# RG-improved low-energy theorem for the effective Higgs-gluon-gluon coupling for simultaneous decoupling of several heavy quarks

#### **Konstantin Chetyrkin**





International Workshop on New Opportunities for Particle Physics 2025

Institute of High Energy Physics, Chinese Academy of Sciences July 18-20, 2025

# Introduction: idea and hystory of decoupling and Low Energy Energy Theorems

the full QCD with 6 flavoures is inconvenient if characteristic scale  $Q << m_{top}$ .

Two main reasons:

- ullet appearance potentially large logs ot type  $\ln Q^2/m_{top}^2$
- calculations become unnecessarily complicated

It is much more convenient to use low-energy efficient QCD without the top-quark. The corresponding Lagrangian has the standard QCD form, but with 5 active quarks plus (if necessary) power-like  $(1/m_{top})^n$  corrections.

But there is a subtlety: the famous decoupling theorem of T. Appelquist and J. Carazzone (1975) in its literal form does not work for the /most computationally efficient/ MSbar scheme. (For instance the  $\beta$ -function is **mass-independent**)

The situation for minimal subtractions was clarified in the works of S. Weinberg (1980); B. Ovrut, H. Schnitzer (1981): the concept of an effective theory with a corresponding effective Lagrangian (i.e. two different (but one to one connected!) Lagrangians for two different kinematic modes)

More formally: consider the QCD Lagrangian with one heavy quark h and  $n_{\ell}$  light:

$$\mathcal{L} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \sum_{i=1-n_{\ell}} \bar{\psi}_{i} \left( \frac{i}{2} \overleftrightarrow{\mathcal{D}} - m_{i} \right) \psi_{i} + \bar{h} \left( \frac{i}{2} \overleftrightarrow{\mathcal{D}} - m_{h} \right) h$$

$$+\lambda_0 H \left( m_h \bar{h}h + \sum_{i=1-n_\ell} m_i \bar{\psi}_i \psi_i \right)$$

where we introduced the interaction of the Higgs field H with quarks. This Lagrangian is suitable for calculating the decay of  $H \to hadrons$ . The effective  $\mathcal{L}'$  with  $n_\ell$  light quarks assumes the form

$$\mathcal{L}' = -\frac{1}{4} \left( G_{\mu\nu}^a G^{a\mu\nu} \right)' + \sum_{i=1-n_{\ell}} \bar{\psi}_i' \left( \frac{i}{2} \overleftrightarrow{\mathcal{D}}' - m_i' \right) \psi_i'$$
$$+ + \lambda_0 H \left( C_1 \left( -\frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} \right)' + C_2 \sum_{i=1-n_{\ell}} m_i \bar{\psi}_i' \psi_i' \right)$$

It describes physics on scale below the heavy quark mass  $m_h$  (all power suppressed corrections are ignored!)

#### Connection between $\mathcal{L}$ and $\mathcal{L}'$

$$\mathcal{L}' = -\frac{1}{4} \left( G_{\mu\nu}^a G^{a\mu\nu} \right)' + \sum_{i=1-n_{\ell}} \bar{\psi}_i' \left( \frac{i}{2} \overleftrightarrow{\mathcal{D}}' - m_i' \right) \psi_i'$$
$$+ + \lambda_0 H \left( C_1 \left( -\frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} \right)' + C_2 \sum_{i=1-n_{\ell}} m_i' \bar{\psi}_i' \psi_i' \right)$$

where all primed variables refer to QCD  $\mathcal{L}'$  with  $n_\ell$  quarks related with the unprimed ones by simple formulas

$$(a' \equiv \alpha_s'/\pi \equiv (g')_s^2(\mu)/(4\pi^2), a \equiv \alpha_s/\pi \equiv (g_s)^{(\mu)}/(4\pi^2)$$
:

$$a' = \alpha_s \zeta_\alpha \left( a, \ln \frac{\mu^2}{m_h^2(\mu)} \right), \ m' = m \zeta_m \left( a, \ln \frac{\mu^2}{m_h^2(\mu)} \right)$$

- + similar relations for fields  $A, \psi'$
- + dependence of both "decoupling" functions  $\zeta_{\alpha}$ ,  $\zeta_{m}$  as well as  $C_{1}$  and  $C_{2}$  only on  $a(\mu)$  and  $\ln \frac{\mu^{2}}{m_{h}^{2}(\mu)}$ .

Convenient notations:

in the full theory with  $n_f$  quarks:

$$O_1 = -\frac{1}{4} G^a_{\mu\nu} G^{a\,\mu\nu} \equiv O_1^{(n_f)}, \quad O_2 = \sum_{i=1-n_f} m_i \bar{\psi}_i \psi \equiv O_2^{(n_f)},$$

in the effective theory with  $n_\ell = n_f - 1$  quarks

$$O_1' = -\frac{1}{4} \left( G_{\mu\nu}^a G^{a\,\mu\nu} \right)' \equiv O_1^{(n_\ell)}, \quad O_2' = \sum_{i=1-n_f} \left( m_i \bar{\psi}_i \psi \right)' \equiv O_2^{(n_\ell)},$$

Similar notations will be used for CF's  $C_1$ ,  $C_2$  and  $\alpha$ :

$$C_{1} \equiv C_{1}^{(n_{f})}, \;\; C_{2} \equiv C_{2}^{(n_{f})} \;\; lpha_{s} \equiv lpha_{s}^{(n_{f})}, \;\; lpha_{s}^{\;\;\prime} \equiv lpha_{s}^{(n_{\ell})}$$

#### History: evaluation of decoupling constants $\zeta_{lpha},\ \zeta_m$

- 2 loops: W. Bernreuther, W. Wetzel (1982); Erratum (1998) S. A. Larin, T. van Ritbergen, J. A. M. Vermaseren (1995)
- 3 loops: K. Ch., B. A. Kniehl, M. Steinhauser (1998)
- 4 loops: K. Ch., J. H. Kühn, C. Sturm (2006)
   Y. Schröder, M. Steinhauser (2006)

first 2-loops results were obtained with (over)complicated calculations dealing with massive diagrams depending on an external momentum (no smth like "method" of regions was available then)

3- and 4-loop results were made possible by:

#### advances in theory:

the projector method /Gorishny, S. Larin, F. Tkachev (1983,1988)/ (deals with massive (that is one scale) vacuum diagrams (tadpoles)

Integration By Parts (IBP)

#### advances in computer algebra based approaches:

```
the FORM language /J. Vermaseren (1990 . . . ) and (FORM) program MATAD /M. Steinhauser (1996 . . . /3-loops/) Laporta method /Laporta (1996 . . . /4-loops/)
```

#### Effective couplings Higgs with gluons and light quarks: LET

Thus, after heavy quark decoupling h the effective Lagrangian for Higgs reads:

$$\lambda_0 H \left( C_1 O_1' + C_2 O_2' \right)$$

Many years ago there were derived two pretty Low energy Theorems (LET, /K.Ch., Kniehl, Steinhauser (1998)/) which is valid in (all orders of PT!) in  $\alpha_s$  /MS assumed!/

$$C_1 = m_h \frac{\partial}{\partial m_h} \ln \zeta_{\alpha}$$
 and  $C_2 = m_h \frac{\partial}{\partial m_h} \ln \zeta_m \equiv m_h \frac{\partial}{\partial m_h} \ln m'$ 

Remarkable feature of the both decoupling constants  $\zeta_\alpha$  and  $\zeta_m$ : their dependence only on the ratio  $\mu^2/m_h^2$  (due to trivial dimensional considerations), that is  $\zeta_\alpha \equiv \zeta_\alpha(a_s, \frac{\mu^2}{m_h^2})$  Thus, neither  $C_1$  nor  $C_2$  depend on constant parts of  $\zeta_\alpha$  and  $\zeta_m$  respectively! This opens a way for RG-improvement (as logs of  $\mu^2/m_h^2$  could be found and restored via the RG-equation). Already in 1998 the original 3-loop results for  $\zeta_\alpha$  and  $\zeta_m$  led to 4-loop ones for  $C_1$  and  $C_2$  (with the use of the 4-loop QCD  $\beta$ -function and the 4-loop quark anomalous dimension  $\gamma_m$  /just computed in 1997 by J. Vermaseren, S. Larin, T. van Ritbergen and K.Ch. respectively/)

### Decoupling for several heavy quarks and LET's

Having in mind various extensions of the SM containing either additional quarks heavier than the top one or Higgs-like scalar particles with mass of order a few GeV or even less let us consider a generic case with the field H not necessarily being the one from the SM . Our only assumptions are: (i) the field H couples with quarks via a top-like (that is proportional to the corresponding quark masses) Yukawa couplings and (ii) its mass  $M_H$  is larger than masses of light quarks and less than masses of heavy quarks:

$$m_i \gg M_H \gg m_j$$
 with  $(n_\ell + 1) \le i \le n_f$  and  $1 \le j \le n_\ell$ .

In the framework of the SM we naturally have  $n_h = 1$  and  $n_\ell = 5$ .

see, e.g. D. Gorbunov, E. Kriukova and O. Teryaev, "Scalar decay into pions via Higgs portal," [arXiv:2303.12847]

For simplicity we continue to refer to the field H as the the Higggs one.

$$\mathcal{L}^{nf} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a \mu\nu} + \sum_{i=1-n_{\ell}} \overline{\psi}_{i} \left( \frac{i}{2} \overleftrightarrow{\mathcal{D}} - m_{i} \right) \psi_{i} + \sum_{i=(n_{\ell}l+1)-n_{h}} \overline{\psi}_{i} \left( \frac{i}{2} \overleftrightarrow{\mathcal{D}} - m_{i} \right) \psi_{i}$$

$$+ \lambda_{0} H \left( \sum_{i=1-n_{\ell}} m_{i} \overline{\psi}_{i} \psi_{i} + \sum_{i=(n_{\ell}+1)-n_{f}} m_{i} \overline{\psi}_{i} \psi_{i} \right).$$

$$\mathcal{L}^{nl} = -\frac{1}{4} \left( G^{a}_{\mu\nu} G^{a \mu\nu} \right)' + \sum_{i=1-n_{\ell}} \overline{\psi}_{i}' \left( \frac{i}{2} \overleftrightarrow{\mathcal{D}} - m_{i} \right) \psi_{i}' + \lambda_{0} H \left( C_{1} O'_{1} + C_{2} O'_{2} \right)$$

$$O'_{1} \equiv -\frac{1}{4} \left( G^{a}_{\mu\nu} G^{a \mu\nu} \right)', O'_{2} = \sum_{i=1-n_{\ell}} m_{i} \overline{\psi'}_{i} \psi'_{i}$$

Here all primed quantities refer to QCD c  $n_\ell$  active quark flavours; the effective quark-gluon coupling constant g' and effective light quark masses  $m_i'$  are connected to the original ones via the corresponding decoupling constants (we assume that one and the same  $\overline{\rm MS}$  normalization parameter  $\mu$  is employed in full and effective theories)

$$g'(\mu) = g(\mu) \zeta_g(\mu, a_s(\mu), \underline{m}_h), \quad m'_i(\mu) = m_i \zeta_m(\mu, a_s(\mu), \underline{m}_h),$$

where  $\underline{m}_h = m_{(n_l+1)}, \ldots m_{n_f}$  stands for heavy quarks masses. Similar relations connect the fields in the effective Lagrangian with the corresponding ones in the full one.

One can easily check that all-order (RG-not-improved!) LET's for  $C_1$  and  $C_2$  are easily generalized on the generic case of many heavy quarks and read:

(\*) 
$$C_1 = \sum_h m_h \frac{\partial}{\partial m_h} \ln \zeta_\alpha$$
 and  $C_2 = 1 + \sum_h m_h \frac{\partial}{\partial m_h} \ln \zeta_m$ 

where the index h runs over all heavy quarks (that is  $h \in \{n_\ell+1,\dots n_f\}$ )

- At 1- and 2 loops there is no computational difference between  $n_h=1$  and  $n_h>1$  cases because all diagrams contain only one quark flavour at a time)
- At first glance RG-improvement should stop to work for  $n_h>1$  case due to possible appearance constant terms like  $m_h/m_h'$  in  $\zeta_\alpha$  and  $\zeta_m$
- The only work dealing with simultaneous decoupling of many heavy quarks is:
   A.G. Grozin, M. Hoeschele, J. Hoff, M. Steinhauser, M. Hoschele, J. Hoff et al., Simultaneous decoupling of bottom and charm quarks, JHEP 09 (2011) 066 [1107.5970]
  - The authors have had to deal (for the first time) with 3-loop vacuum diagrams contibuting to the decoupling constant and dependig on two different quark masses. The results for  $\zeta_{\alpha}$  and  $\zeta_{m}$  are **complicated** /dilogs, etc./ functions of heavy masses. Nevertheless, the functions  $C_{1}$  and  $C_{2}$  obtained via LET's ( $^{\star}$ ) happen to be very simple. The authors literally write: "It is remarkable that although  $\zeta_{\alpha}$  contains di- and tri-logarithms there are only linear logarithms (of heavy masses) present in  $C_{1}$ " . . .
- This simplicity is a direct consequence of the RG-improved versions of LET's <sup>★</sup>,
   which is our new result and which we start to discuss now

#### **RG-improved LET's in QCD with** $n_h > 1$

We start from standard RG nomenclature for main QCD RG-functions ( $a \equiv \alpha_s/\pi$ )

$$d_{\mu^2} \ln a = \beta(a) = \sum_{i>1} \beta_i a^i, \quad d_{\mu^2} \ln m_i = \gamma_m(a) = \sum_{i>1} (\gamma_m)_i a^i,$$

Here  $\mathrm{d}_{\mu^2}=\mu^2\frac{\mathrm{d}}{\mathrm{d}\mu^2}$ , it is also covenient to define  $\partial_{\mu^2}=\mu^2\frac{\partial}{\partial\mu^2}$  and  $\partial_h=\sum_h m_h\frac{\partial}{\partial m_h}$ . For the case of the effective QCD with  $n_l$  quarks we will use the same notations with added prime, that is  $\beta'(a')$  is just a shortcut for  $\beta^{(n_l)}(a^{(n_l)})$  and so on.

RG-evolution of the decoupling fuinction  $\zeta_{\alpha}$ : we apply  $d_{\mu^2}$  to obvious relation

$$\ln a' = \ln(\zeta_{\alpha}) + \ln a \text{ (since } a' = \zeta_{\alpha} a)$$
$$d_{\mu^2} \ln(\zeta_{\alpha}) = \beta'(a') - \beta(a).$$

with the result

or, equivalently,

$$\left(\partial_{\mu^2} + \gamma_m(a)\partial_h + \beta(a)a\frac{\partial}{\partial a}\right)\ln\zeta_\alpha = \beta'(a') - \beta(a). \tag{1}$$

Since elementary dimensional analysis implies

$$\rho \frac{\partial}{\partial \rho} \zeta_{\alpha}(\alpha, \rho^{2} \mu^{2}, \rho \underline{m}_{h}) \equiv 0 \equiv (\partial_{\mu^{2}} + \frac{1}{2} \partial_{h}) \ln \zeta_{\alpha}$$
 (2)

we combine (1), (2) and arrive to our final RG-improved LETs for  $C_1$  and  $C_2$ 

# Final RG-improved LET's for QCD with many heavy quarks

$$C_1 = -\frac{2}{1 - 2\gamma_m(a)} \left( \beta'(a') - \beta(a) - \beta(a) a \frac{\partial \ln \zeta_\alpha}{\partial a} \right)$$

$$C_2 = 1 - \frac{2}{1 - 2\gamma_m(a)} \left( \gamma'(a') - \gamma_m(a) - \beta(a) a \frac{\partial \ln \zeta_m}{\partial a} \right).$$

#### Important to note:

- RG-improved LETs are essentially identical for the cases  $n_h = 1$  and  $n_h > 1$ .
  - This is exlusively due to (assumed) proportionality of Yukawa couplings of the Higgs field to the corresponding quark masses)
- The main advantage of RG-improved LETs is that the factor  $\beta(a)$  in the third terms in round brackets **decrease by one** the required loop order of the decoupling constants  $\zeta_{\alpha}$  and  $\zeta_{m}$

# Example: $C_1$ at three loops in QCD with many heavy quarks

Below is esentially the very old 2-loop result for  $\zeta_{\alpha}$   $(L_{\mu h} \equiv \sum_{h} \ln \frac{\mu^2}{m_h^2})$ 

$$\zeta_{\alpha} = 1 - a(\mu) \frac{T_F}{3} L_{\mu h}$$

$$+ a(\mu)^{2} \left( \frac{2}{9} C_{A} T_{f} n_{h} - \frac{13}{48} C_{F} T_{f} n_{h} + \left( -\frac{-5}{12} C_{A} F + \frac{C_{F}}{4} \right) T_{f} L_{\mu h} + \frac{T_{F}^{2}}{9} L_{\mu h}^{2} \right)$$

Now, a direct use the RG-improved LET for  $C_1$  leads to a general result for the CF  $C_1$  at the 3-loop level  $(a=a^{(nf)}(\mu))$ 

$$C_1(a_s) = a n_h \frac{2T_F}{3} + a^2 \left( \left( \frac{5}{6} C_A F - C_F/2 \right) T_f n_h - \frac{2}{9} T_F^2 n_h L_{\mu h} \right) + C_{1,3} a^3 + C_{1,4} a^4$$

$$C_{1,3} = C_F^2 T_F \frac{9}{16} n_h - C_F C_A T_F \left[ \frac{25}{18} n_h + \frac{11}{24} L_{\mu h} \right]$$

$$- C_F T_F^2 \left[ \frac{5}{24} n_h n_l + \frac{17}{72} n_h^2 - L_{\mu h} \left( n_h \frac{1}{2} + \frac{1}{3} n_l \right) \right] - C_A^2 T_F \left[ \frac{1063}{864} n_h + \frac{7}{24} L_{\mu h} \right]$$

$$- C_A T_F^2 \left[ \frac{47}{216} n_l - \frac{49}{432} n_h + \frac{5}{6} L_{\mu h} \right] n_h + \frac{2}{27} T_F^3 L_{\mu h}^2 n_h$$

$$C_{1,3} = C_F^2 T_F \frac{9}{16} n_h - C_F C_A T_F \left[ \frac{25}{18} n_h + \frac{11}{24} L_{\mu h} \right]$$

$$- C_F T_F^2 \left[ \frac{5}{24} n_h n_l + \frac{17}{72} n_h^2 - L_{\mu h} \left( n_h \frac{1}{2} + \frac{1}{3} n_l \right) \right] - C_A^2 T_F \left[ \frac{1063}{864} n_h + \frac{7}{24} L_{\mu h} \right]$$

$$- C_A T_F^2 \left[ \frac{47}{216} n_l - \frac{49}{432} n_h + \frac{5}{6} L_{\mu h} \right] n_h + \frac{2}{27} T_F^3 L_{\mu h}^2 n_h$$

Our derivation (with a use of the RG-improved LET is not only extremely straightforward but also reveals the reason behind this remarkable simplicity: at the three loop level the CF  $C_1$  is contibited by the 2-loop decoupling function **only** (not counting mass-independent  $\beta$  and  $\gamma_m$ )

But armed with the RG-impoved LET's we can do more. Indeed, as the four-loop  $\beta$  and  $\gamma_m$  are known since long we could upgrade the result for  $C_1$  to one more loop (that is on the 4-loop level!)

<sup>\*</sup>C. Anastasiou, R. Boughezal and E. Furlan, (2010) [1003.4677]

<sup>\*</sup>Å.G. Grozin, M. Hoeschele, J. Hoff, M. Steinhauser (2011) [1107.5970].

#### New result: $C_1$ at four loops in QCD with many heavy quarks

We start from some notations. The available result of for  $\zeta_{\alpha}$  is convenient to present as follows:

$$\zeta_{\alpha} = d_1 a + d_2 a^2 + d_3 a^3 + d_4 a^4 + \dots$$

0 Here the first two coefficients have already been displayed, The coefficient  $d_3$  is a complicated function of  $\mu$ ,  $a(\mu)$  and quark mass  $m_{n_l+1}, \ldots m_{n_f}$ .

Finally, a simple and direct use of RG-improved LET directly leads for the following result for  $C_1$ 

$$C_1 = -\frac{2}{1 - 2\gamma_m(a)} \left( \tilde{C}_{1,1} a + \tilde{C}_{1,2} a^2 + \tilde{C}_{1,3} a^3 + \tilde{C}_{1,4} a^4 \right)$$

where

$$\tilde{C}_{1,1} = -\beta_1 + \beta_1',$$

$$\tilde{C}_{1,2} = -\beta_2 + \beta_2' + (-\beta_1 + \beta_1') d_1,$$

$$\tilde{C}_{1,3} = -\beta_3 + \beta_3' + (-\beta_2 + 2\beta_2') d_1 + \beta_1 d_1^2 + (-2\beta_1 + \beta_1') d_2,$$

$$\tilde{C}_{1,4} = -\beta_4 + \beta_4' + (\beta_2 + \beta_2') d_1^2 - \beta_1 d_1^3 + (-2\beta_2 + 2\beta_2') d_2 + d_1 (-\beta_3 + 3\beta_3' + 3\beta_1 d_2) + (-3\beta_1 + \beta_1') d_3$$

One can see that no  $d_4$  appears in  $\tilde{C}_{1,4}$  as it should be: RG-improved-LET does work!

# **Conclusions**

- We have demonstrated that RG-improved LET's do work in the case many heavy quarks (asuuming their Higgs-like couplings with the scalar particle)
- As it was shown in ( A.G. Grozin, M. Hoeschele, J. Hoff, M. Steinhauser (2011) [1107.5970]) power suppressed corrections should be amended by summing higher oder logs like  $(\ln \mu^2/m_h^2)^n$ . In the case of more than one heavy quark it could be done only with sequential decoupling.
- and here we encounter a new problem: on the second step of sequential decoupling one should know the transition of the very gluonic operator

$$O_1 = -\frac{1}{4} G^a_{\mu\nu} G^{a\,\mu\nu}$$

from the full QCD to the effective one (when decouipling the "second" heavy quark)

• To the best of my knowledge it is not yet solved. We are working on it ...