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Revolution is Driven by New Tools

“New directions in science are launched by new tools
much more often than by new concepts. The effect of a
concept-driven revolution is to explain old things in new
ways. The effect of a tool-driven revolution is to discover

new things that have to be explained.”

— Freeman J. Dyson, Imagined Worlds
Harvard University Press (1998)




Machine Learning

 Machine learning (ML) is a new tool used for large-scale data processing and
well-suited for complex datasets with huge numbers of variables and features
(patterns and regularities), especially for deep learning neural networks (NNs).

* The Universal Theorem: any function can be approximated by a neural network

with at least one hidden layer.
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Types of Machine Learning

* Fully supervised learning

* Training data with labels (e.g., recognizing photos of cats and dogs)
 Unsupervised learning

* Training data without labels (e.g., analyzing and clustering unlabeled datasets)
* Reinforced learning

e Data from interactions with the environment (e.g., chess and Go games)



Types of Machine Learning

* Fully supervised learning

* Training data with labels (e.g., recognizing photos of cats and dogs)
 Unsupervised learning

* Training data without labels (e.g., analyzing and clustering unlabeled datasets)
* Reinforced learning

e Data from interactions with the environment (e.g., chess and Go games)
 Weakly supervised learning

* Training data whose labeling is infeasible, imperfect, difficult, or expensive (e.q.,
medical imaging, identifying celestial objects from low-quality telescope
images, anomaly searches)
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VBF/GGF Higgs Production
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Distributions of BDT Input Variables
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A Higgs to Diphoton Event
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Event-CNN

* Train a convolutional neural network (CNN) by full supervision to discriminate
the two production mechanisms by examining the final-state image.

* A successful training typically requires at least tens of thousands of samples.

training validation testing

VBEF events 105k 20k 33k
GGF events 3k 21k 20k

original image preprocessed image
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Comparison of Classifiers

ROC curves
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Collider Simulations

* Particle experimentalists deal with real data collected
by detectors around colliders.
w just like analyzing real images for CS people
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Collider Simulations
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https://www.catbreedslist.com/stories/
what-breed-of-cat-is-garfield.html

* As particle theorists, we think we are simulating
verisimilar data using various packages.
w N fact, we have been generating fake data all along
w problems: fixed-order in perturbation (e.g., CalcHEP,
MadGraph), model-dependent showering/hadronization

(e.g., Pythia, Herwig), crude detector simulations (e.g.,
Delphes)
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 Use a generative adversarial network (so-called GAN). Louppe, Kagan, Cranmer 2016
w can alleviate model dependence during training, but at the cost of algorithmic
performance and computational resources
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Can We Be More Realistic?

 Use a generative adversarial network (so-called GAN). Louppe, Kagan, Cranmer 2016
w can alleviate model dependence during training, but at the cost of algorithmic
performance and computational resources

* |t would be nice to train directly using real data.
w put real data are unlabeled...

* Introduce classification without labels (CWoLa) Metodiev, Nachman, Thaler 2017/
w pbelonging to a broad framework called weak supervision, whose goal is to
learn from partially and/or imperfectly labeled data Herma'ndez-Conzalez, Inza, Lozano 2016
w first weak supervision application in particle physics for quark vs gluon
tagging using only class proportions during training; shown to match the
performance of fU”y supervised algorithms Dery, Nachman, Rubbo, Schwartzman 2017
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A Theorem for CWolLa

» Let X represent a list of observables or an image, used to
distinguish signal S from background B, and define:

+ p«(X): probability distribution of X for the signal,

» pp(X): probability distribution of X for the background.

Mixed Sample 1

00000

OOCO®
OlOIGCIGLE),
OCCO®

©0066

Mixed Sample 2

\o

®O®OG®

®OE®®
OeE®®
®Ee®O®

©C006

/

Classifier

Metodiev, Nachman, Thaler 201/

» Given mixed samples M, and M, defined in terms of pure events of $ and B

(both being identical in the two mixed samples) using

pum, (T) = fips(Z) + (1 — f1) pB(T)
P, (T) = faps(Z) + (1 — f2) pB(T)

with different signal fractions f; > f,, an optimal classifier (most powerful test

statistic) trained to distinguish samples in M, and M, is also optimal for

distinguishing S from B.

16




Proof

» The optimal classifiers to distinguish examples drawn from p,, and p,, and to
distinguish examples drawn from p¢ and pp are, respectively, the likelihood ratios

P, (T) ps(T)
P, (T) pB(T)
» Where pp has support, these two likelihood ratios are related:
Pnvy J1ips + (1 — f1)pB B flLS/B + (1 — fl) B J1 (LS/B — 1) + 1
P M, a fops + (1 — f2) pB a fZLS/B + (1 — f2) a 2 (LS/B — 1) + 1
which is a monotonically increasing function of L5 as long as f; > f,, since

oL _
My /My f1— /o -0

2
OLls/p (faLsp — fa+1)
» If f; < f», then one obtains the reversed classifier.

w /¢ nand LM1 /u, are effectively equivalent classifiers
|

this can be trained with full supervision 17

LMl /M (f) — and LS/B (f) — — Neyman-Pearson lemma

Ly /v, =




Remarks

 An important feature of CWola is that, unlike the learning from label

proportions (LLP) weak supervision, the label proportions f; and f, are not
required for training as long as they are different.

* This theorem only guarantees that the optimal classifier from CWolLa, if reached,
Is the same as the optimal classifier from fully-supervised learning.

» Just like most cases, successful training for CWola also requires a large amount
of samples.

 What happens if available data for the mixed samples are insufficient or limited,
as is often the case of real data for BSM searches?

18
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Dark Valley Model and Dark Jets

 Assume the existence of a dark confining sector that communicates with the

visible sector via a heavy /' portal: dark quarks
| |
LD—-Z, (5|Jq@v“q7; - gqu IDaY"qDa)

respective effective coupling constants

* For our purposes here, we d

e consider Z’ couplings to the d-quarks only,
though other SM particles are also possible;

e give Z' a mass without specifying its source; g

* will not worry about such issues as anomaly
cancellation and Z — Z’ mixing.

Courtesy of Hugues Beauchesne

» The LHC signature is a pair of dark jets with invariant mass consistent with m,..

20
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Dark Sector Parameter Choices

 The Z' mass is fixed at 5.5 TeV, and its width is fixed at 10 GeV.
w nvariant mass of the two leading jets being around 5.2 TeV (with some
constituents falling outside the reconstructed jets)

» The dark confining scale A, € {1, 5, 10, 20, 30, 40, 50} GeV.

 Dark vector p and pseudoscalar 7, masses and two (prompt) decay scenarios:

m,2 Albouy et al 2022
i) \/5.76 +1.5—22
AD

. Indirect Decay (ID): p, — #,7y, followed by 7, — dd for mﬂD/AD = 1.0

. Direct Decay (DD): p;,, 7, — dd for m, IAp = 1.8

» JTotally 14 “models” from different combinations of the above parameters.

21



Dijet Invariant Mass Distributions

ID; Ap = 10 GeV
%x10-3 M;; histogram
i peak usually not signal SR s.ignal region
1.6- i so prominent background | B side-band region
e i | i m two mixed samples (M,
. SB SR SB | and M,) with different
nl.2 i i signal/background fractions
C | |
2 1.01 | |
> : :
£0.8- i i
- Madgraph 2.7.3 with 206 i |
PDF = NN23LOL i i Probability distributions
- Pythia 8 . 3077 with 0.4 | i of signal and background
default settings | 0.2 - i | events are assumed to be
- Delphes 3.4.2 with | | the same in both SR and
default CMS card and jet 0- 8300 4500 5000 5500 6000 SB, which should be valid
radius R = 0.8 M; [GeV] to a good approximation.

Figure 1. Dijet invariant mass distributions for the indirect decaying scenario with Ap = 10 GeV and
for the SM background. Distributions are normalized to unity. Both signal and background satisfy
the selection criteria of table 1(b) except for the SR or SB conditions.
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Convolutional + Dense Layers

» Prepare each jet image in three resolutions: 25 X 25, 50 X 50, 75 x 75.

* Use the images of the two leading jets as input data.

» Pass each image through a common CNN*, and each returns a score € [0, 1].

* Take the product of these two scores as the output of the full NN.

Calorimeter Pt for j; Calorimeter P+ for j;

1.0 103 1.0 103
llo2 _ 102 _
0.5 % 0.5; D
101 .(2, ;101 2
- & Image of one
i i 0o = | H i 0 = . . .
s 0.0 & 10° & e 0. ' 107 2 signal jet in SR
£ | £
L 10-1C ;‘10_1': —
os § o5 5‘; AD — 10 GeV
10-2 10>~ Resolution =75 X 75
— T T T _3 - i I I _3
1990 =65 00 o5 10 1990 =65 00 o5 10
n n

(a) Before preprocessing. (b) After preprocessing.
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Convolutional + Dense Layers

* The convolutional part of the NN is referred to as the feature extractor, and its

weights and biases are collectively labeled as ©).
w10 be transferred later

* The dense layer part of the NN Is referred to as the classifier, and its weights and

biases of the dense layers are collectively labeled as 6.
w t0 be fine-tuned later

(convolutional 2D layer: 64 filters with 5 X 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

Layers of CNN | maxpooling layer: 2 x 2 pool size @
subnetwork convolutional 2D layer: 128 filters with 3 x 3 kernel size
flatten layer = e e ccccccccccccccccccccccceet e e e e ==
(dense layer: 128 units) x 3 H

dense layer (output): 1 unit

24



Results of Regular CWolLa

SN
o

—— CWola-£,=10%
La-£p=1%
—— CWola-£,=0.1%

G
1
0)
5

W
o

ID for 25x25 res.

N
Ul

= N
Ul o

-
-

Significance after NN cut

0 1 2 3 4 5
Significance before NN cut
ID; Ap = 10 GeV

25

Beauchesne, Chen, CWC 2024



Results of Regular CWolLa

try different background efficiencies
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Introduction to Transfer Learning

 The phrase “transfer learning (TL)” comes from psychology.
w g |learner new to a fresh topic (e.g., riding a motorcycle or playing guitar)
typically has a higher learning threshold, while a learner experienced In related
topics (e.qg., riding a bicycle or playing violin) usually has less difficulty in quickly
picking it up

 As an ML technique, TL reuses a pre-trained model developed for one task as
the starting point of a new model for a new task.
m transferring knowledge or experience extracted in the pre-trained model for a
source task/domain to a new model for a target task/domain
- Weights from the pre-trained model used to initialize those of the new model

 TL would only be successful when the features learned from the first model

trained on its task can be generalized and transferred and fine-tuned for the
second task.

27



Transfer Learning by Pre-training and Fine-tuning

» Step 1: The NN is first trained to distinguish a sample of pure background from a
pure combination of different signals, which includes all the models mentioned

before (ID and DD, different values of A ), except the benchmark on which the

model will be tested.

 pre-training on a large set of simulations as the source data

w 200k S and 200k B events in the SR for training
+ 50k S and 50k B events for validation

w training both ® (from convolutional layers) and @ (from dense layers)

Layers of CNN
subnetwork

(convolutional 2D layer: 64 filters with 5 x 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

flatten layer s cccccc s s s s s cm s s s e -—--——--
(dense layer: 128 units) x 3

dense layer (output): 1 unit

28



Transfer Learning by Pre-training and Fine-tuning

» Step 2: The NN is then trained to distinguish the mixed samples (i.e., the SR and
SB regions) using the actual data of the benchmark signal (of the true model) plus
the SM background.

w fine-tuning on the small set of actual data as target data

w freezing © in the convolutional layers and reinitializing and training € in the

dense layers
w fixing the feature extraction part while training the classification part

(convolutional 2D layer: 64 filters with 5 x 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

Layers of CNN | maxpooling layer: 2 x 2 pool size @
subnetwork convolutional 2D layer: 128 filters with 3 x 3 kernel size
flatten layer = c ccceccccccccccccsc e s s e e et - - -
(dense layer: 128 units) x 3 H

dense layer (output): 1 unit

29



Transfer Learning vs Regular CWolLa

Significance after NN cut
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Transfer Learning vs

Regular CWolL.a
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Augmentation Methods

 While there are numerous augmentation methods in the field of computer vision,

we focus on physics-inspired techniqgues related to our study. Wang et al 2024
Dillon, Favaro, Feiden, Modak, and Plehn 2024

* Considering augmentations that capture the symmetries of the physical events
and the experimental resolution or statistical fluctuations in the detector, we
Implement three methods:

 pr (transverse momentum) smearing;

e jet rotation; and

e a combination of the two.

32



pr Smearing and Jet Rotation Methods

» The pr smearing method is used to simulate detector resolution/fluctuation
effects on the transverse momentum of jet constituents, achieved by resampling

the pr of jet constituents according to the normal distribution:

pr ~ N (pr, f(pr)), f(pT)= \/0-0521?% + 1.002p7
where p; is the augmented transverse momentum, and f (pT) IS the energy

smearing function applied by Delphes (with pr normalized in units of GeV).

* The jet rotation method rotates each jet with respect to its center by a random
angle 0 € |—r, x| to enlarge the diversity of training datasets.

» We have tested other ranges of jet rotation angles, including [—z/6,7/6],

|—n/3,7/3], and |—x/2,7x/2].
w the training performance improves as the range of rotation angles increases
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Example of A Jet Image
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Sensitivity Improvement
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Sensitivity Improvement

Ep = 1%

30 b
= No aug.
O | e p_l_ Smearlng . .
= | - Jet rotation jet rotarior fl i duced
Z 50 more effective | fluctuations reduce
. ——- pr-rot than py smearing.~” to about a half
e .
(O
ha)
> 10- new learning
+ threshold
4. | TI-
m ................. TR / Ol’lglna| CWOLa.

0] — | = " ™ learning threshold
0 2 4 6

Sensitivity before NN cut

ID; Ap = 10 GeV Chen, CWC, Hsieh 2024

35



Dependence on Augmentation Size
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Dependence on Augmentation Size

Sensitivity after NN cut
U1
-

—

1N
—

o
<

N
<

-
<

£, = 1%
Full supervision
No aug.
.......... _|_5

+10 optimal NN
performance as

+20 a benchmark

“‘
.

.
“

improving with

——sample size, but

not linearly

2 4
Sensitivity before NN cut

ID; A, = 10 GeV

36

Chen, CWC, Hsieh 2024



Asymptotic Behavior of Augmentation Size
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Asymptotic Behavior of Augmentation Size
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Summary

 Weak supervision (e.g., CWola) has the advantages of being able to train on
real data and of exploiting distinctive signal properties.
w jdeal tools for anomaly searches
w fail when signals are limited

* We propose to use the transfer learning (TL) technique and show that it can
drastically improve the performance of CWol.a searches, particularly in the low-
significance region, and that the amount of signal required for discovery can be
reduced by a factor of a few (because of better identification of signals).

* We also propose using the data augmentation technigue and show that jet

rotation is more effective than p; smearing, that a mere +5 augmentation can
already achieve great results.
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