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Introduction: idea and hystory of decoupling

and Low Energy Energy Theorems

the full QCD with 6 flavoures is inconvenient if charactersitic scale Q << mtop.

Two main reasons:

• appearance potentially large logs ot type lnQ2/m2
top

• calculations become unnecessarily complicated

It is much more convenient to use low-energy efficient QCD without the top-quark. The corresponding

Lagrangian has the standard QCD form, but with 5 active quarks plus (if necessary) power-like

(1/mtop)
n corrections.

But there is a subtlety: the famous decoupling theorem of T. Appelquist and J. Carazzone (1975) in its

literal form does not work for the /most computationally efficient/ MSbar scheme. (For instance the

β-function is mass-independent)

The situation for minimal subtractions was clarified in the works of S. Weinberg (1980); B. Ovrut, H.

Schnitzer (1981): the concept of an effective theory with a corresponding effective Lagrangian (i.e. two

different (but one to one connected!) Lagrangians for two different kinematic modes)



More formally: consider the QCD Lagrangian with one heavy quark h and nℓ light:

L = −
1

4
GaµνG

aµν +
∑

i=1−nℓ

ψ̄i

(

i

2

←→
/D −mi

)

ψi + h̄

(

i

2

←→
/D −mh

)

h

+λ0H

(

mhh̄h+
∑

i=1−nℓ

miψ̄iψi

)

where we introduced the interaction of the Higgs field H with quarks. This Lagrangian
is suitable for calculating the decay of H → hadrons. The effective L′ with nℓ light
quarks assumes the form

L′ =−
1

4

(

GaµνG
aµν
)′
+

∑

i=1−nℓ

ψ̄′i

(

i

2

←→
/D ′ −m′i

)

ψ′i

++ λ0H

(

C1

(

−
1

4
GaµνG

aµν

)′

+ C2

∑

i=1−nℓ

miψ̄
′
iψ
′
i

)

It describes physics on scale below the heavy quark mass mh (all power suppressed
corrections are ignored!)



Connection between L and L′

L
′
=−

1

4

(

G
a
µνG

aµν
)′

+
∑

i=1−nℓ

ψ̄
′
i

(

i

2

←→
/D
′
−m

′
i

)

ψ
′
i

+ + λ0H

(

C1

(

−
1

4
G
a
µνG

aµν

)′

+ C2

∑

i=1−nℓ

m
′
iψ̄
′
iψ
′
i

)

where all primed variables refer to QCD L′ with nℓ quarks related with the unprimed ones by simple

formulas

(a′ ≡ αs
′/π ≡ (g′)2s(µ)/(4π

2), a ≡ αs/π ≡ (gs)
(µ)/(4π2)):

a′ = αs ζα

(

a, ln
µ2

m2
h(µ)

)

, m′ = mζm

(

a, ln
µ2

m2
h(µ)

)

+ similar relations for fields A,ψ′

+ dependence of both “decoupling” functions ζα, ζm as well as C1 and C2 only

on a(µ) and ln µ2

m2
h
(µ)

.



Convenient notations:

in the full theory with nf quarks:

O1 = −
1

4
G
a
µνG

aµν
≡ O

(nf )

1 , O2 =
∑

i=1−nf

miψ̄iψ ≡ O
(nf )

2 ,

in the effective theory with nℓ = nf − 1 quarks

O
′
1 = −

1

4

(

G
a
µνG

aµν
)′

≡ O
(nℓ)

1 , O
′
2 =

∑

i=1−nf

(

miψ̄iψ
)′
≡ O

(nℓ)

2 ,

Similar notations will be used for CF’s C1, C2 and α:

C1 ≡ C
(nf )

1 , C2 ≡ C
(nf )

2 αs ≡ αs
(nf ), αs

′
≡ αs

(nℓ)



History: evaluation of decoupling constants ζα, ζm

• 2 loops: W. Bernreuther, W. Wetzel (1982); Erratum (1998)

S. A. Larin, T. van Ritbergen, J. A.M. Vermaseren (1995)

• 3 loops: K. Ch., B. A. Kniehl, M. Steinhauser (1998)

• 4 loops: K. Ch., J. H. Kühn, C. Sturm (2006)

Y. Schröder, M. Steinhauser (2006)

first 2-loops results were obtained with (over)complicated calculations dealing with massive

diagrams depending on an external momentum (no smth like “method” of regions was

available then)

3- and 4-loop results were made possible by:

advances in theory:

the projector method /Gorishny, S. Larin, F. Tkachev (1983,1988)/ (deals with massive (that

is one scale) vacuum diagrams (tadpoles)

Integration By Parts (IBP)

advances in computer algebra based approaches:

the FORM language /J. Vermaseren (1990 . . . )

and (FORM) program MATAD /M. Steinhauser (1996 . . . /3-loops/)

Laporta method /Laporta (1996 . . . /4-loops/)



Effective couplings Higgs with gluons and light quarks: LET

Thus, after heavy quark decoupling h the effective Lagrangian for Higgs reads:

λ0H
(

C1O
′
1 + C2O

′
2

)

Many years ago there were derived two pretty Low energy Theorems (LET, /K.Ch., Kniehl,

Steinhauser (1998)/) which is valid in (all orders of PT! ) in αs /MS assumed!/

C1 = mh

∂

∂mh

ln ζα and C2 = mh

∂

∂mh

ln ζm≡ mh

∂

∂mh

lnm
′

Remarkable feature of the both decoupling constants ζα and ζm: their dependence only on

the ratio µ2/m2
h (due to trivial dimensional considerations), that is ζα ≡ ζα(as,

µ2

m2
h

) Thus,

neither C1 nor C2 depend on constant parts of ζα and ζm respectively! This opens a way

for RG-improvement (as logs of µ2/m2
h could be found and restored via the RG-equation).

Already in 1998 the original 3-loop results for ζα and ζm led to 4-loop ones for C1 and C2

(with the use of the 4-loop QCD β-function and the 4-loop quark anomalous dimension γm

/just computed in 1997 by J. Vermaseren, S. Larin, T. van Ritbergen and K.Ch. respectively/)



Decoupling for several heavy quarks and LET’s

Having in mind various extensions of the SM containing either additional quarks
heavier than the top one or Higgs-like scalar particles with mass of order a few GeV

or even less
⋆

let us consider a generic case with the field H not necessarily being the

one from the SM
⋆⋆

. Our only assumptions are: (i) the field H couples with quarks via
a top-like (that is proportional to the corresponding quark masses) Yukawa couplings
and (ii) its mass MH is larger than masses of light quarks and less than masses of
heavy quarks:

mi ≫MH ≫ mj with (nℓ + 1) ≤ i ≤ nf and 1 ≤ j ≤ nℓ.

In the framework of the SM we naturally have nh = 1 and nℓ = 5.

⋆

see, e.g. D. Gorbunov, E. Kriukova and O. Teryaev, “Scalar decay into pions via Higgs portal,”

[arXiv:2303.12847]
⋆⋆

For simplicity we continue to refer to the field H as the the Higggs one.



L
nf = −

1

4
G
a
µνG

aµν
+
∑

i=1−nℓ

ψi

(

i

2

←→
/D −mi

)

ψi +
∑

i=(nell+1)−nh

ψi

(

i

2

←→
/D −mi

)

ψi

+λ0H

(

∑

i=1−nℓ

miψiψi +
∑

i=(nℓ+1)−nf

miψiψi

)

.

L
nl = −

1

4

(

G
a
µνG

aµν
)′

+
∑

i=1−nℓ

ψ
′

i

(

i

2

←→
/D −mi

)

ψ
′
i + λ0H

(

C1O
′
1 + C2O

′
2

)

O
′
1 ≡ −

1

4

(

G
a
µνG

aµν
)′

, O
′
2 =

∑

i=1−nℓ

miψ′iψ
′
i

Here all primed quantities refer to QCD c nℓ active quark flavours; the effective quark-gluon coupling

constant g′ and effective light quark massesm′i are connected to the original ones via the corresponding

decoupling constants (we assume that one and the same MS normalization parameter µ is employed in

full and effective theories)

g
′
(µ) = g(µ) ζg(µ, as(µ),mh), m

′
i(µ) = mi ζm (µ, as(µ),mh),

where mh = m(nl+1), . . .mnf
stands for heavy quarks masses. Similar relations connect the fields in

the effective Lagrangian with the corresponding ones in the full one.



One can easily check that all-order (RG-not-improved!) LET’s for C1 and C2 are easily generalized on

the generic case of many heavy quarks and read:

(⋆) C1 =
∑

h

mh

∂

∂mh

ln ζα and C2 = 1 +
∑

h

mh

∂

∂mh

ln ζm

where the index h runs over all heavy quarks (that is h ∈ {nℓ + 1, . . . nf})

• At 1- and 2 loops there is no computational difference between nh = 1 and nh > 1 cases because

all diagrams contain only one quark flavour at a time)

• At first glance RG-improvement should stop to work for nh > 1 case due to possible appearance

constant terms like mh/m
′
h in ζα and ζm

• The only work dealing with simultaneous decoupling of many heavy quarks is:

A.G. Grozin, M. Hoeschele, J. Hoff, M. Steinhauser, M. Hoschele, J. Hoff et al., Simultaneous

decoupling of bottom and charm quarks, JHEP 09 (2011) 066 [1107.5970]

The authors have had to deal (for the first time) with 3-loop vacuum diagrams contibuting to

the decoupling constant and dependig on two different quark masses. The results for ζα and ζm
are complicated /dilogs, etc./ functions of heavy masses. Nevertheless, the functions C1 and C2

obtained via LET’s (⋆) happen to be very simple. The authors literally write: ”It is remarkable

that although ζα contains di- and tri-logarithms there are only linear logaithms (of heavy masses)

present in C1” . . .

• This simplicity is a direct consequence of the RG-improved versions of LET’s ⋆,

which is our new result and which we start to discuss now



RG-improved LET’s in QCD with nh > 1

We start from standard RG nomenclature for main QCD RG-functions (a ≡ αs/π)

dµ2 ln a = β(a) =
∑

i>1

βia
i
, dµ2 lnmi = γm(a) =

∑

i>1

(γm)ia
i
,

Here d
µ2

= µ2 d
dµ2

, it is also covenient to define ∂
µ2

= µ2 ∂
∂µ2

and ∂h =
∑

h mh
∂

∂mh
. For the case of the

effective QCD with nl quarks we will use the same notations with added prime, that is β′(a′) is just a shortcut

for β(nl)(a(nl)) and so on.

RG-evolution of the decoupling fuinction ζα: we apply dµ2 to obvious relation

ln a
′
= ln(ζα) + ln a (since a

′
= ζα a)

with the result dµ2 ln(ζα) = β
′
(a
′
)− β(a).

or, equivalently,

(

∂µ2 + γm(a)∂h + β(a)a
∂

∂a

)

ln ζα = β
′
(a
′
)− β(a). (1)

Since elementary dimensional analysis implies

ρ
∂

∂ρ
ζα(α, ρ

2
µ
2
, ρmh) ≡ 0 ≡ (∂µ2 +

1

2
∂h) ln ζα (2)

we combine (1), (2) and arrive to our final RG-improved LETs for C1 and C2



Final RG-improved LET’s for QCD with many heavy quarks

C1 = −
2

1− 2 γm(a)

(

β
′
(a
′
)− β(a)− β(a) a

∂ ln ζα

∂a

)

C2 = 1−
2

1− 2 γm(a)

(

γ
′
(a
′
)− γm(a)− β(a) a

∂ ln ζm

∂a

)

.

Important to note:

• RG-improved LETs are essentially identical for the cases nh = 1 and nh > 1.

This is exlusively due to (assumed) proportionality of Yukawa couplings of the
Higgs field to the corresponding quark masses)

• The main advantage of RG-improved LETs is that the factor β(a) in the third
terms in round brackets decrease by one the required loop order of the decoupling
constants ζα and ζm



Example: C1 at three loops in QCD with many heavy quarks

Below is esentially the very old
⋆

2-loop result for ζα (Lµh ≡
∑

h ln
µ2

m2
h

)

ζα = 1− a(µ)
TF

3
Lµh

+ a(µ)
2

(

2

9
CATfnh −

13

48
CFTfnh + (−

−5

12
CAF +

CF

4
)Tf Lµh +

T 2
F

9
L
2
µh

)

Now, a direct use the RG-improved LET for C1 leads to a general result for the CF C1 at the 3-loop

level (a = a(nf)(µ))

C1(as) = anh
2TF

3
+ a

2

(

(
5

6
CAF − CF/2)Tfnh −

2

9
T

2
FnhLµh

)

+ C1,3 a
3
+ C1,4 a

4

C1,3 = C
2
FTF

9

16
nh − CFCATF

[

25

18
nh +

11

24
Lµh

]

− CFT
2
F

[

5

24
nhnl +

17

72
n

2
h − Lµh

(

nh
1

2
+

1

3
nl

)]

− C
2
ATF

[

1063

864
nh +

7

24
Lµh

]

− CAT
2
F

[

47

216
nl −

49

432
nh +

5

6
Lµh

]

nh +
2

27
T

3
FL

2
µhnh

⋆

W. Bernreuther and W. Wetzel, (1982); S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren (1995)



C1,3 = C
2
FTF

9

16
nh − CFCATF

[

25

18
nh +

11

24
Lµh

]

− CFT
2
F

[

5

24
nhnl +

17

72
n

2
h − Lµh

(

nh
1

2
+

1

3
nl

)]

− C
2
ATF

[

1063

864
nh +

7

24
Lµh

]

− CAT
2
F

[

47

216
nl −

49

432
nh +

5

6
Lµh

]

nh +
2

27
T

3
FL

2
µhnh

The above result for 3-loop CF C1 for QCD with nh > 1 was first obtained via a direct (and quite

complicated) calculation of a large number of 3-loop diagrams contributing to C1 including the ones

depending on two different quark mases
⋆

It was bit later confirmed in
⋆⋆

. where the decoupling were

constants computed the 3-loop level. The result includes complicated functions (di-logs, etc.) of ratios

mh/mh′. However, the result of RG-non-improved LET for C1 happend to be extremly simple. . .

Our derivation (with a use of the RG-improved LET is not only extremely straightforward but also

reveals the reason behind this remarkable simplicity: at the three loop level the CF C1 is contibited by

the 2-loop decoupling function only (not counting mass-independent β and γm)

But armed with the RG-impoved LET’s we can do more. Indeed, as the four-loop β and γm are

known since long we could upgrade the result for C1 to one more loop (that is on the 4-loop level!)

⋆

C. Anastasiou, R. Boughezal and E. Furlan, (2010) [1003.4677]
⋆⋆

A.G. Grozin, M. Hoeschele, J. Hoff, M. Steinhauser (2011) [1107.5970].



New result: C1 at four loops in QCD with many heavy quarks

We start from some notations. The available result of for ζα is convenient to present as follows:

ζα = d1 a+ d2 a
2
+ d3 a

3
+ d4 a

4
+ . . .

0 Here the first two coefficients have already been displayed, The coefficient d3 is a complicated

function of µ, a(µ) and quark mass mnl+1, . . .mnf
.

Finally, a simple and direct use of RG-improved LET directly leads for the following result for C1

C1 = −
2

1− 2 γm(a)

(

C̃1,1 a+ C̃1,2 a
2
+ C̃1,3 a

3
+ C̃1,4 a

4
)

where

C̃1,1 =− β1 + β
′
1,

C̃1,2 =− β2 + β
′
2 + (−β1 + β

′
1) d1,

C̃1,3 =− β3 + β
′
3 + (−β2 + 2 β

′
2) d1 + β1 d

2
1 + (−2 β1 + β

′
1) d2,

C̃1,4 =− β4 + β
′
4 + (β2 + β

′
2) d

2
1 − β1 d

3
1 + (−2 β2 + 2 β

′
2) d2

+ d1 (−β3 + 3 β
′
3 + 3 β1 d2) + (−3 β1 + β

′
1) d3

One can see that no d4 appears in C̃1,4 as it should be: RG-improved-LET does work!



Conclusions

• We have demonstrated that RG-improved LET’s do work in the case many
heavy quarks (asuuming their Higgs-like couplings with the scalar particle)

• As it was shown in ( A.G. Grozin, M. Hoeschele, J. Hoff, M. Steinhauser
(2011) [1107.5970]) power suppressed corrections should be amended by
summing higher oder logs like (lnµ2/m2

h)
n. In the case of more than one

heavy quark it could be done only with sequential decoupling.

• and here we encounter a new problem: on the second step of sequential
decoupling one should know the transition of the very gluonic operator

O1 = −
1

4
GaµνG

aµν

from the full QCD to the effective one (when decouipling the “second”
heavy quark)

• To the best of my knowledge it is not yet solved. We are working on it . . .


