_1}{i\pi^{2-\epsilon}} \frac{d^{4-2\epsilon}l_2}{i\pi^{2-\epsilon}}$$
$$I_2^{\text{DP-a}} = \int \frac{d^{4-2\epsilon}l_1}{i\pi^{2-\epsilon}} \frac{d^{4-2\epsilon}l_2}{i\pi^{2-\epsilon}}$$
$$I_3^{\text{DP-a}} = F_3 \int \frac{d^{4-2\epsilon}l_1}{i\pi^{2-\epsilon}} \frac{d^{4-2\epsilon}l_2}{i\pi^{2-\epsilon}}$$
$$I_4^{\text{DP-a}} = F_4\epsilon^2 \int \frac{d^{6-2\epsilon}l_1}{i\pi^{3-\epsilon}} \frac{d^{6-2\epsilon}l_2}{i\pi^{3-\epsilon}}$$
$$I_5^{\text{DP-a}} = \int \frac{d^{4-2\epsilon}l_1}{i\pi^{2-\epsilon}} \frac{d^{4-2\epsilon}l_2}{i\pi^{2-\epsilon}}$$

Arkani-Hamed, Bourjaily, Cachazo, Trnka 2010 N_1, N_2, N_3 and N_4 are chiral numerators

'evanescent": vanishing up to ϵ^0

Complete canonical differential equation for 216p planar integrals

Use momentum twistor Variables

 $\frac{\partial}{\partial x_i} I(x,\epsilon) = \epsilon A_i(x) I(x,\epsilon)$

 $A_i = \frac{\partial}{\partial x_i} \tilde{A}, \quad \tilde{A} = \sum_k \tilde{a}_k \log(W_k)$

 267×267 for double pentagon 202×202 for hexagon box

use alphabet to fit the canonical differential equation

Even letter, Odd letter and the more complicated ...

Even letter

$$F(s)$$
 a polynomia
or homogen

- al in Mandelstam variables neously linear in square roots
- Conjecture: a Feynman integrals' even letters are all from Landau singularity?

A new algorithm to search for odd letters

Odd letter

$$\frac{P(s) - \sqrt{Q(s)}}{P(s) + \sqrt{Q(s)}}$$

$$P^2 - Q = c \, \Big]$$

An observation (and conjecture) from Heller, von Manteuffel, Schabinger 2020

Algorithm to solve for e_i

Matijasic, Miczajka, to appear Effortless https://github.com/antonela-matijasic/Effortless

Even letter, Odd letter and the more complicated ...

 $\sqrt{\lambda(s_{12}, s_{34}, s_{56})},$ ϵ_{ijkl}

 $s_{12} + s_{34} - s_{56} - \sqrt{\lambda(s_{12}, s_{34}, s_{56})}$ $s_{12} + s_{34} - s_{56} + \sqrt{\lambda(s_{12}, s_{34}, s_{56})}$

 $s_{12}s_{23} - s_{23}s_{34} + s_{23}s_{56} + s_{34}s_{123} - s_{234}(s_{12} + s_{123}) - \epsilon_{1234}$ $s_{12}s_{23} - s_{23}s_{34} + s_{23}s_{56} + s_{34}s_{123} - s_{234}(s_{12} + s_{123}) + \epsilon_{1234},$

$$\frac{-s_{12}s_{45}s_{234} + s_{34}s_{61}s_{123} + s_{345}(-s_{23}s_{56} + s_{123}s_{234}) - s_{12}s_{45}s_{234} + s_{34}s_{61}s_{123} + s_{345}(-s_{23}s_{56} + s_{123}s_{234}) + s_{34}s_{61}s_{123} + s_{345}(-s_{23}s_{56} + s_{123}s_{234}) + s_{34}s_{61}s_{123} + s_{34}s_{12}s_{12} + s_{34}s_{12}s_{12} + s_{34}s_{12} + s_{34}s_{1$$

10 More complicated letters

$$\frac{P - \epsilon_{1234}\sqrt{\lambda(s_{12}, s_{34}, s_{56})}}{P + \epsilon_{1234}\sqrt{\lambda(s_{12}, s_{34}, s_{56})}}$$

156 Even letters

245 letters

 $-\Delta_6$ $-\Delta_6$

• • •

Then the canonical DE is derived analytically after ~50 times of numeric IBP running

Boundary Values

Numeric boundary values

It is fine to use the package AMFlow to get ~100 digits as the boundary value for double-box, pentagon-triangle, hexagon-bubble diagrams

Analytic boundary values

It is still possible to get *fully analytic* boundary values $X_0: \{s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{16}, s_{123}, s_{234}, \}$

Solve the canonical DE on a curve starting with X_0 and require the finite solution \sum Some known integrals' boundary values

boundary value for a point in the physical region also obtained

Liu, Wang, Ma, 2018 Liu, Ma 2022

$$s_{345}\} \rightarrow \{-1, -1, -1, -1, -1, -1, -1, -1, -1\}$$

value

Boundary Values

Analytic boundary values

Boundary values at the initial point, are combination of poly-logarithm of roots of unity

$$\begin{split} \epsilon^{4}I_{\rm db,1}(X_{0}) &= 1 + \frac{\pi^{2}}{6}\epsilon^{2} + \frac{38}{3}\zeta_{3}\epsilon^{3} + \left(\frac{49\pi^{4}}{216} + \frac{32}{3}\,\operatorname{Im}\left[\operatorname{Li}_{2}(\rho)\right]^{2}\right)\epsilon^{4}, \\ \epsilon^{4}I_{\rm db,2}(X_{0}) &= 1 + \frac{\pi^{2}}{6}\epsilon^{2} + \frac{34}{3}\zeta_{3}\epsilon^{3} + \left(\frac{71\pi^{4}}{360} + 20\,\operatorname{Im}\left[\operatorname{Li}_{2}(\rho)\right]^{2}\right)\epsilon^{4}, \\ I_{\rm db,3}(X_{0}) &= I_{\rm db,4}(X_{0}) = I_{\rm db,5}(X_{0}) = 0, \\ \epsilon^{4}I_{\rm db,6}(X_{0}) &= -\left(\frac{\pi^{4}}{540} + \frac{4}{3}\,\operatorname{Im}\left[\operatorname{Li}_{2}(\rho)\right]^{2}\right)\epsilon^{4}, \\ \epsilon^{4}I_{\rm db,7}(X_{0}) &= 0. \end{split}$$
 from the ordinary differential equations are assumption analysis equation in the transformation of transformation of the transformation of transformation of the transformation of transformation of transfor

$$\rho = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

Solution of canonical DE

$$I = \frac{1}{\epsilon^4} \left(I^{(0)} + \epsilon I^{(1)} + \epsilon^2 I^{(2)} + \epsilon^3 I^{(3)} + \epsilon^4 I^{(4)} + \dots \right)$$

weight-1, weight-2

$dI = \epsilon(d\tilde{A})I$

$$I^{(n)} = I_{X_0}^{(n)} + \int_{\gamma} (d\tilde{A}) I^{(n-1)}$$

All in logarithm and classical poly-logarithm

$$I_{db,1}^{(2)} = \begin{bmatrix} -\log(-v_1)\log(-v_2) - \log(-v_1)\log(-v_3) + \log(-v_1)\log(-v_4) - \log(-v_1)\log(-v_5) - \log(-v_1)\log(-v_6) + 4\log(-v_1)\log(-v_8) + \frac{1}{2}\log^2(-v_1) + \log(-v_2)\log(-v_3) - \log(-v_1)\log(-v_2)\log(-v_4) - Li_2\left(1 - \frac{v_2v_5}{v_7v_8}\right) + \log(-v_2)\log(-v_2)\log(-v_6) + \log(-v_2)\log(-v_7) - 2Li_2\left(1 - \frac{v_2}{v_8}\right) - \log(-v_2)\log(-v_8) - \log^2(-v_2) - \log(-v_3)\log(-v_4) + \log(-v_3)\log(-v_5) - Li_2\left(1 - \frac{v_3v_6}{v_8v_9}\right) - 2Li_2\left(1 - \frac{v_3}{v_8}\right) - \log(-v_3)\log(-v_8) + \log(-v_3)\log(-v_9) - \log^2(-v_3) - \log(-v_4)\log(-v_5) - \log(-v_4)\log(-v_6) + 4\log(-v_4)\log(-v_8) + \frac{1}{2}\log^2(-v_3) - \log(-v_4)\log(-v_5) - \log(-v_4)\log(-v_5)\log(-v_7) - 2Li_2\left(1 - \frac{v_5}{v_8}\right) - \log(-v_5)\log(-v_8) - \log(-v_5)\log(-v_7) - 2Li_2\left(1 - \frac{v_5}{v_8}\right) - \log(-v_5)\log(-v_8) - \log(-v_7)\log(-v_8) + \log(-v_6)\log(-v_9) - \log^2(-v_6) - \log(-v_7)\log(-v_8) + \log(-v_6)\log(-v_9) - \log^2(-v_6) - \log(-v_7)\log(-v_8) - \frac{1}{2}\log^2(-v_7) - \log(-v_8)\log(-v_9) + 3\log^2(-v_8) - \frac{1}{2}\log^2(-v_9) + \frac{\pi^2}{6} \end{bmatrix}$$

Solution of canonical DE

$$I = \frac{1}{\epsilon^4} \left(I^{(0)} + \epsilon I^{(1)} + \epsilon^2 I^{(2)} + \epsilon^3 I^{(3)} + \epsilon^4 I^{(4)} + \dots \right)$$

weight-3, weight-4

$$\vec{I}^{(4)} = \vec{I}^{(4)}(\vec{x}_0) + \int_0^1 dt \frac{d\tilde{A}}{dt} \vec{I}^{(3)}(\vec{x}_0) + \int_0^1 dt_1 \int_0^{t_1} dt_2 \frac{d\tilde{A}}{dt_1} \frac{d\tilde{A}}{dt_2} \vec{f}^{(2)}(t_2) = \vec{I}^{(4)}(\vec{x}_0) + \int_0^1 dt \left(\frac{d\tilde{A}}{dt} \vec{I}^{(3)}(\vec{x}_0) + \left(\tilde{A}(1) - \tilde{A}(t) \right) \frac{d\tilde{A}}{dt} \vec{f}^{(2)}(t) \right).$$
 one-fold integra

It takes minutes on a laptop to get 14 digits for all 2loop 6point integrals from our solution in both Euclidean and Physical regions

 $dI = \epsilon(d\tilde{A})I$ $I^{(n)} = I_{X_0}^{(n)} + \int_{\gamma} (d\tilde{A}) I^{(n-1)}$.)

3100p 5point Feynman integrals

Liu, Matijasic, Miczajka, Xu, Xu, YZ, arXiv: 2411.18697 PRD editors' suggestion

3loop 5point planar family

5 scales

 $s_{12}, s_{23}, s_{34}, s_{45}, s_{15}$

316 Master Integrals

Liu, Matijasic, Miczajka, Xu, Xu, YZ, arXiv: 2411.18697

UT basis found!

Baikov analysis Gram determinant

Canonical differential equation complicated ?

We use **NeatIBP** to derive the differential equation ~100 million IBPs \rightarrow 85000 IBPs

hard to integrate to weight-6?

A novel one-fold representation

A novel representation of iterative integrals

$$\mathbf{I}^{(n+2)}(x) = \mathbf{I}^{(n+2)}(x_0) + \int_0^1 \frac{\mathrm{d}A(t)}{\mathrm{dt}} \mathbf{I}^{(n+1)}(x_0) \mathrm{d}t + \int_0^1 (\tilde{A}(1) - \tilde{A}(t)) \frac{\mathrm{d}\tilde{A}(t)}{\mathrm{dt}} \mathbf{I}^{(n)}(t) \mathrm{d}t.$$

A novel formula

$$\mathbf{I}^{(n+3)}(x) = \mathbf{I}^{(n+3)}(x_0) + \int_0^1 \frac{d\tilde{A}}{dt} \mathbf{I}^{(n+2)}(x_0) dt + \int_0^1 \left(\tilde{A}(1) - \tilde{A}(t)\right) \frac{d\tilde{A}}{dt} \mathbf{I}^{(n+1)}(x_0) dt + \int_0^1 \left(\tilde{A}(t) - \tilde{A}(1)\right) \tilde{A}(t) \frac{d\tilde{A}}{dt} \mathbf{I}^{(n)}(t) dt \qquad \text{Weight}$$
s due to Poincare lemma

$$+ \int_0^1 \left(\tilde{B}(1) - \tilde{B}(t)\right) \frac{d\tilde{A}}{dt} \mathbf{I}^{(n)}(t) dt.$$

$$\mathrm{d}\tilde{B} = (\mathrm{d}\tilde{A})\tilde{A},$$

 \tilde{B} exists

Weight +2

First family of 3loop 5point calculated

5 scales $s_{12}, s_{23}, s_{34}, s_{45}, s_{15}$

316 Master Integrals

weight-1,2,3 classical polylogarithm, weight-4,5,6 one-fold integration It takes 2 minutes on a laptop to get 10 digits from our analytic solution

T basis found!

Canonical differential equation found with NeatIBP

31 letters ... All boundary values up to weight-6 are obtained by spurious pole analysis

Liu, Matijasic, Miczajka, Xu, Xu, YZ, PRD editors' suggestion

Summary and Outlook

今兵威已振,譬如破竹,数节之后,皆迎刃而解 《晋书·杜预传》

Now the situation is like splitting a bamboo stalk once you break through the first few sections, the rest will yield of itself. - The Book of Jin: Biography of Du Yu

Analytic computation of all 2loop 6point planar massless integrals is done

NeatIBP, a powerful package for cutting-edge IBP reduction

a lot of future applications

Wilson loop bootstrap computation (see Henn's talk)

	2-loop ampl
future	2-loop multi
Ιαταιτ	3-loop ampl
	3-loop infra

• • •

Multi-loop multi-leg Feynman integrals are no longer that difficult!

The first computation on <u>3loop 5point</u> family is done; all families' result is coming

litude for four jets (photons) production i-collinear analysis litude for three jets (photons) production red structure studies