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Introduction-I

• Most of the time we analyze QFT on flat space.

• There are, however, many good reasons to analyze QFT on fixed curved

spaces.

♠ QFT on spheres:

• It is standard in order to introduce a mass gap and avoid IR divergences.

• It is important in the computation of susy indices.

• It is important in order to define F-functions in three dimensions.
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♠ The analytic continuation of the above is QFT on de Sitter space.

• It seems that both during a period of inflation and today we are living in

parts of de Sitter.

• QFT has many secrets when it is on de Sitter:

• Massless particles make perturbation theory break-down.

• It is not yet clear how to define useful diff-invariant quantities in de Sitter.

• There are many very different representations of the de Sitter group that

can be realized. It is not clear which ones exist in a given QFT.

Holographic curved QFTs, Elias Kiritsis
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QFT on AdS

• It was suggested so that it can cure IR problems in gauge theories while
still staying at infinite volume.

Callan+Wilczek

• Major differences can appear in the dynamics of confining theories.
Aharony+Marolf+Rangamani

• CFT on AdS can be mapped via a conformal transformation to Boundary
CFT.

• Conformal Holographic defects are described by CFT on AdS×S.

• QFTd on AdSd gives rise to “rigid” Holography as its boundary S-matrix
carries the symmetry of AdS: O(2,d-1), and can be identified with the
correlation functions of a (non-local) CFT in d-1 dimensions.

Fitzpatrick+Katz+Poland+Simmons-Duffin,Penedones

• One reason this is useful, is that it can be used to study S-matrix elements
both in AdS and flat space by using the boundary bootstrap.

Paulos+Penedones+Toledo+van Rees+Viera

Holographic curved QFTs, Elias Kiritsis
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The holographic picture

• A natural (d+1)-dimensional metric anzatz for the ground state of a

QFTd on a constant curvature manifold Md is

ds2 = du2 + e2A(u)ζµνdx
µdxν (1)

where ζµν is the constant curvature metric on Md.

• The asymptotics of eA near the boundary u→ −∞ control the source for

the radius of the constant curvature slice metric.

• The ansatz enforces that the source that defines the boundary metric is

ζµν.

• The ansatz is expected to give us the ground states of this holographic

theory.

Holographic curved QFTs, Elias Kiritsis
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Holographic Interfaces

• The BCFT is a special case of an interface between two CFTs

CFT on half 
Minkowski

CFT on half 
Minkowski

• We may do a conformal transformation on each of the pieces to map it
to AdS in Poincaré coordinates with the boundary at the interface.

dy2 − dt2 + dxidxi →
dy2 − dt2 + dxidxi

y2

• Clearly the two boundaries touch on the interface.

• When the slice manifold has negative constant curvature (like AdS) then
the bulk scale factor eA is not monotonic.

• Such solutions may have “two boundaries”
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CFT  
on AdS

CFT  
on AdS

• However, if the slice manifold has infinite volume, the two boundaries are
connected

CFT on a 
hemisphere

CFT on a 
hemisphere

• Such holographic solutions are dual to interfaces between two QFTs

Holographic curved QFTs, Elias Kiritsis
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The curved-sliced RG flows

• We assume an Einstein-dilaton theory in order to simplify our explorative

task.

• Our finding generalize to themultiscalar case.

SBulk =Md−1
P

∫
du ddx

√
−g
(
R−

1

2
gab∂aΦ∂bΦ− V (Φ)

)
.

ds2 = du2 + e2A(u)ζµνdx
µdxν, Φ = Φ(u)

• The slice is a manifold Mζ whose metric ζ is any (constant) curvature

Einstein metric.

R
(ζ)
µν = κζµν , R(ζ) = dκ , κ = ±

(d− 1)

α2
.

• The solution is characterized by the scalar field profile Φ(u) and by the

scale factor A(u), which are related via the bulk Einstein equations.

• We systematically study the solutions to these equations for any sign of

R(ζ).
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• The regular solutions have generically one boundary except in the case

of negative curvature that can have two boundaries B± at u = ±∞.

• The boundaries are conformal to Mζ.

• The end-points of the solution depend crucially on R(ζ) and the scalar

bulk potential V (Φ).

• For R(ζ) ≥ 0 they look like
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• For R(ζ) < 0

Deformed   
CFT 1 on AdS

Deformed   
CFT 2 on AdS
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• There are extra rules when we go to Φ → ±∞.

Holographic curved QFTs, Elias Kiritsis
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The bulk integration constants vs QFT parameters

• For the flows that describe spaces with a single boundary, they are dual

to a single QFT on a constant curvature metric with a relevant coupling,

m.

• The bulk equations have three (dimensionless) integration constants.

• One corresponds to the dimensionless curvature R:

R ≡ m2 α2UV

• The second corresponds to the (dimensionless) scalar vev ⟨O⟩. It must

be tuned for regularity.

• The third is not physical as it can be removed by a radial translation.

Holographic curved QFTs, Elias Kiritsis
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Asymptotics near potential extrema

• Regular solutions START (AND SOMETIMES END) at extrema of the

potential.

• Near a maximum of the potential, there are two branches of solutions

known as the − and the + branch.

ℓ W± = 2(d− 1)−
∆±
2

(ϕ− ϕ0)
2 + · · ·

♠ The − branch contains the generic solutions that contain both source

and vev.

♠ The + branch contains only the special solution for which the source

vanishes (relevant vev-driven flow).

• For both types of solutions above, the metric has an AdS boundary at

the maximum.

• We denote these asymptotics as Max±.
9



• Near a minimum of the potential we also have the + and − branches of

solutions.

♠ The − branch contains the generic solution.

• It does not exist for non-zero slice curvature. It exists only for flat slices

and in that case it describes the IR-end of an RG flow.

♠ The + branch contains the special solution. The bulk metric

has an AdS BOUNDARY in this case

• The + solution describes a UV fixed-point perturbed by the vev of an

irrelevant operator.

• We denote these asymptotics as Min±.
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• Max± and Min+ are associated to AdS boundaries and therefore to QFT

UV fixed points.

• Min−, to a shrinking slice geometry and therefore to an IR Fixed point.

• The + branch solutions, as they contain less integration constants,

exist only in fine-tuned cases.

• The Min− solution does not exist, when the (dimensionless) curvature of

the slice R ̸= 0.

9-



• When R > 0, here is the possibility that the flow stops at a generic value

of Φ = Φ0, away from an extremum of the potential.

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

Φ0

R

• If Φ0 is an extremum of V (Φ) this is not possible when R ≤ 0

• The above classify ALL endpoints where Φ is finite.

Holographic curved QFTs, Elias Kiritsis
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Classification of complete flows when R = 0

♠ All flows start and end at extrema of the potential.. They have a single

aAdS boundary.

• (Max−,Min−). This is the generic flow driven by the coupling of a

relevant operator.

• (Max+,Min−). This is a flow driven by the vev of a relevant operator.

• (Min+,Min−). This is a flow driven by the vev of an irrelevant operator.

Holographic curved QFTs, Elias Kiritsis
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Classification of complete flows when R > 0

• In this case, although flows can start at extrema of the potential, (both

maxima as Max± and minima as Min+), they always end at intermediate

points, not at extrema.

• (Max−,Φ0). This is the generic flow driven by the coupling of a relevant

operator.

• (Max+,Φ0). This is a flow driven by the vev of a relevant operator.

• (Min+,Φ0). This is a flow driven by the vev of an irrelevant operator.

Holographic curved QFTs, Elias Kiritsis
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Classification of complete flows when R < 0

• It is not possible for a flow to be regular and end at intermediate points

(non-extrema of the potential).

• Therefore, all regular flows must start and end at extrema of the potential.

• As the asymptotic solution Min− does not exist when R ̸= 0, we have in

total the following 3× 3 = 9 options,

(Max− , Max+ , Min+) ⊗ (Max− , Max+ , Min+)

all of them having two AdS boundaries.

• As mentioned the Max+ and Min+ asymptotics are fine-tuned (they have

half the adjustable integration constants).

• Therefore the generic solutions will be of the (Max−,Max−) type. All

others are fine-tuned.

Holographic curved QFTs, Elias Kiritsis
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Confining Theories on curved manifolds

• In a single scalar setup, the confining solutions are solutions where the
scalar runs off to infinity.

• These are singular solutions (naked singularities)

• But one out of the one-parameter family of solutions is ”less” singular.

• This corresponds to a resolvable singularity and can be resolved by KK
states.

Gubser: the good, the bad and the naked

• Such solutions correspond to confining ground states in flat space.
Gursoy+Kiritsis+Nitti

• All of their aspects (with flat slices) have been studied extensively in the
past and are well known and controllable.

• In the case of curved slices new phenomena appear.

Holographic curved QFTs, Elias Kiritsis
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Confining theories on curved manifolds, II

• We study Einstein Dilaton theory with a potential.

• We parametrize the boundary behavior of the potential (as Φ → +∞), as

V ≃ −V∞e2aΦ + · · · ,

where V∞ and a are two positive constants.

• The non-confining range:

0 ≤ a < aC ≡
√

1

2(d− 1)
.

• The confining range:

aC < a < aG ≡
√

d

2(d− 1)

14



• The Gubser-violating range:

a > aG

• We are interested in the confining range.

• There are three types of asymptotic solutions:

♠ Type 0 solutions. These have all the integration constants but are too
singular to be acceptable

♠ Type I asymptotics (S = S0e
aΦ + · · · )

S0 =

√
2V∞
d− 1

, W0 = a
√
8(d− 1)V∞,

They exist only for R > 0.

♠ Type II asymptotics:

S0 = a

√√√√ 2V∞
a2G − a2

, W0 =

√√√√ 2V∞
a2G − a2

,

They exist for all real values of R.

Holographic curved QFTs, Elias Kiritsis
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Curvature-driven phase transitions and confinement

• We review the possible types of relevant solutions

• R > 0

UV CFT  
on AdS

Regular IR 
Endpoint

φ
φ0

CFT  
on AdSIR Singularity

φ
UV

Type III Type I-II

• R = 0: Only type -II

• R < 0 : An infinite number of type II solutions competing. No transition
here.

• Therefore the transition can happen only at R ≥ 0.
15



• There are two parts in the confining range

aC < a < aE ≡
2√

(d− 1)(9− d)

aE ≡
2√

(d− 1)(9− d)
< a < aG

• The higher range aE < a < AG is the Efimov range as there are Efimov

spires in action.

Analytically derived behaviors of C − CI (vertical axis) as a function of R−RI (horizontal axis) near the type

I value (CI,RI) (at the origin) for type II (blue) and III (pink) solutions.
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ℛI ℛ0
Type I

Type II
Type III

ℛc

1st order transition

ℛI = ℛ0
Type I

Type II
Type III

ℛc

2nd or higher order transition

Holographic curved QFTs, Elias Kiritsis
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IHQCD-like theories

φ→ +∞ : Vα(φ) ∼ −V∞φαe2aCφ aC =

√
1

2(d− 1)
,

• For α > 0, the model displays a mass gap, a discrete spectrum of
“glueball” excitations and confinement.

• It does not have scaling IR asymptotics.

• For α < 0 the model has a mas gap, continuous spectrum and is decon-
fined.

• The asymptotic masses of the (discrete) spectrum behave as

m2
n ∼ nNα , Nα ≡


2α, 0 < α < 1,

2, α > 1.

• The special value α = 1
2 leads to Regge-like behavior for the mass

eigenstates, m2
n ∼ n.
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• This corresponds to the model of IHQCD, that is the bottom model that

fits best YM4 lattice data.
Gursoy+Kiritsis+Nitti

• The models with a = ac correspond to a bifurcation in the space of

confining potentials.

• The model of IHQCD, a = ac and α = 1
2 is a double bifurcation on the

space of potentials.

• In order to find the phase diagram of this theory as a function of R we

had to use dynamical system methods and in particular “Center Manifold

Theory”.

16-



The orange area corresponds to type I/II solutions with Cα > 0. The blue

area corresponds to type I/II solutions with Cα < 0.

Holographic curved QFTs, Elias Kiritsis
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Conclusions

• We have studied (RG) flow solutions with slices that have constant

curvature manifolds.

• Such solutions have one, two or zero boundaries.

• We have analysed in detail several types of examples.

• There is a rich pattern of dynamical phenomena, including different types

of phase transitions.

• We found also many limiting cases where one obtains all possible exotic

RG flows.

• Other phenomena found include flow (multi)-fragmentation, walking

behavior, and the generation of new boundaries.
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• In the R < 0 case, we have found an infinite number of saddle points for

confining theories.

• We found phase transitions as a function of curvature for confining

theories.

• We have developed the formalism to compute the mass spectra with

R ̸= 0.

Holographic curved QFTs, Elias Kiritsis
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Open Ends

• The case of constructing a single non-confining holographic theory on
AdS is still open.

• The study of interface correlators is an open problem.

• The Wilson loops of QFTs on AdS are currently under study, especially
considering the fate of confinement.

• The spectra of holographic theories on de Sitter are extremely interesting
to investigate.

• Entanglement in single theories as well as interfaces is interesting to
compute and decipher.

• The fate of the instanton gas in AdS can be studied with holographic
methods.

• There are general results in 2d that state that entanglement transmission
is faster than energy transmission. Can they be generalized?

Ooguri+Karch, Bachas+Chen

Holographic curved QFTs, Elias Kiritsis
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Interfaces

• The BCFT is a special case of an interface between two CFTs

CFT on half 
Minkowski

CFT on half 
Minkowski

• We may do a conformal transformation on each of the pieces to map it
to AdS in Poincaré coordinates with the boundary at the interface.

dy2 − dt2 + dxidxi →
dy2 − dt2 + dxidxi

y2

• Clearly the two boundaries touch on the interface.

• If the interface is conformal, we expect a O(d,1) symmetry.

Holographic curved QFTs, Elias Kiritsis
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Holographic Interfaces

• When the slice manifold has negative constant curvature (like AdS) then

the bulk scale factor eA is not monotonic.

• Such solutions may have “two boundaries”

CFT  
on AdS

CFT  
on AdS

• However, if the slice manifold has infinite volume, the two boundaries are

connected

21



CFT on a 
hemisphere

CFT on a 
hemisphere

• The simplest example of this is global AdSd+1, sliced with AdSd slices

and

eA = cosh
u

ℓ
, −∞ < u < +∞

• This is a non-monotonic scale factor.

• In such a case the metric has two (apparent) AdS boundaries. One, B+,

at u = −∞ and another B− at u = +∞.

21-



• In the bulk AdS case, corresponding to a CFT on AdSd, the gravitational

solution is interpreted as two copies of the (same) CFT: one on B+ ∼ AdSd
and the other on B− ∼ AdSd.

• However, we may turn on more fields and in general the two UV CFTs

can be different.

• If the negative curvature manifold Mζ is compact (g > 2 Riemann surface

in d = 2 or Schottky manifolds in d > 2) then the solution describes a

wormhole with negative curvature slices.

CFT  
on AdS

CFT  
on AdS

Holographic curved QFTs, Elias Kiritsis
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The bulk Einstein Equations

• The solution is characterized by the scalar field profile Φ(u) and by the

scale factor A(u), which are related via the bulk Einstein equations.

2(d− 1)Ä+ Φ̇2 +
2

d
e−2AR(ζ) = 0

d(d− 1)Ȧ2 −
1

2
Φ̇2 + V (Φ)− e−2AR(ζ) = 0

Φ̈+ dȦΦ̇− V (Φ)′ = 0 ,

Holographic curved QFTs, Elias Kiritsis

22



The first order formalism

• We define the “superpotentials” (no supersymmetry)

Ȧ ≡ −
1

2(d− 1)
W (Φ) , Φ̇ ≡ S(Φ) , R(ζ)e−2A(u) ≡ T (Φ) .

• The equations of motion become

d

2(d− 1)
W2 + (d− 1)S2 − dSW ′ +2V = 0 ,

SS′ −
d

2(d− 1)
SW − V ′ = 0 .

• Once a solution is found we can evaluate

T (Φ) =
d

4(d− 1)
W2(Φ)−

S(Φ)2

2
+ V (Φ)

Holographic curved QFTs, Elias Kiritsis
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The bulk integration constants vs QFT parameters

• For the flows that describe spaces with a single boundary, they are dual

to a single QFT on a constant curvature metric with a relevant coupling,

m.

• The bulk equations have three (dimensionless) integration constants.

• One corresponds to the dimensionless curvature R:

R ≡ m2 α2UV

• The second corresponds to the (dimensionless) scalar vev ⟨O⟩. It must

be tuned for regularity.

• The third is not physical as it can be removed by a radial translation.
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♠ In the first order formalism the (W,S) equations have two integration

constants: one is R, and the second is the scalar vev.

• The scalar vev, ∼ C(R) is tuned in terms of R by regularity.

• There is another vev: that of the energy momentum tensor on the

constant curvature manifold

⟨Tµν⟩ ∼ B(R) ζµν

• B(R) is related in a non-trivial way to C(R)

♠ Therefore, for the one-boundary solutions, there is one free parameter

(source) R and two vev parameters B(R) and C(R).

Holographic curved QFTs, Elias Kiritsis
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Classifying the solutions, R < 0
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Flow fragmentation

• In this limiting region we have an explicit example of solution fragmenta-
tion.

• There are two phenomena visible in this example.

♠ Walking. This the phenomenon when an intermediate AdS region appears
between the UV and IR, or between UV and UV as is the case here

♠ The emergence of a new boundary.

(Max−,Max−) → (Max−,Min−) ⊕ (Min+,Max−)

• Such flows can be rotated into cosmological solutions with a cosmological
bounce, no singularity and ”inflation” at the place of big bag.

Holographic curved QFTs, Elias Kiritsis
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Confining Theories on AdS-The space of solutions

• We choose a simple potential with the required asymptotics and a single

maximum.
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• The theory sitting at the maximum is the UV of the confining QFT.

• With flat metric slices, that solution runs from the maximum to Φ → +∞
via a ”regular” solution and this is the confining ground-state on flat Rd.

• We now consider solutions with AdSd slices.
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• There are three classes of ”regular” solutions

♠ Two-boundary Solutions: They start at Φ = 0 (boundary) and end at

Φ = 0 (boundary). These are interface solutions of confining theories.

♠ One-boundary solutions: They start at Φ = 0 (boundary) and end at

Φ = ±∞ (IR-end point). These are dual to confining theories on AdSd.

♠ No-boundary solutions: Start at Φ = −∞ and end at Φ = +∞ or start

at Φ = −∞ and return back to Φ = −∞. Topological theories ?

27-
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AdS: relation to sources
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R, the dimensionless curvature, for UV-Reg solutions.
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(a): The free

energy for UV-Reg solutions living on the black curves. The vertical red lines show the location of

Φ-bounces.
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The free energy
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(a): Free energy in terms of dimensionless curvature. The green/blue curves correspond
to the green/blue region in previous plots. Figure (b) is the zoomed region near F = 0.

The vertical red line shows for R ≳ −7.7 only solutions without A-bounce exist.

• The solution with no oscillations has the lowest free energy.

• Is there Efimov scaling here?
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The dS RG Flows
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QFT on AdS

• This problem was first seriously adressed by Callan and Wilczek in 1990.

• Their interest was in IR physics.

• Their motivation were the IR divergences that plagued QCD perturbation
theory and which made perturbative calculations hard to control.

• The important property of AdS space for their purpose was that even
massless fields, had propagators that vanished exponentially as large dis-
tances, like massive fields in flat space.

• The reason is that the Laplacian and other relevant operators have a gap
in AdS.

• On the other hand, unlike the sphere, AdS has infinite volume.

• Critical systems are described by mean field theory above the upper crit-
ical dimension. But AdS acts as an infinite-dimensional space. Therefore
critical fluctuations should be weak in any dimension.
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• Generically speaking,AdS is expected to ”quench” strong IR physics.

• An extra ingredient is that the QFT on AdS must realize the AdS sym-
metry that is like conformal invariance in one-less dimension.

Callan+Wilczek

• The structure of instantons is also expected to be different:

♠ In flat space, in QCD we expect to have an instanton liquid rather than
a (dilute) instanton gas.

Witten

♠ Above the deconfinement phase transition, we expect an instanton gas
instead.

• In AdS an instanton gas is generically expected.
Callan+Wilczek

• Chiral invariance for fermions is broken by boundary conditions in AdS.

• An important ingredient for QFT in AdS: boundary conditions.

Holographic curved QFTs, Elias Kiritsis
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Conformal Theories on AdS

• The prime example, N=4 SYM was analyzed in some detail in the past.
Gaiotto+Witten,Aharony+Marolf+Rangamani, Aharony+Berdichevsky+Berkooz+Shamir

• Boundary conditions on R4
+ that preserve supersymmetry have been clas-

sified, and there are many.
Gaiotto+Witten

• Upon a conformal transformation the theory can be put on AdS4 in

Poincaré coordinates.

• This is true in general when the AdS metric is with Poinaré coordinates:

CFTd − on−AdSd = CFTd − on−Rd
+ with a flat boundary

• At weak coupling the theory is generically non-confining.

• But at strong coupling some boundary conditions induce confinement.
32



• For example, using S-duality, the g >> 1 theory with a Higgs condensate

is mapped to a g << 1 theory with a magnetic condensate that should be

confining.

• In particular, S-duality interchanges (among others) Dirichlet and Neu-

mann bc.

• With Neumann bc no order parameter exists that distinguishes a confining

from a non-confining phase.

• Therefore, no sharp transition is expected in accordance with the large

susy.

Holographic curved QFTs, Elias Kiritsis
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A confining gauge theory on AdS4

• There are two types of boundary conditions: electric (Dirichlet) and

magnetic (Neumann)
Aharony+Marolf+Rangamani

♠ With electric: gluons are allowed in AdS, they are gapped, and there

is an SU(N) global symmetry at weak coupling. Only boundary currents

possible.

♠ With magnetic: electric charges are not allowed in bulk, there are O(1)

degrees of freedom, and there is confinement (imposed by the bcs).

• There are also many other boundary conditions associated to subgroups.

• For asymptotically free gauge theories with Dirichlet boundary conditions

a confinement/deconfinement phase transition is expected
Aharony+Berkooz+Tong+Yankielowicz

♠ ΛLAds ≫ 1 Confining phase.
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♠ ΛLAdS ≪ 1 Deconfined phase.

• With magnetic boundary conditions one expects confinement at all scales,

and a free energy of O(1). This is a kind of trivial confinement as no electric

charges are allowed in the bulk.

• Wilson loops do not provide an easy criterion for confinement, as for

large Wilson loops, the area and the perimeter scale the same way, in

global coordinates.

• It is possible that subleading differences may tell the difference.

• But in Poincaré coordinates there are two classes of loops with different

behavior for length and area.

• However QFT on AdS in different coordinates gives rise to a different

quantum theory.

Holographic curved QFTs, Elias Kiritsis
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Rigid Holography

• In standard holography, the flat limit of the bulk AdS5 gives on one hand

the flat space string theory S-matrix and on the gauge theory side a specific

correlator at N → ∞.
Polchinski

• A QFTd on rigid AdSd provides also a kind of holography.
Fitzpatrick+Katz+Poland+Simmons-Duffin

• All correlation functions have automatically O(1, d) invariance, due to the

geometry.

• One may compute scattering amplitudes in the QFTd-on-AdSd and write

them as CFTd−1 correlation functions.
Penedones

• This provides a novel “rigid” holography (without a graviton in the bulk

and without energy-momentum tensor in the boundary).
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• There is, however, a 1-to-1 correspondence between boundary and bulk

operators. This is realized most clearly in the flat CFT with a boundary

picture.

• This leads to the idea that one can use this correspondence and the stan-

dard bootstrap for the boundary CFTd−1 to study the S-matrix constraints

in the bulk.
Paulos+Penedones+Toledo+van Rees+Viera

• This can be done at finite bulk curvature constraining the AdS S-matrix.

• Or by taking the curvature to zero, to constraint the flat space S-matrix

giving rise to the S-matrix bootstrap.

• Therefore one can use the boostrap on CFTd−1 to study the S-matrix

constraints in the bulk.
Paulos+Penedones+Toledo+van Rees+Viera, van Rees, Carmi+Di Pietro+Komatsu

Giombi+Khanchiandani, Komatsu+Paulos+van Rees+Zhao, Cordova+He+Paulos, Gadde+Sharma,

Meineri+Penedones+Spirig

• The zero curvature limit involves a ∆ → ∞ limit in the boundary CFT.

34-



• An important ingredient in rigid holography is that the QFTd-on-AdSd
has generically both UV and IR divergences.

• The IR divergences map in the standard way to UV divergences in the

boundary CFTd−1.

• The UV divergences in the bulk need to be renormalized in the standard

way.

• This entails the renormalization of both bulk coupling constants and

boundary conditions.
Banados+Bianchi+Munoz+Skenderis

• In the process the O(1,d) symmetry can be preserved.

• The whole setup can be generalized by adding new dynamical degrees of

freedom on the boundary interacting with the bulk degrees of freedom.

Holographic curved QFTs, Elias Kiritsis
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BCFT

• A single QFTd-on-AdSd does not lead to a single rigid holography.

• The reason is that a QFTd-on-AdSd needs boundary conditions and there

are many possibilities compatible with the symmetries.

• Taking the AdSd metric in Poincaré coordinates, and assuming QFTd →
CFTd, we can map this problem to BCFTd.

• For a given CFTd, there are many boundary conditions that preserve the

O(1,d) conformal symmetry.

• Even in d=2, not all of them are known except in some free field theories.

• When CFTd → QFTd, the problem is much more complicated.

Holographic curved QFTs, Elias Kiritsis
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Proximity in QFT

• One possible definition of the notion of proximity among CFTs is : can
QFT1 and QFT2 live in the same Hilbert space?

• If there is flow connecting CFT1 to CFT2 we can claim that the two
theories can live in the same Hilbert space.

• Proximity can be defined in terms of the possibility for two theories to
share an interface.

• They may be generating a bulk brane or
Takayanagi

• They may be like Janus interface geometries.
Bak+Gutperle+Hirano, + many others

Holographic curved QFTs, Elias Kiritsis
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Holographic QFTd on AdSd
• Such a theory is described by a solution in the same ansatz but with only
one (not two) boundaries, B+.

• We have therefore three possibilities: QFTd on AdSd, interface between
QFTd and QFT’d, or a wormhole.

• If a single boundary solution exists then we can have competing saddle
points for the two-boundary solutions

UV - Left UV - Right 

Holographic curved QFTs, Elias Kiritsis
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(Holographic) Conformal Defects

• Consider a D-dimensional flat-space QFT, and a d < D-dimensional lo-

calized (flat-space, non-dynamical) defect.

• This provides a transverse O(D − d) symmetry in the theory.

• Consider also the possibility that the defect is conformal: The associated

symmetry is O(d+1,1) and commutes with O(D − d).

• If there is a holographic realization of this, then the geometry should

realize the O(d+1,1)×O(D− d) symmetry. It should therefore contain an

AdSd+1 × SD−d−1 manifold.

• The ground state of such holographic conformal defects, will be described

by a conifold metric with AdSd+1 × SD−d−1 slices.
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• The boundary of such solutions has several components:

♠ One is the boundary of the total space, and this is conformal to

AdSd+1×SD−d−1, which is also conformal to flat space, Rd.

♠ There is another piece of the boundary, namely the union of the bound-

aries of the AdSd+1 slices. Insertions on that boundary correspond to defect

operators.

• Conifold solutions over AdSd×Sn corresponding to conformal defects of

flat space holographic CFTs have been thoroughly studied.
Ghodsi+Kiritsis+Nitti
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They have two possible interpretations:

♠ As a holographic CFTd+n on AdSd×Sn.

♠ As a (d-1)-dimensional defect in a D = d+ n-dimensional CFT.

• This dual interpretation is compatible as the transverse radial distance to

the defect can act as a RG scale.

• In the same vain, Rd+n is conformal to AdSd×Sn

• Unlike the case of interfaces, the scale factors are always monotonic.

• The conformal interface corresponds to d = D − 1 and the remaining

symmetry is realized by AdSD. Also S0 has two points and corresponds to

the two sides of the interface.

Holographic curved QFTs, Elias Kiritsis
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The bulk integration constants in the

two-boundary case

• The number of integration constants in the bulk equations is the same

(3).

• Here, there is no regularity condition. The solutions are generically regular

as the scale factor never vanishes.

• Therefore, the scalar vev is an independent parameter and does not

depend on R.

• The third constant is always redundant as usual.

• All parameters at the second boundary are determined from the solution,

evolved from the first boundary.
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• Overall our two-boundary solutions depend on two dimensionless inde-

pendent parameters, (Ri,Rf) .

• This is one less from the three we would expect in the general case: Ri,f

and

ξ ≡
m2
i

m2
f

.

♠ We can recover the extra missing parameter by generalizing the solutions.

Holographic curved QFTs, Elias Kiritsis
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Classifying the solutions, II

• We picked d = 4 and a generic quartic potential that we parametrized as

V (Φ) = −
12

ℓ2L
+

∆L(∆L − 4)

2ℓ2L
Φ2−

(Φ1 +Φ2)∆L(∆L − 4)

3ℓ2LΦ1Φ2
Φ3+

∆L(∆L − 4)

4ℓ2LΦ1Φ2
Φ4,

where Φ1 and Φ2 are defined as

Φ1 =
12ℓ2R

√
ℓ2R − ℓ2L∆L(∆L − 4)√

ℓ2R∆L(∆L − 4)− ℓ2L∆R(∆R − 4)
(
ℓ2R∆L(∆L − 4) + ℓ2L∆R(∆R − 4)

)

Φ2 =
12
√
ℓ2R − ℓ2L√

ℓ2R∆L(∆L − 4)− ℓ2L∆R(∆R − 4)
.
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• The left maximum is at Φ = 0. The AdS length is ℓL = 1 and the scaling

dimension ∆L = 1.6.

• The right maximum is at Φ = 8.34. The AdS length is ℓR = 0.94 and

the scaling dimension ∆R = 1.1.

• The minimum is located at Φ1 = 4.31. It has ∆min
+ = 4.37.
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• “Technical” definitions:

♠ A-bounce is a point where Ȧ = 0 → W = 0. It always exists when the

slice curvature is negative.

• Our solutions will have a single A-bounce. We shall denote its position

by Φ0.

♠ Φ-bounce is a point where Φ̇ = 0 → S = 0. It is a point where the first

order equations break down but the second order equations do not.

♠ An IR-bounce is a point where both Ȧ = Φ̇ = 0.

• All bounces are defined AWAY from extremal points of V.
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• We always start our solution at the (unique) A-bounce at Φ = Φ0 and
we solve the first order equations

d

2(d− 1)
W2 + (d− 1)S2 − dSW ′ +2V = 0 ,

SS′ −
d

2(d− 1)
SW − V ′ = 0 .

• We only need an extra “initial” condition: S0 ≡ Φ̇|Φ=Φ0
≡ S(Φ0).

• The two parameters (Φ0, S0) ∈ R2 are the complete initial data of the
first order system.

• For each pair (Φ0, S0) there is a unique solution.

• We then start solving the equations to the left and right of Φ0 until we
reach an AdS boundary on each side. Then our solution (W,S) is complete.

• We then solve the equations for Φ, A.

R(ζ)e−2A(u) =
d

4(d− 1)
W2(Φ)−

S(Φ)2

2
+ V (Φ) , Φ̇ = S

Holographic curved QFTs, Elias Kiritsis
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The QFT couplings

• At each boundary, initial or final the metric asymptotes to Mζ and the

only parameter (source) is its curvature, Ri,f .

• The scalar will also have sources at the two boundaries:

Φ(u) → Φ(i)
− , u→ −∞,

Φ(u) → Φ(f)
− , u→ +∞,

• Therefore, we have four dimensionful couplings: Ri,f , Φ(i,f)
− .

• As the overall scale is irrelevant, the pair of theories is characterized by

three dimensionless numbers which we take to be:

Ri =
RUVi(

Φ(i)
−

)2/∆i
−
, Rf =

RUVf(
Φ(f)

−

)2/∆f
−
, ξ =

(
Φ(i)

−

)1/∆i
−

(
Φ(f)

−

)1/∆f
−

Holographic curved QFTs, Elias Kiritsis
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Three parameter solutions

• So far our ansatz missed one dimensionless parameter

• To recover it we modify it to:

A =


Ā(u) u < u∗

Ā(ũ− δ) u∗ + δ < ũ < +∞
,

Φ =


Φ̄(u) u < u∗

Φ̄(ũ− δ) u∗ + δ < ũ < +∞
,

• This satisfies the Israel conditions at u = u∗ and A,Φ and their derivatives
are continuous.

RUVi = R̄UVi , Φi
− = Φ̄i

−, RUVf = e2δ/ℓR̄UVf , Φf
− = eδ∆

f
−/ℓΦ̄f

−

Holographic curved QFTs, Elias Kiritsis
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(a): The holographic coordinate at top UVL tends to −∞ and at bottom UVL to +∞.

(b): The scale factor has an A-bounce at Φ0 = 3.5 (blue dashed line) and a Φ-bounce at

Φ = 4.0 (red dashed line).
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(a): The space of the WLL
1,2 solutions is the upper blue region. The black dot represents the

specific solutions of the diagram (b). The lower blue region corresponds to the solutions

with an extra Φ-bounce near the bottom UVL. (b): The blue and red curves for W,S,

describe an RG flow that connects the UVL fixed point to itself but after two Φ-bounces.

The location of the Φ-bounces are indicated by red dashed lines.
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(a): The holographic coordinate at top UVL boundary tends to −∞ and for bottom UVL

to +∞. (b): The scale factor has an A-bounce at Φ = 2.0, the blue dashed line. The

first Φ-bounce on the left occurs at Φ = −0.62 and the second one at Φ = 2.48, the red

dashed lines.
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(a): A zoomed picture of the space of the WLR
1,1 solutions. The black dot represents the RG

flow in the diagram (b). (b): The RG flows of type WLR
1,1 are between the UVL boundary

and UVR. There is a Φ-bounce at Φ < 0, the red dashed line. Notice that the red region

at S0 < 0 in figure (a) is the space of solutions with an extra Φ-bounce near UVL but at

W < 0.
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The scale factor has an A-bounce at Φ0 = 3.5, the blue dashed line. A Φ-bounce occurs

at Φ = −0.64, the red dashed line.
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A (3,3) (A-bounce,Φ-bounce) solution
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(a): An example of a multi-Φ-bounce solution, WLL
3,3 . The solid line is W (Φ) and dotted

line is S(Φ). In this case an RG flow connects two UV boundaries on the left UV fixed point
after three Φ-bounces. Unlike the previous cases the geometry here has three A-bounces.
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(b)and (c) show the behavior of holographic coordinate and scale factor in terms of Φ.
Figure (d) is the magnification of the bottom of figure (c). It shows that there are three
A-bounces for this RG flow.
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(e): The roots of Q̇

Q(u) =
1

2
Φ̇2 − V ≥ 0 , Q̇ =

d

2(d− 1)
WS2 .

shows the location of Φ-bounces where the color of the graph is changed and location of
A-bounces where the blue part of the curve crosses the u axis.
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The behavior of relevant couplings
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(a) Space of solution with its boundaries. (b) and (c): The behavior of Ri and Rf at

boundaries. (d): The ratio of two relevant couplings, ξ, at boundaries.
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The a3 ∪ a4 solution: triple fragmentation
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Along the fixed line Φ0 = Φ1 i.e. the minimum of the potential, if we decrease the value

of S0 down to zero, gradually the dashed curves in all figures above move toward the solid

curves. In above curves the dashed curves have S0 = 0.5 and the solid ones S0 = 0.01.
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Interface correlators

• The picture of overlapping boundaries in AdS-sliced flows is ”singular”.

u

Ξ

u = +¥

u = -¥

z

x

Relation between Poincaré coordinates (x, z) and AdS-slicing coordinates (ξ, u). Constant u curves are half

straight lines all ending at the origin (ξ → 0−); Constant ξ curves are semicircle joining the two halves of the

boundary at u = ±∞.
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• The regular picture contains three boundaries:

♠ Two of them (B1,2) are at u = ±∞.

♠ There is a third boundary, B3, for all values of u that contains the

boundaries of AdS slices.

ξ ϵ

z ϵ
z

x B2

B1

B3

ξ

θ

u Λf

u -Λi

u = cte
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• For a well-defined variational problem apart from the GH term on B1,2,3

one needs to add the Hayward term at the two corners, B1∪B3 and B2∪B3.

SH =
1

8πGN

∫
dd−1x

√
−harccos(n.ñ)

• Correlators of insertions at the B1,2 boundaries are done the same way

as in standard AdS.

• Calculating correlators on the interface is problematic.

• We could not find a universal form of counterterms on a shifted boundary

that removes all divergences from interface correlators.

• This is an open problem.

Holographic curved QFTs, Elias Kiritsis
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Details of the confining potential

We consider the following scalar potential

V (Φ) = −
d(d− 1)

ℓ2

(
bΦ2 + cosh2(aΦ)

)
, b =

∆(d−∆)

2d(d− 1)
− a2 . (2)

As Φ → ±∞, the above potential diverges as

V (Φ) → −
d(d− 1)

4ℓ2
e±2aΦ , (3)

where we assumed that a < aG, the Gubser’s bound.

This potential has a maximum at Φ = 0 (UV fixed point) and near this

point, it can be expanded as

V (Φ) = −
d(d− 1)

ℓ2
−

1

2
m2Φ2 +O(Φ4) , m2 =

∆(d−∆)

ℓ2
. (4)

ℓ determines the length scale of asymptotically AdS solutions, ∆ determines

m2 and is the scaling dimension of the operator dual to the scalar Φ near
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the UV fixed point. a determines the asymptotic behavior of the potential

(confinement or deconfinement).

For the numerics we fix the constants of the theory as follows

d = 4 , ∆ =
3

2
, ℓ = 1 , a =

√
7

24
, b = −

13

96
. (5)

For the specific choice d = 4 we have

aC =
1√
6

, aG =
2√
6
, (6)
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Vevs
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Φ− the coupling of operator O at the UV boundary and C parameter of the

UV boundary for UV-Reg solutions. All figures are plotted as a function of

the free parameter S(1)
∞ . In each graph, the green region belongs to the

regular solutions without A-bounce and the blue region to solutions with at

least one A-bounce. In the red region, we have not solutions with boundary.

The vertical dashed line in figure (a) corresponds to the global AdS solution

in the uplifted theory and the product solution is the solution right before

the blue-red boundary. Figure (d) gives B which we need to compute the

free energy of the solutions.
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is the critical value for which we have the UV-Reg solution with infinite

numbers of the loops.
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Single boundary solutions

• To obtain a single boundary, one can orbifold a symmetric solution.
Aharony+Marolf+Rangamani

• This can be done in the class of solutions we called S. They have S0 = 0

and they are completely symmetric.

• We obtain the half space with u ∈ (−∞, u0).

• We can interpret such solutions by inserting an end-of-the-world brane at

u0.

• But because Ȧ = Φ̇ = 0 at u0, this brane is both tensionless and chargless.

• However, a look at correlators indicates that conformal invariance is

broken (For AdS-sliced AdS).

• In the two boundary case, we have four possible two-point functions ⟨OO⟩:
G++, G+−, G−+, G−−
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• The symmetric orbifold gives

G = G++ +G+− =
1

2∆

[
1

(coshL− 1)∆
+

1

(coshL+1)∆

]

coshL = 1+
(z − z′)2 + |x− x′|2

zz′

• The conformal correlator obtained from a Weyl transformation of flat

space is the first piece only.

• This may be due to the fact that most boundary conditions break con-

formal invariance.

• If instead we insert a brane at u = u0 and impose Dirichlet bc we obtain

a similar result with a relative minus sign. (The orbibold corresponds to

Neumann)

• Are there bc on the brane so that we obtain a conformal correlator?

• Yes, but they are generically non-local on the brane.

Holographic curved QFTs, Elias Kiritsis
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Proximity in QFT

• The notion of “proximity” in Quantum Field Theory is an intuitive notion.

• One possible definition of the notion of proximity among CFTs is : can

QFT1 and QFT2 live in the same Hilbert space?

• If there is flow connecting CFT1 to CFT2 we can claim that the two

theories can live in the same Hilbert space.

• Another was formulated by van Raamsdonk: the CFT masquerade,

mostly relevant for CFT duals.

”When the states of CFT1 can be approximated by CFT2?”

or

”Can a suitably chosen state of CFT1, faithfully encode the space-time

dual to a state of CFT2?”
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or

”Can two theories with different operator spectra describe the same bulk
geometry?”

• Van Raamsdonk gave simple solvable examples where the two CFTs are
interfaced by a bulk brane.

• This notion is very close to the RG connection, as a continuous version
of this setup is a holographic RG flow.
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• Another example is theories that can share an inteface.

• They may be generating a bulk brane or
Takayanagi

• They may be like Janus interface geometries.
Bak+Gutperle+Hirano, + many others

Holographic curved QFTs, Elias Kiritsis
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The region boundaries and tuned flows
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Flow fragmentation, walking and emergent

boundaries
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(a): An example of an RG flow between a maximum and a minimum. For the solid curves,

(Max−,Min+) is a flow between a UV fixed point at maximum Φ = 0 and another UV fixed

point at the minimum Φ = Φ1. For the (Max−,Min−) part of the solution, the minimum

is an IR fixed point. The dashed curves show the flipped image of the solid curves. The

black dotted curves are other possible RG flows with the same UV fixed points. (b): At

a fixed Φ0 when the value of S0 is exactly on the border of type WLR
1,0 and type WLL

1,1 , we

have the WLMin+

1,0 branch solution (the middle flow). If we increase or decrease the value

of S0 we have the WLR
1,0 or WLL

1,1 solutions respectively.
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• In this limiting region we have an explicit example of solution fragmentation.

• There are two phenomena visible in this example.

♠ Walking. This the phenomenon when an intermediate AdS region appears between the
UV and IR, or between UV and UV as is the case here

♠ The emergence of a new boundary.

(Max−,Max−) → (Max−,Min−) ⊕ (Min+,Max−)

• Such flows can be rotated into cosmological solutions with a cosmological bounce, no
singularity and ”inflation” at the place of big bag.

Holographic curved QFTs, Elias Kiritsis
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Confining Theories on AdS-Critical solutions

The numerical solutions with an arbitrary number of A and Φ oscillations.

Holographic curved QFTs, Elias Kiritsis
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Solutions with many A-loops

The numerical solutions with many oscillations in the scale factor, have two

general properties:

• At the oscillation region, the scale factor A(u) has small amplitude oscil-

lations around a fixed value.

• The oscillations of Φ are in a region in which the potential (2) can be

approximated by (0 ≤ Φ ≲ 2)
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S2-2V
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(a) W,S and T as a function of u. (b) Shows the function S2 − 2V that is nearly
constant. T =W ′ − S + S2−2V

dS
as a function of u. It is approximately zero,
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Various terms plotted as a function of the coordinate u. The amplitude of the oscillations
of Ȧ2 is very smaller than the other terms.The horizontal axis is the u coordinate.

Holographic curved QFTs, Elias Kiritsis
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Classifying the solutions, Part I

• We pick d = 4 and a generic quartic potential
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• The left maximum is at Φ = 0.

• The right maximum is at Φ2 = 8.34.

• The minimum is located at Φ1 = 4.31.
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• “Technical” definitions:

♠ A-bounce is a point where Ȧ = 0 → W = 0. It always exists when the

slice curvature is negative.

• We denote the position of an A-bounce by Φ0.

♠ Φ-bounce is a point where Φ̇ = 0 → S = 0.
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• We always start our solution at an A-bounce at Φ = Φ0 (W (Φ0) = 0)and

we solve the first order equations

d

2(d− 1)
W2 + (d− 1)S2 − dSW ′ +2V = 0 ,

SS′ −
d

2(d− 1)
SW − V ′ = 0 .

• We only need an extra “initial” condition: S0 ≡ Φ̇|Φ=Φ0
≡ S(Φ0).

• The two parameters (Φ0, S0) ∈ R2 are the complete initial data of the

first order system.

• For each pair (Φ0, S0) there is a unique solution.

Holographic curved QFTs, Elias Kiritsis
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AdS mass spectra

Left: The graviton potential Right): The first five normalizable solutions of the graviton
modes. The vertical dashed lines show the locations of the left and right boundaries.
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• The expansion of the graviton potential near the UV boundary

Vg(y) =
15

4y2
+


−(∆−−2)∆2

−

(1+2∆−)
φ2
− y

2∆−−2 +O(y4∆−−2), 0 <∆− <
1
2

−(∆−−2)∆2
−

(1+2∆−)
φ2
− y

2∆−−2 +O(y0) 1
2
≤ ∆− < 1

1
12
Rφ

2/∆−
− +O(y2∆−−2) 1 <∆− < 2

.

• The leading term for the potential always behaves as 1
y2, so for every UVL−UVR solution,

we should expect a discrete mass spectrum for the gravitons.

modes
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The mass spectrum of the first five graviton modes in terms of dimensionless curvatures
for solutions
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• In the case of two-boundary solutions that describe conformal interfaces, the two
boundaries have different physical curvatures RUV

L,R.

• Therefore, the only sensible way to define a dimensionless spectrum is via the dimen-
sionless combination M2α2.

The physical masses as functions of the couplings ξ .

• Scalar modes

• For the scalar field, for each mode there is a different potential.
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(a) Potentials and (b) wave functions for the first five normalizable modes of the scalar
field fluctuations.
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(a), (b): The mass of the first five scalar modes in terms of dimensionless curvatures.

• The expansion of the scalar potential near the UV boundaries is

Vs(y) =
1

4y2
(2∆− − 5)(2∆− − 3) +


V1 y2∆−−2 +O(y4∆−−2), 0 <∆− <

1
2

V1 y2∆−−2 +O(y0) 1
2
≤ ∆− < 1

V2 +O(y2∆−−2) 1 <∆− <
3
2

V2 +O(y4−2∆−) 3
2
≤ ∆− < 2

,
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The behavior of the physical mass of the scalar field fluctuations as functions of the
couplings ξ

The comparison between the graviton mass (solid curves) and scalar mass (dashed curves).

Holographic curved QFTs, Elias Kiritsis
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Skipping fixed points

V(Φ)

UV1

IR1

UV2

IR2

Φ

60



Φ

W (Φ)

UV1

IR1 UV2

IR2

W12(Φ)

W11(Φ)

W21(Φ)

B(Φ) =
√
−3V (Φ)

• UV2 is an example of CFT which can be perturbed only on one side
(like YM).

• Out of the two flows from UV1 the one towards IR2 has the lowest
action.

• This can be shown in general.

Holographic curved QFTs, Elias Kiritsis
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Skipping flows at finite curvature

Φ
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B(Φ) =
√
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Ws,2(Φ)

B(Φ) =
√
−3V (Φ)

W12(Φ)
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The solid lines represent the superpotential W (Φ) corresponding to the three different solutions starting

from UV1 which exist at small positive curvature. Two of them (red and green curves) are skipping flows

and the third one (orange curve) is non-skipping. For comparison, we also show the flat RG flows (dashed

curves)
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A quantum phase transition for UV1

RRc

∆F = Fskip − Fnon-skip

Fskip,1 − Fnon-skip
Fskip,2 − Fnon-skip

• Free energy difference between the skipping and the non-skipping solution.

• The red curve corresponds to the on-shell action difference between the

Ws,1(Φ) solution and the non-skipping solution.

• The green curve corresponds to the on-shell action difference between

the Ws,2(Φ) solution and the non-skipping solution Wns(Φ).

Holographic curved QFTs, Elias Kiritsis
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The RG flows from UV2
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The on-shell action (free energy)

• A direct computation gives for the unrenormalized on-shell action as a
(UV) boundary term:

F ≡ Son-shell(ϵ) =Md−1
P

∫
ddx

√
−ζ

([
edAW

]
UV

+
2Ruv

d

∫ IR

UV
du e(d−2)A(u)

) ∣∣∣∣
u=ϵ

• For positive R > 0, this is the action both for Sd and dSd.

• It is both UV and IR divergent.

• The UV divergences are well understood since some time.
Hennigson+Skenderis, Skenderis+Papadimitriou

• In the absence of curvature, they can be renormalized at the cost of a
single scheme parameter, Cct

W (ϕ,C∗) →W (ϕ,C∗)−W (ϕ,Cct)
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• In the presence of curvature the same procedure for the first terms works

similarly.

• The second term contains several divergences as a function of the di-

mension.

• They need to be subtracted at the cost of a few more scheme parameters.

• In the 3d case that we will specialize, there will be one extra subtraction

and therefore another scheme-dependent parameter, Bct.

• Once subtracted, F renormalized is a function of only R (cutoff→ ∞).

• The renormalized free-energy was conjectured to serve as an F-function

in odd dimensions where there are no conformal anomalies.
Jafferis, Jafferis+Klebanov+Pufu+Safdi
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• The monotonicity works for CFTs

• But the associated partition function fails to be a monotonic F-function

along the the flow.
Klebanov+Pufu+Safdi, Taylor+Woodhead

• Myers and Sinha proposed instead that the entanglement entropy (EE)

of an S2 in R3 with its complement, can serve as an F-function.

• The proper renormalization of this EE was found by Liu+Mezzei.

• Casini+Huerta+Myers have proved the general monotonicity of this Liu-

Mezzei renormalized EE in 3d.

• As the proof does not generalize to other odd dimensions, we would like

to understand, in more detail whether there are other F-functions available.

Holographic curved QFTs, Elias Kiritsis
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The deSitter entanglement entropy

• Consider a QFTd on a d-dimensional deSitter space in global coordinates

where it is a changing Sd−1 sphere:

ds2 = −dt2 +R2 cosh2(t/R)(dθ2 + sin2 θ dΩ2
d−2)

• Consider the entanglement entropy in that theory between two spatial

hemispheres that have Sd−2 as boundary.
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• The EE of the two hemispheres can be computed holographically using

the Ryu-Takayanagi formula. The result is,

SEE =Md−1
P

2R

d

∫
ddx

√
−ζ

∫ IR

UV
du e(d−2)A(u) .

Ben-Ami+Carmi+Smolkin

• This is precisely the second term that enters the curved on-shell action.

• The dS EE equals the thermal entropy of the static patch in deSitter.

• For a CFT it is also the entanglement entropy for the S2 in flat space.
Casini+Huerta+Myers

• For the de Sitter entanglement entropy a renormalization à la Liu-Mezzei

is still UV-divergent.

Holographic curved QFTs, Elias Kiritsis
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Thermodynamics in de Sitter and

(entanglement) entropy

• The F-function for 3d CFTs is given by the renormalized “free energy”
(or partition function) on the 3-sphere.

Jafferis, Jafferis+Klebanov+Pufu+Safdi

• The interpolating F − function satisfying the F-theorem is given by the
S2 entanglement entropy.

Myers+Sinha, Myers+Casini+Huerta, Liu+Mezzei,Casini+Huerta

• The connection between S3 partition function and the S2 entanglement
entropy seems puzzling at first.

• We will try to understand it a bit better in our context.

• We will show that there a natural entropy, that is also an entanglement
entropy in de Sitter (defined as the analytic continuation of the sphere)

• And that it is related to the “free-energy”/partition function on S3.
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• Consider a QFTd on a d-dimensional deSitter space in global coordinates

where it is a changing Sd−1 sphere:

ds2 = −dt2 +R2 cosh2(t/R)(dθ2 + sin2 θ dΩ2
d−2)

• Consider the entanglement entropy in that theory between two spatial

hemispheres that have Sd−2 as boundary.
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• The EE of the two hemispheres can be computed holographically using
the Ryu-Takayanagi formula. The result is,

SEE =Md−1
P

2R

d

∫
ddx

√
−ζ

∫ IR

UV
du e(d−2)A(u) .

Ben-Ami+Carmi+Smolkin

• This is precisely the second term that enters the curved on-shell action.

F = 2Md−1
p Vd

[
(d− 1)

[
edAȦ

]
UV

+
R

d

∫ UV

IR
du e(d−2)A

]
,

• The first term has also a thermodynamical interpretation: we change
coordinates on the de Sitter slices and go to static patch coordinates.

Casini+Huerta+Myers

ds2 = du2 + e2A(u)

−(
1−

r2

α2

)
dτ2 +

(
1−

r2

α2

)−1

dr2 + r2dΩ2
d−2

 .

where α is the de Sitter radius and 0 < r < α.

• Now there is a bulk horizon at r = α. The Bekenstein-Hawking entropy
can be calculated and it is equal to the dS entanglement entropy, SEE.
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• The associated temperature to this horizon is constant

T =
1

2πα
• A similar computation of the “energy” U gives

βU = 2(d− 1)Md−1
P

[
edA(u)Ȧ(u)

]
UV

Vd.

• Putting everything together we get a familiar thermodynamic formula

F = U − T S

for the de Sitter free-energy and its S3 analytic continuation.

• The standard rules of thermodynamics relate our two functions B(R), C(R).

C′(R) =
1

2
B(R)−RB′(R)

• We conclude that de Sitter entanglement entropy and Free energy on
S3 are tightly connected.

• For a CFT, dS SEE, is also the entanglement entropy for the S2 in flat
space.

Casini+Huerta+Myers
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The free energy and expectation values

• We can calculate the on-shell action, add counterterms, and remove the
cutoff:

F renorm
d=3 (R|Bct, Cct) = −(Mℓ)2Ω3

[
R−3

2 (C(R)− Cct) +R−1
2 (B(R)−Bct)

]
• Bct, Cct are constants that parametrize the scheme dependence.

• It can be shown that for ANY holographic QFT on dS

F = U − T S

for the de Sitter free-energy and its S3 analytic continuation.

• The standard rules of thermodynamics relate our two functions B(R), C(R).

C′(R) =
1

2
B(R)−RB′(R)

• in d=4 we have instead

C′(R) = B(R)−RB′(R) +
R
96

• For R < 0 the same relation holds, up to constant, branch-wise.
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Two-boundary saddle points

• Similarly, the free energy can be calculated for the two-boundary solutions

dual to holographic interfaces.

• In this case, the free energy depends on the data of both theories

• There is always competition from the factorized solutions.

• The factorized solutions have lower-free energy always.

• This would seem to imply that cross-correlators are exponetially sup-

pressed by e−N
2
c .
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• However typically there will be perturbatively connected “disconnected”

saddle points most probably power-suppressed in N .

Holographic curved QFTs, Elias Kiritsis
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AdS-relation to sources
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R, the dimensionless curvature, for UV-Reg solutions. All figures are plotted as a function of the free

parameter S(1)
∞ . In each graph, the green region belongs to the regular solutions without A-bounce and the

blue region to solutions with at least one A-bounce. In the red region, we have solutions without boundary.

The vertical dashed line in figure (a) corresponds to the global AdS solution in the uplifted theory and the

product solution is the solution right before the blue-red boundary.
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∞ ), where S(c)
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critical value for which we have the UV-Reg solution with infinite numbers of the loops.
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(a): The free

energy for UV-Reg solutions living on the black curves. The vertical red lines show the location of

Φ-bounces.
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∞ ), where S(c)
∞ ≈ −1.25 is the critical

value for which we have the UV-Reg solution with infinite numbers of loops. The vertical red lines show

the location of Φ-bounces.
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∞ = 0 is zoomed. The vertical red lines show the location of Φ-bounces.
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The AdS free energy
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(a): Free energy in terms of dimensionless curvature. The green/blue curves correspond
to the green/blue region in previous plots. Figure (b) is the zoomed region near F = 0.

The vertical red line shows for R ≳ −7.7 only solutions without A-bounce exist.

• The solution with no oscillations has the lowest free energy.

• Is there Efimov scaling here?
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Solutions with no AdSd+1 boundary

• These are solutions that go from Φ = −∞ to Φ = ±∞, and are classified

by the number of Φ-bounces, n = 0,1,2, · · · .

• We believe that a reasonable interpretation of such solutions is as inter-

faces between topological QFTs on each side.

• There are only topological observables in the bulk QFTs.

• If the slices have a (side) boundary, then there are non-trivial correlation

functions of interface operators.

• They are associated to linearized solutions around the In solutions sourced

at the side boundary.

Holographic curved QFTs, Elias Kiritsis
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Spectra

• We linearize the theory around the previous solutions.

• The metric gAB in terms of the background metric g(0)AB and its fluctuations

hAB becomes

ds2 = a2(y)
[
g
(0)
AB + hAB(y, x

µ)
]
dxAdxB ,

hyy → 2ϕ , hµy → Aµ , hµν → hµν .

Φ = Φ0(y) + χ(y, xµ) .

• We do the standard decomposition:

Aµ = ∇µW +ATµ ,

hµν = 2ζµνψ+2∇(µ∇ν)E +2∇(µV
T
ν) + hTTµν

with

∇µATµ = 0 , ∇µV Tµ = 0 , ∇µhTTµν = hTTµµ = 0 .
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• After some song and dance we end up with two propagating degrees of

freedom as with flat slices:

♠ Transverse traceless spin-2 → massive 4d graviton states.

hTTµν = h(y) ξµν(x) , (□2 −
2

3
κ−M2)ξµν = 0

h′′ +3
a′

a
h+M2h = 0

• This can be mapped as usual into a 1-d Schrodinger equation with a

potential.

♠ A single scalar mode satisfying

λ̂′′m(y) +Aλ̂′m(y) +Bλ̂m(y) = 0 , z ≡
aΦ′

0

a′
.

A = 3
a′

a
+6

z′

z

3m2 +4κ

(9m2 +12κ− κz2)
, B = m2 +2κ+

2κaz′

a′z

3m2 +4κ

(9m2 +12κ− κz2)
.

• Solving for the eigenvalues of this is harder.

72-



(∇µ∇µ −
1

3
sκ)δh =



− 1
α2

(ν2 − 9
4)δh dS

−k2δh Minkowski ,

1
α2

(ν2 − 9
4)δh AdS

ν =
1

2

√
(d− 1)2 +4m2α2 , m = m,M .

• Tachyonic stability

The (4d) mode is tachyon-stable if



|Re(ν)| ≤
3

2
, dS

k2 ≤ 0, Minkowski

Re(ν) ̸= 0, AdS
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• Independent of the spin, the above relations translate to

The mode is tachyon-stable if



m2 ≥ 0, dS

m2 ≥ 0, Minkowski ,

m2 ≥
3

4
κ AdS

• In the dS4 space-time, in order to have a positive norm state for graviton

modes, the mass squared should satisfy

M2α2 > 2 ⇒ M2 >
2

3
κ ,

which is known as the Higuchi bound.

For each holographic theory the spectra can be calculated numerically.
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Flow fragmentation, walking and emergent

boundaries
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(a): An example of an RG flow between a maximum and a minimum. For the solid curves,

(Max−,Min+) is a flow between a UV fixed point at maximum Φ = 0 and another UV fixed

point at the minimum Φ = Φ1. For the (Max−,Min−) part of the solution, the minimum

is an IR fixed point. The dashed curves show the flipped image of the solid curves. The

black dotted curves are other possible RG flows with the same UV fixed points. (b): At

a fixed Φ0 when the value of S0 is exactly on the border of type WLR
1,0 and type WLL

1,1 , we

have the WLMin+

1,0 branch solution (the middle flow). If we increase or decrease the value

of S0 we have the WLR
1,0 or WLL

1,1 solutions respectively.
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The behavior of the holographic coordinate and scale factor in terms of Φ for the WLMin+

1,0

and WLMin−
0,0 RG flows. The red curve belongs to WLMin+

1,0 and the blue to WLMin−
0,0 .

73-



• In this limiting region we have an explicit example of solution fragmentation.

• There are two phenomena visible in this example.

♠ Walking. This the phenomenon when an intermediate AdS region appears between the
UV and IR, or between UV and UV as is the case here

♠ The emergence of a new boundary.

(Max−,Max−) → (Max−,Min−) ⊕ (Min+,Max−)

• Such flows can be rotated into cosmological solutions with a cosmological bounce, no
singularity and ”inflation” at the place of big bag.

Holographic curved QFTs, Elias Kiritsis
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Curvature-driven phase transitions and

confinement, II

• There is a special value of the asymptotic exponent a in

V ≃ −V∞e2aΦ + · · · ,

that we call the Efimov bound

a = aE ≡
2√

(d− 1)(9− d)
,

• There are two regimes:

aC < a < aE and aE < a < aG

• a > aE: Efimov regime. the vev C = C(R) is a multi-valued function of

R exhibiting an Efimov spiral that circles around the critical value (Rc, Cc)
of the type I solution.
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• In this case the curvature-driven transition is first order.

• a < aE: Monotonic regime. There is no Efimov spiral, but there are two

qualitatively possible behaviors in which the order of the phase transition is

different.

♠ In the first case, the vev C = C(R) is multi-valued and exhibits a single

swing (instead of a spiral) as it passes through (Rc, Cc).

• The free energy contains a swallow tail and the transition is first-order.

♠ In this second case, the vev C = C(R) is single-valued and there is a single

regular solution for each value of R.

• In this case, we show that the transition is at least second-order, but it

may also be higher-order.

order of the transition = 1+⌈δ⌉ ≥ 3 , δ =
(d− 1) a+2

√
1− (a/aE)

2

(d− 1) a− 2
√
1− (a/aE)

2
> 1
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Parameters in IHQCD

• We have 3 initial conditions in the system of graviton-dilaton equations:

♠ One is fixed by picking the branch that corresponds asymptotically to
λ ∼ 1

log(rΛ)

♠ The other fixes Λ → ΛQCD.

♠ The third is a gauge artifact as it corresponds to a choice of the origin
of the radial coordinate.

• We parameterize the potential as

V (λ) =
12

ℓ2

{
1+ V0λ+ V1λ

4/3
[
log

(
1+ V2λ

4/3 + V3λ
2
)]1/2}

,

• We fix the one and two loop β-function coefficients:

V0 =
8

9
b0 , V2 = b40

(
23+ 36b1/b

2
0

81V 2
1

)2
,

b1

b20
=

51

121
.

and remain with two leftover arbitrary (phenomenological) coefficients.
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Fit and comparison

HQCD lattice Nc = 3 lattice Nc → ∞ Parameter

[p/(N2
c T

4)]T=2Tc 1.2 1.2 - V 1 = 14

Lh/(N2
c T

4
c ) 0.31 0.28 (Karsch) 0.31 (Teper+Lucini) V 3 = 170

[p/(N2
c T

4)]T→+∞ π2/45 π2/45 π2/45 Mpℓ = [45π2]−1/3

m0++/
√
σ 3.37 3.56 (Chen ) 3.37 (Teper+Lucini) ℓs/ℓ = 0.15

m0−+/m0++ 1.49 1.49 (Chen ) - ca = 0.26

χ (191MeV )4 (191MeV )4 (DelDebbio) - Z0 = 133/4

Tc/m0++ 0.167 - 0.177(7)

m0∗++/m0++ 1.61 1.56(11) 1.90(17)

m2++/m0++ 1.36 1.40(4) 1.46(11)

m0∗−+/m0++ 2.10 2.12(10) -
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The pressure from the lattice at different N

Marco Panero arXiv: 0907.3719
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The entropy from the lattice at different N

Marco Panero arXiv: 0907.3719
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The trace from the lattice at different N

Marco Panero arXiv: 0907.3719
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The speed of sound
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The bulk viscosity in IHQCD

Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009

• Pure glue only. Calculations with other potentials show robustness.
Gubser
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