Tame multi-leg Feynman integrals beyond one loop

Yan-Qing Ma (Peking University)
yqma@pku.edu.cn

International Workshop on New Opportunities for Particle Physics 2025 IHEP, 2025/07/18-20

Based on works: L.H. Huang, R.J. Huang, Y.Q. Ma, arXiv: 2412.21053 R.J. Huang, D.S. Jian, Y.Q. Ma, D.M. Mu, W.H. Wu, arXiv: 2412.21054

Outline

I. Introduction

II. A new representation

III. Calculate FBIs

IV. Integrate branch variables

V. Summary and outlook

Era of precision physics

> High-precision data

- Many observables probed at precent level precision
- HL-LHC: 30 times more data

QCD cor. requirement: ideally

Most processes: N2LO

Many processes: N3LO

Some processes: N4LO

Current status of perturbative calculation

> Accomplished processes

- NLO solved, automatic codes exist:
 MadGraph, Helac, etc
- Need to push calculation to 1-2 orders in α_s

Legs Order	2 → 1	2→2	2→3	2→4	2→5	2→6
NLO	***	***	***	***	***	***
N2LO	***	**	*	?	?	
N3LO	**	*	?			
N4LO	*	?				
N5LO	?					

Efficient methods for high-order computation are highly demanded!!!

Feynman integrals computation

- > A key obstacle in high-order computation
- > Mainstream method:
 - 1) Integration-by-parts: Reduce loop integrals to basis (Master Integrals)

$$\sum_{\vec{\nu}'} Q_{\vec{\nu}'}^{\vec{\nu}jk}(D, \vec{s}) I_{\vec{\nu}'}(D, \vec{s}) = 0$$

2) Compute MIs

Computation of MIs

Canonical form: Henn, PRL2013

AMFlow: Liu, YQM, Wang, PLB2018

See also Yang Zhang's talk

Systematic and efficient for: both massless and massive MIs

But, all depend on reduction!!!

Integration-by-parts reduction: the bottleneck!

> The state-of-the-art IBP method: very challenging

- 4-loop DGLAP kernel cannot be obtained
- H + 2j production: exact two-loop contribution is missing Chen, et al., JHEP2022
- $H + t\bar{t}$ production: exact two-loop contribution is missing Catani, et al., PRL2023

> Improvements for IBPs

Syzygy equations: trimming IBP system See also David Kosower's talk

Gluza, Kajda, Kosower, PRD2011 Böhm, Georgoudis, Larsen, Schulze, Zhang, PRD2018 NeatIBP: Wu, et al. CPC2024

Block-triangular form: search simple IBP system

Liu, YQM, PRD2019 Guan, Liu, YQM, CPC2020 Blade: Guan, Liu YQM, Wu, 2405.14621 Improve efficiency

by a hundredfold

 \approx half order in α_s

Need to calculate two more orders in α_s ! Ways to bypass IBP?

Lessons after many-years study

- > Reduction is very hard, no matter using any method
 - IBP
 - Intersection number See also Hjalte Axel Frellesvig's talk
 - Asymptotic expansion
 - Iterative reduction
 - •
- > The reason: too many integration variables

Conservation of suffering!

Unless a deeper understanding of FIs?

Outline

I. Introduction

II. A new representation

III. Calculate FBIs

IV. Integrate branch variables

V. Summary and outlook

A possible simplification?

> Feynman parametrization

$$J(\vec{\nu}; D) = (-1)^{N_{\nu}} \frac{\Gamma(N_{\nu} - LD/2)}{\Gamma(\nu_{1}) \cdots \Gamma(\nu_{K})} \int \prod_{i=1}^{K} (x_{i}^{\nu_{i}-1} dx_{i}) \delta(1-X) \frac{\mathcal{U}^{N_{\nu}-(L+1)D/2}}{\mathcal{F}^{N_{\nu}-LD/2}}$$

- U: degree L in the Feynman parameters x_i
- F: degree L+1

$$\mathcal{U} = \sum_{T \in T(G)} \prod_{e_i \notin T} x_i$$

> Will things be simpler if we fix U unintegrated?

 $J(\vec{\nu}; D) = \int [d\mathbf{X}] \prod_{a=1}^{B} X_a^{\nu_a - 1} \mathcal{U}^{\nu - \frac{(L+1)D}{2}} I_{\vec{\nu}}^{\frac{LD}{2}}(\vec{X})$

 X_a : the summation of Feynman parameter for the a-th branch

A surprising observation!

L.H. Huang, R.J. Huang, YQM, 2412.21053

> The integrands are as simple as one-loop FIs!

$$J(\vec{\nu}; D) = \int [d\mathbf{X}] \prod_{a=1}^{B} X_a^{\nu_a - 1} \mathcal{U}^{\nu - \frac{(L+1)D}{2}} I_{\vec{\nu}}^{\frac{LD}{2}} (\vec{X})$$

A new representation

- Because F is then degree 2 (explain later)
- Integrand can be computed easily
- > Much less unintegrated parameters!
 - **2 loops:** B 1 = 2
 - 3 loops: B 1 = 5

Definition

> An L-loop amplitude

$$\mathcal{M} \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D} l_{i}}{\mathrm{i} \pi^{D/2}} \frac{P(l)}{\mathcal{D}_{1}^{\nu_{1}} \cdots \mathcal{D}_{N}^{\nu_{N}}},$$

$$\mathcal{D}_{\alpha} = \sum_{i,j=1}^{L} \hat{\mathcal{A}}_{ij}^{\alpha} l_{i} \cdot l_{j} + 2 \sum_{i=1}^{L} \hat{\mathcal{B}}_{i}^{\alpha} \cdot l_{i} + \hat{\mathcal{C}}^{\alpha}$$

- Two propagators are in the same branches if they have identical: $\hat{\mathcal{A}}_{i,j}^lpha \; ext{and} \; \hat{\mathcal{A}}_{i,j}^eta$
- B: number of branches
- $n_1, \dots, n_b, \dots, n_B$: number of propagators in each branch
- Corresponding between α and (b, i)

Feynman parametrization

> First combine denominators in each branch, then combine them

$$\frac{1}{\mathcal{D}_{1}^{\nu_{1}} \cdots \mathcal{D}_{N}^{\nu_{N}}} \equiv \prod_{b=1}^{B} \prod_{i=1}^{n_{b}} \frac{1}{\mathcal{D}_{(b,i)}^{\nu_{(b,i)}}} = \frac{\Gamma(\nu)}{\prod_{\alpha=1}^{N} \Gamma(\nu_{\alpha})} \int_{0}^{\infty} \left[d\mathbf{X} \right] \left[d\mathbf{y} \right] \frac{\prod_{b=1}^{B} X_{b}^{\nu_{b}-1} \prod_{\alpha=1}^{N} y_{\alpha}^{\nu_{\alpha}-1}}{\left(\sum_{b=1}^{B} \sum_{i=1}^{n_{b}} X_{b} y_{(b,i)} \mathcal{D}_{(b,i)} \right)^{\nu_{a}}}$$

• With:
$$\nu_b = \sum_{i=1}^{n_b} \nu_{(b,i)}, \ \nu = \sum_{\alpha=1}^{N} \nu_{\alpha}$$

$$[d\mathbf{X}] = \prod_{b=1}^{B} dX_b \delta \left(1 - \sum_{b=1}^{B} X_b \right), \quad [d\mathbf{y}] \equiv \prod_{\alpha=1}^{N} dy_\alpha \prod_{b=1}^{B} \delta \left(1 - \sum_{i=1}^{n_b} y_{(b,i)} \right)$$

Feynman parametrization(cont.)

> The denominator

$$[d\mathbf{y}] \equiv \prod_{\alpha=1}^{N} dy_{\alpha} \prod_{b=1}^{B} \delta \left(1 - \sum_{i=1}^{n_b} y_{(b,i)} \right)$$

$$\sum_{b=1}^{B} \sum_{i=1}^{n_b} X_b y_{(b,i)} \mathcal{D}_{(b,i)} = \sum_{i,j=1}^{L} \mathcal{A}_{ij} \ l_i \cdot l_j + 2 \sum_{i=1}^{L} \mathcal{B}_i \cdot l_i + \mathcal{C}$$

- A is independent of y! B and C are linear in y
- Define:

$$\mathcal{U} = \det\left(\mathcal{A}\right), \ \ \text{independent of } y$$

$$\mathcal{F} = \left(\mathcal{B}_{\mu}\right)^{T} \mathcal{A}^{adj} \mathcal{B}^{\mu} - \mathcal{C} \det\left(\mathcal{A}\right) = \frac{1}{2} \sum_{\alpha,\beta=1}^{N} R_{\alpha\beta} \ y_{\alpha} y_{\beta} = \frac{1}{2} \mathbf{y}^{T} \cdot R \cdot \mathbf{y}$$

$$\widehat{y}_{(b,i)} \to y_{(b,i)} \times 1 = y_{(b,i)} \sum_{j} y_{(b,j)}$$

A new representation

> Formula after straightforwardly integrated out loop momenta

$$\mathcal{M} = \int [d\mathbf{X}] \,\hat{\mathcal{M}} (\mathbf{X}) \qquad \qquad \hat{\mathcal{M}} (\mathbf{X}) = \mathcal{U}^{-\frac{(L+1)D}{2}} \sum_{\Delta, \vec{\nu}'} K_{\vec{\nu}'}^{\Delta} (\mathbf{X}) \, I_{\vec{\nu}'}^{\Delta} (\mathbf{X})$$

- $\Delta = \frac{LD}{2}$, K's are rational in X
- Fixed-Branch Integrals (FBIs) defined as

$$I_{\vec{\nu}}^{\Delta}(\mathbf{X}) = \frac{(-1)^{\nu} \Gamma(\nu - \Delta)}{\prod_{\alpha=1}^{N} \Gamma(\nu_{\alpha})} \int [d\mathbf{y}] \frac{\prod_{\alpha=1}^{N} y_{\alpha}^{\nu_{\alpha} - 1}}{\left(\frac{1}{2} \mathbf{y}^{T} \cdot R \cdot \mathbf{y} - i0^{+}\right)^{\nu - \Delta}}$$

The same as one-loop integrals, except for more delta functions $[d\mathbf{y}] \equiv \prod^N \mathrm{d} y_\alpha \prod^B \delta \left(1 - \sum^{n_b} y_{(b,i)}\right)$

$$[\mathbf{d}\mathbf{y}] \equiv \prod_{\alpha=1}^{N} \mathbf{d}y_{\alpha} \prod_{b=1}^{B} \delta \left(1 - \sum_{i=1}^{n_b} y_{(b,i)} \right)$$

Outline

I. Introduction

II. A new representation

III. Calculate FBIs

IV. Integrate branch variables

V. Summary and outlook

Compute FBIs: from matrix R to matrix S

 \triangleright Add a line for each branch; number of 1's equals to n_b

• E.g., if
$$B = 3$$
 and $(n_1, n_2, n_3) = (2, 1, 1)$

$$S = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0_{3\times3} & 0 & 0 & 1 & 0 \\ & & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & & & \\ 1 & 0 & 0 & & & \\ 0 & 1 & 0 & & & \\ 0 & 0 & 1 & & & \end{pmatrix}$$

Generalized Gram matrix

Reduction relations for FBIs

> Recursion relation

$$S \cdot (t_1, \dots, t_B, \nu_1 I_{\vec{\nu} + \vec{e}_1}^{\Delta}, \dots, \nu_N I_{\vec{\nu} + \vec{e}_N}^{\Delta})^T = (-I_{\vec{\nu}}^{\Delta - 1}, \dots, -I_{\vec{\nu}}^{\Delta - 1}, I_{\vec{\nu} - \vec{e}_1}^{\Delta - 1}, \dots, I_{\vec{\nu} - \vec{e}_N}^{\Delta - 1})^T$$

With t_b determined by the equation itself

> Dimension-shift relation

$$CI_{\vec{\nu}}^{\Delta-1} = (2\Delta - \nu - B) z_0 I_{\vec{\nu}}^{\Delta} + \sum_{\alpha=1}^{N} z_{\alpha} I_{\vec{\nu} - \vec{e}_{\alpha}}^{\Delta-1}$$

- With $z_0 = 0$ or 1 depending on generalized Gram determinant $\det S = 0$ or not
- Other parameters determined by

$$S \cdot (C_1, \dots, C_B, z_1, \dots, z_N)^T = (z_0, \dots, z_0, 0, \dots, 0)^T$$

• Choose $C = \sum_{b=1}^{B} C_b$ as nonzero as possible

Reduction: 4 different cases

> FBIs have at most one master integral in each sector

1. $\det(S) \neq 0$ and $C \neq 0$: using recursion relation, leaving one master integral

2.
$$\det(S) \neq 0$$
 and $C = 0$: $(2\Delta - \nu - B) I_{\vec{\nu}}^{\Delta} = -\sum_{\alpha=1}^{N} z_{\alpha} I_{\vec{\nu} - \vec{e}_{\alpha}}^{\Delta - 1}$
3. $\det(S) = 0$ and $C \neq 0$: $CI_{\vec{\nu}}^{\Delta - 1} = \sum_{\alpha=1}^{N} z_{\alpha} I_{\vec{\nu} - \vec{e}_{\alpha}}^{\Delta - 1}$
4. $\det(S) = 0$ and $C = 0$: $I_{\vec{\nu}}^{\Delta} = -\sum_{\alpha \neq \beta} \frac{z_{\alpha}}{z_{\beta}} I_{\vec{\nu} + \vec{e}_{\beta} - \vec{e}_{\alpha}}^{\Delta}$

3.
$$\det(S) = 0$$
 and $C \neq 0$: $CI_{\vec{\nu}}^{\Delta - 1} = \sum_{\alpha = 1} z_{\alpha} I_{\vec{\nu} - \vec{e}_{\alpha}}^{\Delta - 1}$

4.
$$\det(S) = 0$$
 and $C = 0$: $I_{\vec{\nu}}^{\Delta} = -\sum_{\alpha \neq \beta} \frac{z_{\alpha}}{z_{\beta}} I_{\vec{\nu} + \vec{e}_{\beta} - \vec{e}_{\alpha}}^{\Delta}$

2-4: no master integral

Compute master integrals of FBIs - numerical

> Using auxiliary mass flow method:

$$\mathcal{I}_{\vec{\nu}}^{\Delta}(\eta) = \frac{(-1)^{\nu} \Gamma(\nu - \Delta)}{\prod_{\alpha=1}^{N} \Gamma(\nu_{\alpha})} \int [d\mathbf{y}] \frac{\prod_{\alpha=1}^{N} y_{\alpha}^{\nu_{\alpha} - 1}}{\left(\frac{1}{2} \mathbf{y}^{T} \cdot R \cdot \mathbf{y} + \eta\right)^{\nu - \Delta}}$$

• Equivalent to $R_{\alpha\beta} \to R_{\alpha\beta} + 2\eta/B^2$, thus have

$$(2z_0\eta - C)\frac{\mathrm{d}}{\mathrm{d}\eta}\mathcal{I}^{\Delta}_{\vec{\nu}}(\eta) = (2\Delta - \nu - B)z_0\mathcal{I}^{\Delta}_{\vec{\nu}}(\eta) + \sum_{\alpha=1}^{N} z_\alpha\mathcal{I}^{\Delta-1}_{\vec{\nu}-\vec{e}_\alpha}(\eta)$$

- Solve it with $\eta \to \infty$ as boundary condition
- Using Dimension-Change Transformation to obtain desired FBIs Huang, Jian, YQM, Mu, Wu, PRD2025

$$I_{\vec{\nu}}^{\Delta+\delta} = \frac{1}{\Gamma(\delta)} \int_{-i0^{+}}^{-i\infty} d\eta \, \eta^{\delta-1} \mathcal{I}_{\vec{\nu}}^{\Delta}(\eta)$$

Compute master integrals of FBIs - analytical

> Canonical form are obtained for all cases, e.g., Chen, Feng, Zhang, JHEP2025

$$d\mathcal{I}_{2m} = c_{2m\to 2m} \mathcal{I}_{2m} + \sum_{i} c_{2m\to 2m-1;i} \mathcal{I}_{2m-1}^{(i)} + \sum_{i\neq j} c_{2m\to 2m-2;ij} \mathcal{I}_{2m-2}^{(ij)}$$

 $c_{2m\to 2m} = -2\epsilon d \log \mathcal{D}$

$$c_{2m\to 2m-2;ij} = \frac{\epsilon N}{2} d \log \left(\frac{\sqrt{(\mathcal{D}_{\widehat{i}} - \mathcal{D})\mathcal{D}_{\widehat{i,j}}} - \sqrt{(\mathcal{D}_{\widehat{i}} - \mathcal{D}_{\widehat{i,j}})\mathcal{D}}}{\sqrt{(\mathcal{D}_{\widehat{i}} - \mathcal{D})\mathcal{D}_{\widehat{i,j}}} + \sqrt{(\mathcal{D}_{\widehat{i}} - \mathcal{D}_{\widehat{i,j}})\mathcal{D}}} \right) + (i \leftrightarrow j)$$

> Enabling the analytical computation of FBIs, like one-loop cases

Comparison

 \triangleright One-loop FIs: a special case of FBIs, with B=1

$$[\mathbf{d}\mathbf{y}] \equiv \prod_{\alpha=1}^{N} \mathbf{d}y_{\alpha} \prod_{b=1}^{B} \delta \left(1 - \sum_{i=1}^{n_b} y_{(b,i)} \right)$$

 \triangleright B is an unimportant parameter in the computation of FBIs

$$CI_{\vec{\nu}}^{\Delta-1} = (2\Delta - \nu - B) z_0 I_{\vec{\nu}}^{\Delta} + \sum_{\alpha=1}^{N} z_{\alpha} I_{\vec{\nu} - \vec{e}_{\alpha}}^{\Delta-1}$$

> FBIs are as simple as one-loop FIs, thus a solved problem

Outline

I. Introduction

II. A new representation

III. Calculate FBIs

IV. Integrate branch variables

V. Summary and outlook

Numerical method: contour deformation

> Integral with known integrand

$$\mathcal{M} = \int [d\mathbf{X}] \, \hat{\mathcal{M}} (\mathbf{X})$$

Avoid IBP reduction!

> Contour deformation to avoid divergences

$$\tilde{X}_b = X_b + iX_b(1 - X_b)G_b(\mathbf{X})$$

$$G_b(\mathbf{X}) = \kappa \sum_j \lambda k_j \frac{\partial_{X_b} P_j}{P_j^2 + (\partial_{X_b} P_j)^2} \exp(-\frac{P_j^2}{\lambda^2 k_j^2})$$

- Adjust parameters
- Subtract out divergences
- Then use existed techniques to perform integration

Numerical method: contour deformation

DCT/pt (ms)	0.14	0.19	0.34	0.76	2.91
#points	726 =121*6	726	726	726	12826 =121*106

 To obtain 6-digit precision using Adaptive Gausian-Kronrod Rule with degree 5 (11*11=121 points)

Numerical method: contour deformation

Method	precision	time (hour)	
nySocDoc	3	3	
pySecDec	5	108	
AMFlow	20	4	
New method	6	0.01	

- Computing to $O(\epsilon)$
- AMFlow computes all MIs, the other two methods only compute the corner integral
- Much faster than previous methods
- Note: by combining DCT, we can in fact avoid contour deformation C To appear soon!

Analytical method: Reduction

> Combining with intersection theory

- Only 3 layers at two loop order
- More efficient

➤ Combining with 1/D expansion

- 2 loops: simplifying $\sim O(n^{10})$ to $\sim O(n^2)$
- 3 loops: simplifying $\sim O(n^{10})$ to $\sim O(n^5)$
- $n\sim O(100)$ is the terms to be obtained, Power: the number of integration parameters
- More efficient

Improve reduction!

To appear soon!

Summary and outlook

> Reveal a deep structure of FIs: simple integrand followed by integration over a few variables:

2 for two-loop, and 5 for three-loop: independent of number of external legs!

- > The integrand (FBIs) can be fully solved, similar to one-loop FIs
- All previous FIs techniques can be applied to resolve the remained integration

Either fully numerically, or via reduction + computing MIs

> Optimistic to overcome multi-leg FIs computation beyond oneloop, and to meet the requirement of high-precision LHC data

Thank you!

Stay tuned!