International Workshop on New Opportunities for Particle Physics 2025 @ IHEP July 19, 2025

Weak Supervision Techniques in Collider Physics

Cheng-Wei Chiang
National Taiwan University
National Center for Theoretical Sciences

Refs:

CWC, David Shih and Shang-Fu Wei, PRD 107, 016014 (2023) Hugues Beauchesne, Zong-En Chen, and CWC, JHEP 02 (2024) 138 Zong-En Chen, CWC, and Feng-Yang Hsieh, 2412.00198

Outline

- Introduction
- Full supervision an example
- Weak supervision CWoLa
- Dark valley model a physical model
- Transfer learning
- Data augmentation
- Summary

Outline

- Introduction
- Full supervision an example
- Weak supervision CWoLa
- Dark valley model a physical model
- Transfer learning
- Data augmentation
- Summary

Revolution is Driven by New Tools

"New directions in science are launched by **new tools** much more often than by **new concepts**. The effect of a concept-driven revolution is to explain old things in new ways. The effect of a tool-driven revolution is to discover new things that have to be explained."

Freeman J. Dyson, *Imagined Worlds* Harvard University Press (1998)

Machine Learning

- Machine learning (ML) is a new tool used for large-scale data processing and well-suited for complex datasets with huge numbers of variables and features (patterns and regularities), especially for deep learning neural networks (NNs).
- The Universal Theorem: any function can be approximated by a neural network with at least one hidden layer.

Types of Machine Learning

Fully supervised learning

Training data with labels (e.g., recognizing photos of cats and dogs)

Unsupervised learning

• Training data without labels (e.g., analyzing and clustering unlabeled datasets)

Reinforced learning

Data from interactions with the environment (e.g., chess and Go games)

Types of Machine Learning

Fully supervised learning

Training data with labels (e.g., recognizing photos of cats and dogs)

Unsupervised learning

• Training data without labels (e.g., analyzing and clustering unlabeled datasets)

Reinforced learning

• Data from interactions with the environment (e.g., chess and Go games)

Weakly supervised learning

 Training data whose labeling is infeasible, imperfect, difficult, or expensive (e.g., medical imaging, identifying celestial objects from low-quality telescope images, anomaly searches)

Outline

- Introduction
- Full supervision an example
- Weak supervision CWoLa
- Dark valley model a physical model
- Transfer learning
- Data augmentation
- Summary

VBF/GGF Higgs Production

- Questions:
 - For each detected Higgs event, how can we efficiently and correctly determine/label its production mechanism?
 - Can it be independent of how the Higgs boson decays?

Distributions of BDT Input Variables

A Higgs to Diphoton Event

Event-CNN

- Train a **convolutional neural network** (CNN) by **full supervision** to discriminate the two production mechanisms by examining the final-state image.
- A successful training typically requires at least tens of thousands of samples.

	training	validation	testing
VBF events	105k	26k	33k
GGF events	83k	21k	26k

Comparison of Classifiers

the human-engineered jet

shape variables

Outline

- Introduction
- Full supervision an example
- Weak supervision CWoLa
- Dark valley model a physical model
- Transfer learning
- Data augmentation
- Summary

- Particle experimentalists deal with real data collected by detectors around colliders.
 - just like analyzing real images for CS people
 - even current multivariate approaches for classification rely on simulations and must be corrected later on using data-driven techniques

- Particle experimentalists deal with real data collected by detectors around colliders.
 - just like analyzing real images for CS people
 - even current multivariate approaches for classification rely on simulations and must be corrected later on using data-driven techniques

https://www.catbreedslist.com/stories/ what-breed-of-cat-is-garfield.html

- Particle experimentalists deal with **real data** collected by detectors around colliders.
 - just like analyzing real images for CS people
 - even current multivariate approaches for classification rely on simulations and must be corrected later on using data-driven techniques

https://www.catbreedslist.com/stories/what-breed-of-cat-is-garfield.html

- As particle theorists, we think we are simulating verisimilar data using various packages.
 - in fact, we have been generating fake data all along
 - problems: fixed-order in perturbation (e.g., CalcHEP, MadGraph), model-dependent showering/hadronization (e.g., Pythia, Herwig), crude detector simulations (e.g., Delphes)

- Particle experimentalists deal with **real data** collected by detectors around colliders.
 - just like analyzing real images for CS people
 - even current multivariate approaches for classification rely on simulations and must be corrected later on using data-driven techniques

https://www.catbreedslist.com/stories/ what-breed-of-cat-is-garfield.html

- As particle theorists, we think we are simulating verisimilar data using various packages.
 - in fact, we have been generating fake data all along
 - problems: fixed-order in perturbation (e.g., CalcHEP, MadGraph), model-dependent showering/hadronization (e.g., Pythia, Herwig), crude detector simulations (e.g., Delphes)

https://en.wikipedia.org/wiki/ Garfield_(character)

- Use a generative adversarial network (so-called GAN). Louppe, Kagan, Cranmer 2016
 - can alleviate model dependence during training, but at the cost of algorithmic performance and computational resources

- Use a generative adversarial network (so-called GAN). Louppe, Kagan, Cranmer 2016
 - can alleviate model dependence during training, but at the cost of algorithmic performance and computational resources
- It would be nice to train directly using real data.
 - but real data are unlabeled...

- Use a generative adversarial network (so-called GAN). Louppe, Kagan, Cranmer 2016
 - can alleviate model dependence during training, but at the cost of algorithmic performance and computational resources
- It would be nice to train directly using real data.
 - but real data are unlabeled...
- Introduce classification without labels (CWoLa).

 Metodiev, Nachman, Thaler 2017
 - belonging to a broad framework called weak supervision, whose goal is to learn from partially and/or imperfectly labeled data Herna'ndez-Gonz'alez, Inza, Lozano 2016
 - first weak supervision application in particle physics for **quark vs gluon** tagging using *only* **class proportions** during training; shown to match the performance of fully supervised algorithms

 Dery, Nachman, Rubbo, Schwartzman 2017

A Theorem for CWoLa

- Let \vec{x} represent a list of observables or an image, used to distinguish signal S from background B, and define:
 - $p_S(\vec{x})$: probability distribution of \vec{x} for the signal,
 - $p_B(\vec{x})$: probability distribution of \vec{x} for the background.

Metodiev, Nachman, Thaler 2017

• Given mixed samples M_1 and M_2 defined in terms of pure events of S and B (both being *identical* in the two mixed samples) using

$$p_{M_1}(\vec{x}) = f_1 p_S(\vec{x}) + (1 - f_1) p_B(\vec{x})$$
$$p_{M_2}(\vec{x}) = f_2 p_S(\vec{x}) + (1 - f_2) p_B(\vec{x})$$

with **different** signal fractions $f_1 > f_2$, an **optimal classifier** (most powerful test statistic) trained to distinguish samples in M_1 and M_2 is also **optimal** for distinguishing S from B.

Proof

• The *optimal classifiers* to distinguish examples drawn from p_{M_1} and p_{M_2} and to distinguish examples drawn from p_S and p_B are, respectively, the likelihood ratios

$$L_{M_1/M_2}(\vec{x}) = \frac{p_{M_1}(\vec{x})}{p_{M_2}(\vec{x})} \quad \text{and} \quad L_{S/B}(\vec{x}) = \frac{p_S(\vec{x})}{p_B(\vec{x})} \quad \text{-Neyman-Pearson lemma}$$

• Where p_R has support, these two likelihood ratios are related:

$$L_{M_1/M_2} = \frac{p_{M_1}}{p_{M_2}} = \frac{f_1 p_S + (1 - f_1) p_B}{f_2 p_S + (1 - f_2) p_B} = \frac{f_1 L_{S/B} + (1 - f_1)}{f_2 L_{S/B} + (1 - f_2)} = \frac{f_1 \left(L_{S/B} - 1\right) + 1}{f_2 \left(L_{S/B} - 1\right) + 1}$$

which is a monotonically increasing function of $L_{S/R}$ as long as $f_1 > f_2$, since

$$\frac{\partial L_{M_1/M_2}}{\partial L_{S/B}} = \frac{f_1 - f_2}{\left(f_2 L_{S/B} - f_2 + 1\right)^2} > 0$$

- If $f_1 < f_2$, then one obtains the *reversed* classifier.
 - $L_{S/B}$ and L_{M_1/M_2} are effectively equivalent classifiers

Remarks

- An important feature of CWoLa is that, unlike the **learning from label proportions** (**LLP**) weak supervision, the label proportions f_1 and f_2 are **not required** for training as long as they are **different**.
- This theorem only guarantees that the optimal classifier from CWoLa, if reached, is the same as the optimal classifier from fully-supervised learning.
- Just like most cases, successful training for CWoLa also requires a large amount of samples.
- What happens if available data for the mixed samples are insufficient or limited, as is often the case of real data for BSM searches?

Outline

- Introduction
- Full supervision an example
- Weak supervision CWoLa
- Dark valley model a physical model
- Transfer learning
- Data augmentation
- Summary

Dark Valley Model and Dark Jets

• Assume the existence of a dark confining sector that communicates with the visible sector via a heavy Z' portal:

dark quarks

$$\mathcal{L}\supset -Z'_{\mu}\left(g_q\overline{q_i}\gamma^{\mu}q_i+g_{q_D}\overline{q_{D\alpha}}\gamma^{\mu}q_{D\alpha}\right)$$
 respective effective coupling constants

- For our purposes here, we
 - consider Z' couplings to the d-quarks only, though other SM particles are also possible;
 - give Z' a mass without specifying its source;
 - will not worry about such issues as anomaly cancellation and $Z-Z^\prime$ mixing.

Courtesy of Hugues Beauchesne

• The LHC signature is a pair of dark jets with invariant mass consistent with $m_{Z^{\prime}}$.

Dark Sector Parameter Choices

- The Z' mass is fixed at 5.5 TeV, and its width is fixed at 10 GeV.
 invariant mass of the two leading jets being around 5.2 TeV (with some
 - constituents falling outside the reconstructed jets)
- The dark confining scale $\Lambda_D \in \{1, 5, 10, 20, 30, 40, 50\}$ GeV.
- Dark vector ρ_D and pseudoscalar π_D masses and two (prompt) decay scenarios:

$$\frac{m_{\rho_D}}{\Lambda_D} = \sqrt{5.76 + 1.5 \frac{m_{\pi_D}^2}{\Lambda_D^2}} \tag{Albouy et al 2022}$$

- Indirect Decay (ID): $\rho_D \to \pi_D \pi_D$ followed by $\pi_D \to d\bar{d}$ for $m_{\pi_D}/\Lambda_D = 1.0$
- Direct Decay (DD): $\rho_D,~\pi_D\to d\bar{d}$ for $m_{\pi_D}/\Lambda_D=1.8$
- Totally 14 "models" from different combinations of the above parameters.

Dijet Invariant Mass Distributions

SR: signal region
SB: side-band region

two mixed samples (M_1) and M_2) with different
signal/background fractions

Probability distributions of signal and background events are assumed to be the same in both SR and SB, which should be valid to a good approximation.

Figure 1. Dijet invariant mass distributions for the indirect decaying scenario with $\Lambda_D = 10 \,\text{GeV}$ and for the SM background. Distributions are normalized to unity. Both signal and background satisfy the selection criteria of table 1(b) except for the SR or SB conditions.

Convolutional + Dense Layers

- Prepare each jet image in three resolutions: 25×25 , 50×50 , 75×75 .
- Use the images of the two leading jets as input data.
- Pass each image through a **common** CNN*, and each returns a score $\in [0,1]$.
- Take the product of these two scores as the output of the full NN.

^{*} All NNs are implemented using Keras with TensorFlow backend. Also, using two distinct networks for the two jets would give slightly inferior results, possibly caused by the lack of signal.

Convolutional + Dense Layers

- The convolutional part of the NN is referred to as the **feature extractor**, and its weights and biases are collectively labeled as Θ .
 - to be transferred later
- The dense layer part of the NN is referred to as the **classifier**, and its weights and biases of the dense layers are collectively labeled as θ .
 - to be fine-tuned later

Results of Regular CWoLa

Beauchesne, Chen, CWC 2024

Results of Regular CWoLa

Beauchesne, Chen, CWC 2024

below learning thresholds, NN fails to learn from data as it cuts background and signal indiscriminately

Outline

- Introduction
- Full supervision an example
- Weak supervision CWoLa
- Dark valley model a physical model
- Transfer learning
- Data augmentation
- Summary

Introduction to Transfer Learning

- The phrase "transfer learning (TL)" comes from psychology.
 - a learner new to a fresh topic (e.g., riding a motorcycle or playing guitar) typically has a higher learning threshold, while a learner experienced in related topics (e.g., riding a bicycle or playing violin) usually has less difficulty in quickly picking it up
- As an ML technique, TL reuses a **pre-trained model** developed for one task as the starting point of a new model for a new task.
 - transferring knowledge or experience extracted in the pre-trained model for a source task/domain to a new model for a target task/domain
 - weights from the pre-trained model used to initialize those of the new model
- TL would only be successful when the features learned from the first model trained on its task can be **generalized** and **transferred** and **fine-tuned** for the second task.

Transfer Learning by Pre-training and Fine-tuning

- Step 1: The NN is first trained to distinguish a sample of pure background from a pure combination of different signals, which includes all the models mentioned before (ID and DD, different values of Λ_D), except the benchmark on which the model will be tested.
 - pre-training on a large set of simulations as the source data
 - $^{"}$ 200k S and 200k B events in the SR for training
 - + 50k S and 50k B events for validation
 - \blacksquare training both Θ (from convolutional layers) and θ (from dense layers)

Transfer Learning by Pre-training and Fine-tuning

- **Step 2**: The NN is then trained to distinguish the mixed samples (i.e., the SR and SB regions) using the **actual** data of the benchmark signal (of the true model) plus the SM background.
 - fine-tuning on the small set of actual data as target data
 - freezing Θ in the convolutional layers and reinitializing and training θ in the dense layers
 - fixing the feature extraction part while training the classification part

Transfer Learning vs Regular CWoLa

Beauchesne, Chen, CWC 2024

Transfer Learning vs Regular CWoLa

Beauchesne, Chen, CWC 2024

amount of signal for a 50 discovery reduced by a factor of a few, due to the fact that NN can better reject backgrounds

Outline

- Introduction
- Full supervision an example
- Weak supervision CWoLa
- Dark valley model a physical model
- Transfer learning
- Data augmentation
- Summary

Augmentation Methods

- While there are numerous augmentation methods in the field of computer vision, we focus on **physics-inspired** techniques related to our study.

 Dillon, Favaro, Feiden, Modak, and Plehn 2024
- Considering augmentations that capture the symmetries of the physical events and the experimental resolution or statistical fluctuations in the detector, we implement three methods:
 - p_{T} (transverse momentum) smearing;
 - jet rotation; and
 - a combination of the two.

• Additionally, we have applied $\eta - \phi$ smearing and Gaussian noise to jet images and observed essentially no improvement.

p_{T} Smearing and Jet Rotation Methods

• The $p_{\rm T}$ smearing method is used to simulate **detector resolution/fluctuation** effects on the transverse momentum of jet constituents, achieved by resampling the $p_{\rm T}$ of jet constituents according to the **normal distribution**:

$$p'_{\rm T} \sim \mathcal{N}(p_{\rm T}, f(p_{\rm T})), \quad f(p_{\rm T}) = \sqrt{0.052p_{\rm T}^2 + 1.502p_{\rm T}}$$

where $p_{\rm T}'$ is the augmented transverse momentum, and $f(p_{\rm T})$ is the **energy** smearing function applied by <code>Delphes</code> (with $p_{\rm T}$ normalized in units of GeV).

- The jet rotation method rotates each jet with respect to its center by a **random** angle $\theta \in [-\pi, \pi]$ to enlarge the **diversity** of training datasets.
- We have tested other ranges of jet rotation angles, including $[-\pi/6,\pi/6]$, $[-\pi/3,\pi/3]$, and $[-\pi/2,\pi/2]$.
 - the training performance improves as the range of rotation angles increases

Example of A Jet Image

Sensitivity Improvement

$$\text{ID}; \Lambda_D = 10 \text{ GeV}$$

Sensitivity Improvement

ID;
$$\Lambda_D = 10 \text{ GeV}$$

Dependence on Augmentation Size

Dependence on Augmentation Size

Asymptotic Behavior of Augmentation Size

Asymptotic Behavior of Augmentation Size

ID;
$$\Lambda_D = 10 \text{ GeV}$$

Summary

- Weak supervision (e.g., CWoLa) has the advantages of being able to train on real data and of exploiting distinctive signal properties.
 - ideal tools for anomaly searches
 - fail when signals are limited
- We propose to use the **transfer learning** (TL) technique and show that it can **drastically improve** the performance of CWoLa searches, particularly in the **low-significance region**, and that the amount of signal required for discovery can be reduced by a factor of a few (because of better identification of signals).
- We also propose using the **data augmentation** technique and show that **jet rotation** is more effective than $p_{\rm T}$ **smearing**, that a mere **+5 augmentation** can already achieve great results.

Thank You!