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Era of precision physics

➢High-precision data

• Many observables probed at 

precent level precision

• HL-LHC: 30 times more data

• Most processes: N2LO

• Many processes: N3LO

• Some processes: N4LO

➢QCD cor. requirement: 

ideally

https://inspirehep.net/literature/2055470
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Current status of perturbative calculation

➢Accomplished processes Legs
Order 2→1 2→2 2→3 2→4 2→5 2→6

NLO      

N2LO    ? ?

N3LO   ?

N4LO  ?

N5LO ?

Efficient methods for high-order computation are highly demanded!!!

• NLO solved, automatic codes exist: 

MadGraph, Helac, etc

• Need to push calculation to 1-2 

orders in 𝛼𝑠
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Feynman integrals computation

1) Integration-by-parts: Reduce loop integrals 

to basis (Master Integrals )

2) Compute MIs

➢A key obstacle in high-order computation

➢Mainstream method:
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Computation of MIs

Systematic and efficient for: both massless and massive MIs

But, all depend on reduction!!!

Canonical form: Henn, PRL2013 AMFlow: Liu, YQM, Wang, PLB2018

See also Yang Zhang’s talk

https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1016/j.physletb.2018.02.026
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Integration-by-parts reduction: the bottleneck!

➢The state-of-the-art IBP method: very challenging

• 4-loop DGLAP kernel cannot be obtained

• 𝐻 + 2𝑗 production: exact two-loop contribution is missing

• 𝐻 + 𝑡 ҧ𝑡 production: exact two-loop contribution is missing

Chen, et al., JHEP2022

➢ Improvements for IBPs

• Syzygy equations: trimming IBP system

• Block-triangular form: search simple IBP system
Liu, YQM, PRD2019

Guan, Liu, YQM, CPC2020

Blade: Guan, Liu YQM, Wu, 2405.14621

Improve efficiency 

by a hundredfold
≈ half  order in 𝛼𝑠

Need to calculate two more orders in 𝛼𝑠!    Ways to bypass IBP?

Gluza, Kajda, Kosower, PRD2011

Böhm, Georgoudis, Larsen, Schulze, Zhang, PRD2018

NeatIBP: Wu, et al. CPC2024

Catani, et al., PRL2023

See also David Kosower’s talk

https://doi.org/10.1007/JHEP03(2022)096
https://inspirehep.net/literature/1651462
https://inspirehep.net/literature/1771922
https://inspirehep.net/literature/2789587
https://inspirehep.net/literature/866930
https://inspirehep.net/literature/1645272
https://inspirehep.net/literature/2659772
https://doi.org/10.1103/PhysRevLett.130.111902
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Lessons after many-years study

➢Reduction is very hard, no matter using any method

• IBP

• Intersection number

• Asymptotic expansion

• Iterative reduction

• …

Conservation of  suffering!

Unless a deeper understanding of  FIs?

See also Hjalte Axel Frellesvig’s talk

➢The reason: too many integration variables 
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A possible simplification?

• 𝑈: degree 𝐿 in the Feynman parameters 𝑥𝑖

• 𝐹: degree 𝐿 + 1

➢Feynman parametrization

➢Will things be simpler if  we fix 𝑈 unintegrated?

𝑋𝑎: the summation of  Feynman parameter for the 𝑎-th branch

End of 2023
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A surprising observation!

• Because 𝐹 is then degree 2 (explain later)

• Integrand can be computed easily

➢The integrands are as simple as one-loop FIs!

➢Much less unintegrated parameters!

L.H. Huang, R.J. Huang, YQM, 2412.21053

• 2 loops: 𝐵 − 1 = 2

• 3 loops: 𝐵 − 1 = 5

A new representation

https://arxiv.org/pdf/2412.21053
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Definition

• With

➢An 𝑳-loop amplitude

• Two propagators are in the same branches if  they have identical:

• B: number of  branches

• 𝑛1, ⋯ , 𝑛𝑏 ,⋯ , 𝑛𝐵: number of  propagators in each branch 

• Corresponding between 𝛼 and (𝑏, 𝑖)
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Feynman parametrization

➢First combine denominators in each branch, then combine them

• With:
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Feynman parametrization(cont.)

➢The denominator

• 𝐴 is independent of  𝒚! 𝐵 and 𝐶 are linear in 𝒚

• Define:

independent of  𝑦
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A new representation

➢Formula after straightforwardly integrated out loop momenta

• Δ =
LD

2
, 𝐾’s are rational in 𝑿

• Fixed-Branch Integrals (FBIs) defined as

• The same as one-loop integrals, except for more delta functions
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Compute FBIs: from matrix 𝑹 to matrix 𝑺

➢Add a line for each branch; number of 1’s equals to 𝑛𝑏

• E.g.,

Generalized Gram matrix
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Reduction relations for FBIs

➢Recursion relation

➢Dimension-shift relation

• With 𝑧0 = 0 or 1 depending on generalized Gram determinant det 𝑆 = 0 or not

• Other parameters determined by 

• With 𝑡𝑏 determined by the equation itself

• Choose 𝐶 = σ𝑏=1
𝐵 𝐶𝑏 as nonzero as possible
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Reduction: 4 different cases

➢FBIs have at most one master integral in each sector

using recursion relation, leaving one master integral

2-4: no master integral
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Compute master integrals of FBIs - numerical

➢Using auxiliary mass flow method:

• Equivalent to 𝑅𝛼𝛽 → 𝑅𝛼𝛽 + 2𝜂/𝐵2, thus have 

• Solve it with 𝜂 → ∞ as boundary condition  

• Using Dimension-Change Transformation to obtain desired FBIs Huang, Jian, YQM, Mu, Wu,PRD2025

https://doi.org/10.1103/PhysRevD.111.094028
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Compute master integrals of FBIs - analytical

➢Canonical form are obtained for all cases, e.g., Chen, Feng, Zhang, JHEP2025

➢Enabling the analytical computation of FBIs, like one-loop cases

https://doi.org/10.1007/JHEP06(2025)245
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Comparison

➢One-loop FIs: a special case of FBIs, with 𝐵 = 1

➢𝐵 is an unimportant parameter in the computation of FBIs 

➢FBIs are as simple as one-loop FIs, thus a solved problem
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Numerical method: contour deformation

➢ Integral with known integrand

➢Contour deformation to avoid divergences

• Adjust parameters

• Subtract out divergences

• Then use existed techniques to perform integration

Avoid IBP reduction!
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Numerical method: contour deformation

DCT/pt (ms) 0.14 0.19 0.34 0.76 2.91

#points
726

=121*6
726 726 726

12826
=121*106

• To obtain 6-digit precision using Adaptive Gausian-Kronrod Rule 

with degree 5 (11*11=121 points)
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Numerical method: contour deformation

Method precision time (hour)

pySecDec

3 3

5 108

AMFlow 20 4

New method 6 0.01

• Computing to 𝑂(𝜖)

• AMFlow computes all MIs, the other two methods only compute the corner integral

• Much faster than previous methods

• Note: by combining DCT, we can in fact avoid contour deformation To appear soon!
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Analytical method: Reduction

• Only 3 layers at two loop order

• More efficient

➢Combining with intersection theory

➢Combining with 1/D expansion

• 2 loops: simplifying ~𝑂(𝑛10) to ~𝑂(𝑛2)

• 3 loops: simplifying ~𝑂(𝑛10) to ~𝑂(𝑛5)

• 𝑛~𝑂(100) is the terms to be obtained, Power: the 

number of  integration parameters

• More efficient

Improve reduction!

To appear soon!
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Summary and outlook

➢ Reveal a deep structure of  FIs: simple integrand followed by 

integration over a few variables:

Thank you！

2 for two-loop, and 5 for three-loop: independent of  number of  external legs!

➢ The integrand (FBIs) can be fully solved, similar to one-loop FIs

➢Optimistic to overcome multi-leg FIs computation beyond one-

loop, and  to meet the requirement of  high-precision LHC data

➢ All previous FIs techniques can be applied to resolve the 

remained integration
Either fully numerically, or via reduction + computing MIs

Stay tuned!


