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Revolution is Driven by New Tools

“New directions in science are launched by new tools 
much more often than by new concepts.  The effect of a 
concept-driven revolution is to explain old things in new 
ways.  The effect of a tool-driven revolution is to discover 
new things that have to be explained.”


— Freeman J. Dyson, Imagined Worlds 
Harvard University Press (1998)
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Machine Learning
• Machine learning (ML) is a new tool used for large-scale data processing and 

well-suited for complex datasets with huge numbers of variables and features 
(patterns and regularities), especially for deep learning neural networks (NNs).


• The Universal Theorem: any function can be approximated by a neural network 
with at least one hidden layer. 

5

Waldrop 2019

shallow NN deep NN
each node is a neuron



Types of Machine Learning
• Fully supervised learning 

• Training data with labels (e.g., recognizing photos of cats and dogs)

• Unsupervised learning 

• Training data without labels (e.g., analyzing and clustering unlabeled datasets)

• Reinforced learning 

• Data from interactions with the environment (e.g., chess and Go games)
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Types of Machine Learning
• Fully supervised learning 

• Training data with labels (e.g., recognizing photos of cats and dogs)

• Unsupervised learning 

• Training data without labels (e.g., analyzing and clustering unlabeled datasets)

• Reinforced learning 

• Data from interactions with the environment (e.g., chess and Go games)

• Weakly supervised learning 

• Training data whose labeling is infeasible, imperfect, difficult, or expensive (e.g., 
medical imaging, identifying celestial objects from low-quality telescope 
images, anomaly searches)
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VBF/GGF Higgs Production
• Questions: 

• For each detected Higgs event, how can we efficiently  

and correctly determine/label its production mechanism?  

• Can it be independent of how the Higgs boson decays?
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Figure 5: Reduced Higgs boson coupling strength modifiers and their uncertainties. They are defined as
^�<�/vev for fermions (� = C, 1, g, `) and

p
^+<+ /vev for vector bosons as a function of their masses <� and <+ .

Two fit scenarios with ^2 = ^C (coloured circle markers), or ^2 left free-floating in the fit (grey cross markers) are
shown. Loop-induced processes are assumed to have the SM structure, and Higgs boson decays to non-SM particles
are not allowed. The vertical bar on each point denotes the 68% confidence interval. The ?-values for compatibility
of the combined measurement and the SM prediction are 56% and 65% for the respective scenarios. The lower panel
shows the values of the coupling strength modifiers. The grey arrow points in the direction of the best-fit value and
the corresponding grey uncertainty bar extends beyond the lower panel range.

not substantially a�ect the kinematic properties of the Higgs boson decay products. The fit results for the
scenario in which invisible or undetected non-SM Higgs boson decays are assumed not to contribute to
the total Higgs decay width, i.e. ⌫inv. = ⌫u. = 0, are shown in Figure 6 together with the results for the
scenario allowing such decays. To avoid degenerate solutions, the latter constrains ⌫u. � 0 and imposes the
additional constraint ^+  1 that naturally arises in a variety of scenarios of physics beyond the SM [54,
55]. All measured coupling strength modifiers are compatible with their SM predictions. When allowing
invisible or undetected non-SM Higgs boson decays to contribute to the total Higgs boson decay width,
the previously measured coupling strength modifiers do not change significantly, while upper limits of
⌫u. < 0.12 (expected 0.21) and ⌫inv. < 0.13 (expected 0.08) are set at 95% CL on the corresponding
branching fraction. The latter improves on the current best limit of ⌫inv. < 0.145 (expected 0.103) from
direct ATLAS searches [42].

In all tested scenarios, the statistical and the systematic uncertainty contribute almost equally to the
total uncertainty in most of the ^ parameter measurements. The exceptions are the ^`, ^/W , ^2 and ⌫u.

measurements for which the statistical uncertainty still dominates.

Kinematic properties of Higgs boson production probing the internal structure of its couplings are studied in
the framework of simplified template cross sections [44, 56–58]. The framework partitions the phase space
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Distributions of BDT Input Variables

9

ba
se

lin
e

sh
ap

es

all histograms normalized to 
have unit area under the curves

- Cut-based methods 
cannot reach high purity.

- BDT-based methods can 
achieve a purity of about 
70% for the VBF sample, 
depending on the decay 
channel. ATLAS 2019
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A Higgs to Diphoton Event
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Event-CNN
• Train a convolutional neural network (CNN) by full supervision to discriminate 

the two production mechanisms by examining the final-state image.


• A successful training typically requires at least tens of thousands of samples.
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FIG. 3: The isolated photon ET and Tower ET combined with Track pT of an event

without pre-processing (left) and after pre-processing (right). The color of each pixel

indicates the energy in units of GeV.

We employ a toy ResNet model [111] in our event-CNN. Two Convolution Layers form

a residual block in ResNet. There are shortcuts connecting the residual blocks, enabling us

to deepen our model without su↵ering from the degradation problem. The sizes of filters in

the Convolution Layers and pools in the Pooling Layers are all 3 ⇥ 3. The detailed model

structure of the event-CNN is shown in Fig. 11. The hyperparameters are the same as those

in Table IV.

In order to extract information from both the local jet-level and global event-level features,

Ref. [13] adopts a two-stream CNN architecture, where one stream processes an image of the

highest pT non-Higgs jet in the event, and the other stream processes the full-event image.

Motivated by this, we further study the performance of an extension of our full-event CNN in

Appendix B, using a similar structure containing three streams of CNN, dealing with event

images and leading two jet images respectively. However, we find no improvement from our

original single-stream event-CNN. This does not contradict the works of Ref. [13] since they

did not compare the performance of their two-stream CNN against a single-stream CNN

consisting of just the full-event classifier.

D. Self-attention

For comparison, we also consider another whole-event low-level-feature classifier based

on the technique of self-attention [19], which is used in the famous Transformer model [20]

dealing with sequence-to-sequence tasks. The original motivation of this model is to use the

11
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Comparison of Classifiers
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jet-CNN has learned the 
information contained in 
the human-engineered jet 
shape variables

most powerful classifier

(Receiver Operating Characteristic curves)

virtually no difference after 
removing photon information

noticeable difference 
in traditional methods

CWC, Shih, Wei 2023
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Collider Simulations
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Collider Simulations
• Particle experimentalists deal with real data collected 

by detectors around colliders. 
➠ just like analyzing real images for CS people 
➠ even current multivariate approaches for 
classification rely on simulations and must be corrected 
later on using data-driven techniques 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• As particle theorists, we think we are simulating 
verisimilar data using various packages. 
➠ in fact, we have been generating fake data all along 
➠ problems: fixed-order in perturbation (e.g., CalcHEP, 
MadGraph), model-dependent showering/hadronization 
(e.g., Pythia, Herwig), crude detector simulations (e.g., 
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• Use a generative adversarial network (so-called GAN). 
➠ can alleviate model dependence during training, but at the cost of algorithmic 
performance and computational resources 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Can We Be More Realistic?
• Use a generative adversarial network (so-called GAN). 
➠ can alleviate model dependence during training, but at the cost of algorithmic 
performance and computational resources 

• It would be nice to train directly using real data. 
➠ but real data are unlabeled… 

• Introduce classification without labels (CWoLa). 
➠ belonging to a broad framework called weak supervision, whose goal is to 
learn from partially and/or imperfectly labeled data 
➠ first weak supervision application in particle physics for quark vs gluon 
tagging using only class proportions during training; shown to match the 
performance of fully supervised algorithms
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A Theorem for CWoLa
• Let  represent a list of observables or an image, used to  

distinguish signal  from background , and define:


• : probability distribution of  for the signal,


• : probability distribution of  for the background. 


• Given mixed samples  and  defined in terms of pure events of  and  
(both being identical in the two mixed samples) using 
 
 
 
with different signal fractions , an optimal classifier (most powerful test 
statistic) trained to distinguish samples in  and  is also optimal for 
distinguishing  from .

⃗x
S B

pS( ⃗x) ⃗x

pB( ⃗x) ⃗x

M1 M2 S B

f1 > f2
M1 M2

S B
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Proof
• The optimal classifiers to distinguish examples drawn from  and  and to 

distinguish examples drawn from  and  are, respectively, the likelihood ratios  
 

• Where  has support, these two likelihood ratios are related: 
 
 
which is a monotonically increasing function of  as long as , since 
 

• If , then one obtains the reversed classifier. 
➠  and  are effectively equivalent classifiers

pM1
pM2

pS pB

pB

LS/B f1 > f2

f1 < f2
LS/B LM1/M2
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Remarks
• An important feature of CWoLa is that, unlike the learning from label 

proportions (LLP) weak supervision, the label proportions  and  are not 
required for training as long as they are different.


• This theorem only guarantees that the optimal classifier from CWoLa, if reached, 
is the same as the optimal classifier from fully-supervised learning.


• Just like most cases, successful training for CWoLa also requires a large amount 
of samples. 

• What happens if available data for the mixed samples are insufficient or limited, 
as is often the case of real data for BSM searches?

f1 f2
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Dark Valley Model and Dark Jets
• Assume the existence of a dark confining sector that communicates with the 

visible sector via a heavy  portal: 
 
 

• For our purposes here, we


• consider  couplings to the -quarks only,  
though other SM particles are also possible;


• give  a mass without specifying its source;


• will not worry about such issues as anomaly  
cancellation and  mixing.


• The LHC signature is a pair of dark jets with invariant mass consistent with .

Z′￼

Z′￼ d

Z′￼

Z − Z′￼

mZ′￼
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Dark Sector Parameter Choices
• The  mass is fixed at 5.5 TeV, and its width is fixed at 10 GeV. 
➠ invariant mass of the two leading jets being around 5.2 TeV (with some 
constituents falling outside the reconstructed jets)


• The dark confining scale  GeV.


• Dark vector  and pseudoscalar  masses and two (prompt) decay scenarios: 
 

• Indirect Decay (ID):  followed by  for 


• Direct Decay (DD):  for  

• Totally 14 “models” from different combinations of the above parameters.

Z′￼

ΛD ∈ {1, 5, 10, 20, 30, 40, 50}
ρD πD

ρD → πDπD πD → dd̄ mπD
/ΛD = 1.0

ρD, πD → dd̄ mπD
/ΛD = 1.8

21
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Dijet Invariant Mass Distributions
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Figure 1. Dijet invariant mass distributions for the indirect decaying scenario with ΛD = 10GeV and
for the SM background. Distributions are normalized to unity. Both signal and background satisfy
the selection criteria of table 1(b) except for the SR or SB conditions.

to have any significant impact on the distributions. The parton distribution function used for
both event generations is NN23LO1 [40]. For the background, the default Pythia settings are
used. For both signal and background, detector simulation is handled with Delphes 3.4.2 [41].
The default CMS card is used, except for the jet radius which is set to R = 0.8. After detector
simulations, we impose the selection criteria described in table 1(b). A Signal Region (SR)
and Sidebands (SB) are defined and will come into play in the CWoLa procedure.

Finally, the two leading jets in PT are converted into jet images according to the following
procedure [42–44]. First, the jet constituents are translated so that the center of the image is
along the jet axis. Second, the image is rotated such that the principal axis of the PT -weighted
constituents is along the horizontal direction. Third, the image is flipped such that the
highest PT constituent is in the upper right plane. After the above preprocessing, the image
is pixelated using resolutions of either 25× 25, 50× 50 or 75× 75. The ranges of η and φ

are both from −1 to 1. Figure 2 shows the jets before and after preprocessing, as well as
the average histogram plots. Jet images are chosen as the input of the neural networks as
learning from them can be challenging. This will display more clearly the improvements
provided by transfer and meta-learning. The ability to adjust the resolution will also prove
useful to illustrate certain features.

3 CWoLa

As explained in the Introduction, the CWoLa method requires the existence of two mixed
samples of signal and background in different proportions. A neural network is then trained
to distinguish the two samples, which should hopefully result in the network learning the

– 5 –

SR: signal region
SB: side-band region 
➠ two mixed samples (  
and ) with different 
signal/background fractions

M1
M2

- Madgraph 2.7.3 with 
PDF = NN23LO1

- Pythia 8.307 with 
default settings

- Delphes 3.4.2 with 
default CMS card and jet 
radius R = 0.8

ID;  GeVΛD = 10

Probability distributions 
of signal and background 
events are assumed to be 
the same in both SR and 
SB, which should be valid 
to a good approximation.

peak usually not 
so prominent



Convolutional + Dense Layers
• Prepare each jet image in three resolutions: , , .


• Use the images of the two leading jets as input data.


• Pass each image through a common CNN*, and each returns a score .


• Take the product of these two scores as the output of the full NN. 
 
 
 
 
 
 
 

* All NNs are implemented using Keras with TensorFlow backend.  Also, using two distinct networks for the 
two jets would give slightly inferior results, possibly caused by the lack of signal.

25 × 25 50 × 50 75 × 75

∈ [0,1]
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(a) Before preprocessing. (b) After preprocessing.

(c) Average histogram of background. (d) Average histogram of signal.

Figure 2. (a) A 2D PT histogram for one signal event in the SR before rotation and flipping. (b) A
2D PT histogram of the same event after complete preprocessing. (c) The average histogram for 10k
background events in the SR after preprocessing. (d) The average histogram for 10k signal events in
the SR after preprocessing. These plots are for the leading jet with 75 × 75 resolution and the ID
scenario with ΛD = 10GeV.

difference between the signal and background. In our case, a neural network is trained to
distinguish the signal and sideband regions of figure 1. In this section, we explain the details
of our implementation of this procedure, which is partially inspired by ref. [17].

The background in the SR consists of 25k events passing the SR selection cuts of
table 1(b). A fifth of these are used for validation, leaving an integrated luminosity roughly
corresponding to the expected number of events from Run 2 of the LHC. Considering the
conceptual nature of this work, we did not implement k-fold cross-validation, but nothing
would prevent its implementation in an actual search. The number of background events
in the SBs is determined by using the same integrated luminosity as the SR. The amount
of signal in the SR is varied throughout the analysis and the amount of signal in the SBs
is set again by using the same integrated luminosity as the SR. The callbacks function is
used to save the best model during training by monitoring the validation loss. To test the

– 6 –

Image of one 
signal jet in SR

 GeV
Resolution = 
ΛD = 10

75 × 75



Convolutional + Dense Layers
• The convolutional part of the NN is referred to as the feature extractor, and its 

weights and biases are collectively labeled as . 
➠ to be transferred later


• The dense layer part of the NN is referred to as the classifier, and its weights and 
biases of the dense layers are collectively labeled as . 
➠ to be fine-tuned later


Θ

θ
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(
convolutional 2D layer: 64 filters with 5× 5 kernel size
maxpooling layer: 2× 2 pool size

)

× 2

convolutional 2D layer: 128 filters with 3× 3 kernel size
Layers of CNN maxpooling layer: 2× 2 pool size
subnetwork convolutional 2D layer: 128 filters with 3× 3 kernel size

flatten layer
(dense layer: 128 units)× 3
dense layer (output): 1 unit
convolutional layer padding: same

Layer setting hidden layer activation function: ReLU
output layer activation function: Sigmoid
loss function: binary cross-entropy
optimizer: Adam
metric: accuracy

Other batch size: 500
learning rate: 1e-3 (base learning, pretraining)
learning rate: 1e-4 (CWoLa, fine-tuning, meta-learner updating)
patience number: 20 (pretraining, meta-learning)
patience number: 30 (CWoLa, fine-tuning)

Table 2. The CNN model subarchitecture and the hyperparameters.

performance of the CWoLa method, we use 20k additional signal passing the SR requirements
and 20k similar background.

We use as training data the jet images of the two leading jets. The distributions of
each of them are independently batched normalized. Each jet image is then passed through
a common Convolutional Neural Network (CNN) subnetwork and each returns a single
number. The output of the full neural network is then the product of these two numbers. The
subarchitecture and training procedure are described in table 2. All NNs are implemented
using Keras [45] with TensorFlow [46] backend. We did investigate the possibility of using
two distinct networks, but found this alternative to give typically inferior results. This seems
to be caused by the lack of signal. The convolutional part of the neural network is referred
to as the feature extractor and its weights and biases are collectively labelled as Θ. The
weights and biases of the dense layers are collectively labelled as θ.

In order to evaluate the performance of the NN, we use the significance formula [47]

σ =
√

2
(
(Ns +Nb) log

(
Ns

Nb
+ 1

)
−Ns

)
, (3.1)

where Ns and Nb are respectively the numbers of signal and background after the NN
classification. We choose certain background efficiencies ϵb and calculate the corresponding
signal efficiencies ϵs from the receiver operating characteristic (ROC) curve with testing
data after training. It has also been verified that no significant excesses are produced via
sculpting [17]. The training is performed 10 times for each significance value, including

– 7 –
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Results of Regular CWoLa
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Results of Regular CWoLa
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ID;  GeVΛD = 10

image resolution

error bars reflecting the 
uncertainties or fluctuations 
from 10  of training×

learning threshold

try different background efficiencies

slope = 1

Beauchesne, Chen, CWC 2024

below learning thresholds, NN fails to learn from 
data as it cuts background and signal indiscriminately
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Introduction to Transfer Learning
• The phrase “transfer learning (TL)” comes from psychology. 

➠ a learner new to a fresh topic (e.g., riding a motorcycle or playing guitar) 
typically has a higher learning threshold, while a learner experienced in related 
topics (e.g., riding a bicycle or playing violin) usually has less difficulty in quickly 
picking it up


• As an ML technique, TL reuses a pre-trained model developed for one task as 
the starting point of a new model for a new task. 
➠ transferring knowledge or experience extracted in the pre-trained model for a 
source task/domain to a new model for a target task/domain 
➠ weights from the pre-trained model used to initialize those of the new model


• TL would only be successful when the features learned from the first model 
trained on its task can be generalized and transferred and fine-tuned for the 
second task.

27



Transfer Learning by Pre-training and Fine-tuning
• Step 1: The NN is first trained to distinguish a sample of pure background from a 

pure combination of different signals, which includes all the models mentioned 
before (ID and DD, different values of ), except the benchmark on which the 
model will be tested. 
➠ pre-training on a large set of simulations as the source data 
➠ 200k  and 200k  events in the SR for training 
    + 50k  and 50k  events for validation 
➠ training both  (from convolutional layers) and  (from dense layers)

ΛD

S B
S B

Θ θ
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convolutional 2D layer: 64 filters with 5× 5 kernel size
maxpooling layer: 2× 2 pool size

)

× 2

convolutional 2D layer: 128 filters with 3× 3 kernel size
Layers of CNN maxpooling layer: 2× 2 pool size
subnetwork convolutional 2D layer: 128 filters with 3× 3 kernel size

flatten layer
(dense layer: 128 units)× 3
dense layer (output): 1 unit
convolutional layer padding: same

Layer setting hidden layer activation function: ReLU
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Table 2. The CNN model subarchitecture and the hyperparameters.

performance of the CWoLa method, we use 20k additional signal passing the SR requirements
and 20k similar background.

We use as training data the jet images of the two leading jets. The distributions of
each of them are independently batched normalized. Each jet image is then passed through
a common Convolutional Neural Network (CNN) subnetwork and each returns a single
number. The output of the full neural network is then the product of these two numbers. The
subarchitecture and training procedure are described in table 2. All NNs are implemented
using Keras [45] with TensorFlow [46] backend. We did investigate the possibility of using
two distinct networks, but found this alternative to give typically inferior results. This seems
to be caused by the lack of signal. The convolutional part of the neural network is referred
to as the feature extractor and its weights and biases are collectively labelled as Θ. The
weights and biases of the dense layers are collectively labelled as θ.

In order to evaluate the performance of the NN, we use the significance formula [47]
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where Ns and Nb are respectively the numbers of signal and background after the NN
classification. We choose certain background efficiencies ϵb and calculate the corresponding
signal efficiencies ϵs from the receiver operating characteristic (ROC) curve with testing
data after training. It has also been verified that no significant excesses are produced via
sculpting [17]. The training is performed 10 times for each significance value, including
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Transfer Learning by Pre-training and Fine-tuning
• Step 2: The NN is then trained to distinguish the mixed samples (i.e., the SR and 

SB regions) using the actual data of the benchmark signal (of the true model) plus 
the SM background. 
➠ fine-tuning on the small set of actual data as target data 
➠ freezing  in the convolutional layers and reinitializing and training  in the 
dense layers 
➠ fixing the feature extraction part while training the classification part

Θ θ
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Transfer Learning vs Regular CWoLa
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Transfer Learning vs Regular CWoLa
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Augmentation Methods
• While there are numerous augmentation methods in the field of computer vision, 

we focus on physics-inspired techniques related to our study. 

• Considering augmentations that capture the symmetries of the physical events 
and the experimental resolution or statistical fluctuations in the detector, we 
implement three methods:


•  (transverse momentum) smearing;


• jet rotation; and 


• a combination of the two. 
 

• Additionally, we have applied  smearing and Gaussian noise to jet images and observed essentially 
no improvement.

pT

η − ϕ
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 Smearing and Jet Rotation MethodspT

• The  smearing method is used to simulate detector resolution/fluctuation 
effects on the transverse momentum of jet constituents, achieved by resampling 
the  of jet constituents according to the normal distribution: 
 
 

where  is the augmented transverse momentum, and  is the energy 
smearing function applied by Delphes (with  normalized in units of GeV). 

• The jet rotation method rotates each jet with respect to its center by a random 
angle  to enlarge the diversity of training datasets.


• We have tested other ranges of jet rotation angles, including , 
, and . 

➠ the training performance improves as the range of rotation angles increases

pT

pT

p′￼T f (pT)
pT

θ ∈ [−π, π]
[−π/6,π/6]

[−π/3,π/3] [−π/2,π/2]
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Example of A Jet Image
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Figure 4 shows a jet image before and after di↵erent augmentation methods. Plot (a)

is the original preprocessed jet image. Plot (b) shows the jet image with pT smearing.

Although pT smearing only modifies the transverse momentum of jet constituents, the

preprocessing shifts the jet image based on pT. Thus, the pixels of the image di↵er from

the original one not only in intensity but also slightly in position. Plot (c) is the jet image

after a jet rotation. Since the jet rotation only modifies the (⌘0,�0) coordinates, the jet

image only di↵ers by an angle ✓ from plot (a) but with the same intensity. Plot (d) shows

the jet image with both pT smearing and jet rotation. In this case, the new image has

di↵erent angular position and intensity, but the overall pattern remains consistent with

the original image.

(a) Original jet image (b) pT smearing

(c) Jet rotation (d) pT smearing + jet rotation

Figure 4: The jet images before and after di↵erent data augmentation methods.

5.2 Impacts of data augmentation

Figure 5 shows the sensitivity improvement with di↵erent data augmentation methods for

the ID and DD scenarios with di↵erent background e�ciencies. Here, we consider the

“+5 augmentation,” which means that the training dataset consists of the original data

plus 5 augmented versions. As seen in the plots, even with just +5 augmentation, the

model’s performance significantly improves. The learning thresholds are reduced from

– 11 –
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Sensitivity Improvement
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learning threshold

fluctuations reduced 
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jet rotation 
more effective 
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Dependence on Augmentation Size
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Dependence on Augmentation Size
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Asymptotic Behavior of Augmentation Size

37

ID;  GeVΛD = 10 Chen, CWC, Hsieh 2024



Asymptotic Behavior of Augmentation Size
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usually around +10 augmentation
pT
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Summary
• Weak supervision (e.g., CWoLa) has the advantages of being able to train on 

real data and of exploiting distinctive signal properties. 
➠ ideal tools for anomaly searches 
➠ fail when signals are limited 

• We propose to use the transfer learning (TL) technique and show that it can 
drastically improve the performance of CWoLa searches, particularly in the low-
significance region, and that the amount of signal required for discovery can be 
reduced by a factor of a few (because of better identification of signals). 

• We also propose using the data augmentation technique and show that jet 
rotation is more effective than  smearing, that a mere +5 augmentation can 
already achieve great results.

pT
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Thank You!


