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In recent years we've seen remarkable progress on the problem of
unlocking the hidden mathematical structure of quantum field
theories, both for its own sake (beauty) and for the desire to
develop new methods of practical importance for comparison of
theory to experiment (truth).
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unlocking the hidden mathematical structure of quantum field
theories, both for its own sake (beauty) and for the desire to
develop new methods of practical importance for comparison of
theory to experiment (truth).

My talk will have two short pieces

(1) an appetizer, with some recent mathematical developments on
tree amplitudes for gluons;

(2) a long motivational digression on why | think the “curve
integral formalism” of Arkani-Hamed, Frost, Plamondon, Salvatori,
Thomas intrigues me; this led us to generalize it from scalar ¢3
theory to introduce fermions with a Yukawa interaction (based on
work with Shounak De, Andrzej Pokraka, Marcos Skowronek and
Anastasia Volovich).
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This talk is more “adventurous” — hopefully thought-provoking —
than the other serious talks at this conference.

A fair criticism of my talk, and most of my work, is that it is about
formalism more than about physics.

Sometimes, very occasionally, new formalism can help us discover
new physics (example: Lagrangian mechanics);

more frequently (but, | confess, not always), it is at best useful
(sometimes, extremely useful) for better understanding “known”
physics.
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Open problem: prove the optimal upper bound on the complexity
of computing A, ,_, the (color-ordered) tree-level scattering
amplitude of n = ny + n_ massless particles with helicities +1
(i.e., gluons in Yang-Mills theory).

Motivation: A sort of true but (I acknowledge) misleading
statement: manipulating tree-level amplitudes still remains one of
the major bottlenecks in multi-loop computations relevant for
precision QCD.

Real Motivation: Is there something about the quantum field
theory of spin-one particles that we fundamentally do not
understand?



A Tree-Level Teaser

Comments: A, ,_ is a rational function of the spinor helicity
variables that describe the energy and momenta of the n-particle
configuration.

In fact, from physics we know where all of the possible poles are,
so if we define a rescaled amplitude

A~n+7n_ = H(l./>[lf] Af7+7"—

i<j

it is guaranteed to be a polynomial (c.f. Kosower's talk). So if we
want to capture the attention of a mathematician or computer
scientist, we can declare that all of our kinematic variables are
integers, then the amplitude is also an integer, and the problem of
computing this amplitude is the problem of evaluating a certain
function
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For fixed k this grows like n% but in the “worst” case, where
Ny ~ n_ as n — oo, it scales as 4.

The question of whether this is optimal depends crucially on special
properties of the polynomials/rational functions being added!

Looks can be deceiving: a famous example of a polynomial with n!
terms that can be computed in O(n3) time is the determinant.
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In arXiv:1906.10682 we (Mago, Schreiber, MS, Volovich)
conjectured a very specific form for the denominators ( “spurious
poles”) of these terms.

Specifically, the denominator of each term is a product of
compatible cluster variables of Gr(4, n).

This has recently been proven by mathematicians Even-Zohar,
Lakrec, Parisi, Sherman-Bennett, Tessler, Williams have recently
proven this to be correct, and Galashin has revealed a crazy but
beautiful direct connection between this problem and origami
folding.

I'm excited by the prospect that this problem has been put on solid
enough footing to attract the interest of serious mathematicians.
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Now let us turn to loop amplitudes, which are crucial for precision
physics analysis at collider experiments and which are computed by
summing Feynman diagrams and then integrating over loop
momenta.

What does it mean to “evaluate a loop integral”?

In practice, it often means to express it as a linear combination of
“known" special functions, like

Lin(x) = —/OX % In(1— 1)

but every special function is ultimately defined by an integral
representation and/or series expansion — even “trivial” things like
cos and log!

Here I'm putting on an unusually practical hat — imagining I'm
someone who wants to get digits of precision in order to compare
to some data.
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A practically minded person might be happy to consider a loop
integral to be evaluated if there is a fast algorithm for either (1)
writing down a rapidly convergent series expansion, around some
useful points or at least (2) processing it down into an integral
formula with as few integrations remaining as possible — then one
can define the things that appear as a new class of “special
functions” and consider the job done.
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A practically minded person might be happy to consider a loop
integral to be evaluated if there is a fast algorithm for either (1)
writing down a rapidly convergent series expansion, around some
useful points or at least (2) processing it down into an integral
formula with as few integrations remaining as possible — then one
can define the things that appear as a new class of “special
functions” and consider the job done.

In D spacetime dimensions, L-loop Feynman integrals are
expressible as

/dD€1 dPt, ... dP¢, [rational function of py,...,p, and {1, -]

— ﬁDL—d/dd)? [rational function of p1, ..., p, and X]

where p1, ..., p, are the momenta of the particles and d < DL/2
but there are two big things currently lacking.
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/dD€1 dPe,---dPe, [rational function of pi,...,p, and 4y, -]

= WDL_d/dd)? [rational function of p1, ..., p, and X]

(1) There is no general, efficient algorithm for processing a given
Feynman integral into an expression of the type shown on the
second line,

(2) There is no effective algorithm for determining if two
expressions of the type shown on the second line are equal to each
other.

That's a big problem because one can have a long expression,
resulting from a sum over many Feynman diagrams — maybe
gigabytes long — that integrates to something very simple, or even
to zero!
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One way in which problem (2) could, hypothetically, be solved, is:
consider the infinite set of different ways of writing a given integral

| = /dd)_(' [rational function of pi, ..., p, and X]

that differ from each other by combinations of arbitrary changes of
variables and/or integration by parts.

If there were an algorithm for picking, from among this infinite
dimensional equivalence class, a certain preferred representative —
let's suggestively call it a canonical form — then we could easily
compare whether two things are equal, or if some long combination
of objects sums to zero.



A Long Motivational Introduction

Aside: A period is a number that is the volume of some region in
R" carved out by polynomial inequalities with coefficients in Q.

Example:
T = / dx dy
R2:x24+y2<1

N C Z C Q C algebraic numbers C periods C transcendental numbers

Indeed, a giant open conjecture — far, far beyond our current
understanding of number theory — is that if two periods are equal
to each other, then there is an explanation for it: i.e., the two
defining integrals can be mapped into each other by some
combination of changes of variables and integration by parts (that
involve only algebraic numbers). (Kontsevich, Zagier) Problem (2)
mentioned above is a reflection of this...
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However, for one very special class of integrals that — luckily —
happens to be exactly the class that appears in many of the
simplest non-trivial Feynman integrals, such a “canonicalizing”
algorithm does exist!

These are the so-called generalized polylogarithm functions, and
the tool for unlocking their structure is called the symbol.
(Goncharov, Spradlin, Vergu, Volovich).
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that means all particles are in the adjoint representation of some
group (let’s say U(N)), but they can be massless or massive, and
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need to regulate IR or UV divergences).
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The curve integral formalism is applicable to any colored theory;

that means all particles are in the adjoint representation of some
group (let’s say U(N)), but they can be massless or massive, and
the spacetime dimension is arbitrary (so we can use dim reg if we
need to regulate IR or UV divergences).

It provides a combinatorial algorithm for writing down an
expression of the form

/d"+3(L1)f [rationat function of p1,. .., p, and t]

that represents the sum of all L-loop Feynman diagrams to the
n-particle amplitude. (One can restrict to planar, or any order in
the 1/N expansion.)

The complexity of computing the integrand is O(n?) rather than
O(4") as it would be for summing tri-valent Feynman graphs.



Curve Integrals

The complexity is O(n?) because the key ingredients that enter are
not individual Feynman diagrams, but curves that can be drawn on
a surface. For example, consider all non-planar Feynman diagrams
that contribute to the three-point amplitude shown here:

S

2

i b2

Individual Feynman diagrams correspond to triangulations of this
surface, but the curve integral (representing the sum over all
Feynman diagrams) can be written down by computing certain
quantities associated to compatible curves on the surface; the
curve from 1 to 3 is shown in purple.
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The 2-point 1-loop bubble diagram:

2
A(p?) —/ dty dt eXP< P (max(0, t)—t~max(0, 1))’
t1+t<0 i+t

+ m?(2max(0, to) + t1) — g log(t1 + t2))>

(1) Generalized from colored ¢* theory (scalars) to Yang-Mills
theory (gluons) by N. Arkani-Hamed, Q. Cao (CAS), J. Dong
(CAS), C. Figuereido and S. He (CAS);

(2) however, a big drawback of the fact that D is just a parameter
is that none of the very special technology (spinor helicity,
momentum twistors) specially tuned to D = 4 can help out here.
(3) The non-analytic integrand may frighten you, but there are
recently-developed techniques (tropical sampling; M. Borinsky) for
numerically evaluting integrals precisely of this type extremely fast
(see G. Salvatori's talk at Amplitudes 2025).



Colored Yukawa Theory

In order to take this formalism one step closer to the real world, in
arXiv:2406.04411 we should how to incorporate (adjoint) fermions
with Yukawa interactions: we gave an explicit formula for the curve
integral (sum of all Feynman diagrams, at any loop order and any
order in 1/N) involving certain determinants.

i X .
:0 :' Ty wmmmaa 3 L_._.@ d
R 3
______ —_ ——
Scalar fermion  charge flow

Each curve can be assigned to be either bosonic or fermionic; for
an L loop amplitude we must sum over the 2L possible assignments
(bosonic or fermionic) for each puncture.



Summary and Conclusion

Dramatic progress has been made in recent decades, but many
fundamental questions about the structure of quantum field theory
remain unsolved.

Seeking new formalisms may help to shed light on some of these
questions and perhaps some may even ultimately be useful!



