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Motivation and overview

Strongly interacting QFTs at finite temperature and density are of interest for
heavy ion collision physics (RHIC, NICA, FAIR...) and relativistic astrophysics
(cores of neutron stars etc)
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Motivation and overview (continued)

Holography was instrumental in providing insights into transport in
strongly interacting QFTs at finite temperature (e.g. shear viscosity)

Theories at finite density were considered from 1998-1999
(Cai and Soh, hep-th/9812121, Cvetic and Gubser, hep-th/9902195, hep-th/9903132)

For N=4 SYM theory, the top-down construction involved rotating
black 3-branes in 10d whose dimensional reduction on a
five-sphere gave the STU solution of 5d gauged SUGRA
(Behrndt, Cvetic, Sabra, hep-th/9810227)

A special case of the STU solution is the Reissner-Nordstrom black hole
(brane) of Einstein-Maxwell gravity — used later in many bottom-up scenarios

However, the STU solution is unstable w.r.t. fluctuations of neutral scalars.
Here, we shall describe thermodynamic and hydrodynamic aspects of this instability



The Gubser-Mitra conjecture (Correlated Stability Conjecture)

For black branes, classical instabilities (e.g. the Gregory-Laflamme instability) occur
if and only if the system is thermodynamically unstable, typically indicated by a
negative specific heat.



Finite-temperature QFT with multiple conserved charges

Consider a QFT with a global symmetry group G

(for N=4 SYM, this is the R-symmetry SU(4) R)

The grand canonical partition function involves a maximal set of commuting conserved charges

Z(B,pua)=Tr exp|[—B(H — MAQA)]
Z(8,9) = Tr [Ulg)e PH] = Tr [U(n)U(g)U(n) e PH]
T g e 0 20 g

Any group element g is equivalent under conjugation to an element h of a maximal
Abelian subgroup of G, which, in turn, can be written as an exponential
of a sum of generators of a Cartan subalgebra

For SU(4) R, need to introduce 3 chemical potentials

Yaffe and Yamada, hep-th/0602074; Haber and Weldon, 1982



Probability of a fluctuation in a thermodynamic system in thermal equilibrium
is given in the microcanonical ensemble by Einstein's formula

WA = GAS

AS = S’ — S is the difference between the entropy of a near-equilibrium state
emerging as a result of the fluctuation and the entropy of the system in thermal equilibrium.

For small fluctuations characterised by the parameters &1, ...&, we have
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Here, the coefficients are: AL —(825/6&8&) £;=0

For a stable thermodynamic equilibrium, the quadratic form should be positive definite.

(The leading principal minors must be positive.)



For the entropy and charges as independent variables, & = 5(8, nz)

1 O%e
WA ~ exp _—28 g

T0E

In this formula, T; = (S, nk) are the entropy density and the densities of charges

The eigenvalues and eigenvectors of the Hessian identify the unstable hydrodynamic
and dual quasinormal modes of the gravitational background
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To see this explicitly, we need to develop relativistic hydro with multiple charges

For now, we can just see what happens when we have an equilibrium state
at finite temperature and finite density of one charge



Hydrodynamics at finite density of one charge: predictions
(for details, see e.g. P.Kovtun, 1205.5040 [hep-th])

With the spatial momentum along z direction, we have

1) The shear momentum diffusion pole in correlators of currents and energy-momentum

tensor such as GE oL L

n
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2) The sound and the charge diffusion poles in correlators of currents and energy-momentum
tensor such as <TttTtt> <TttTt2> <TttJZ> <JtJZ> <<]sz> <tht>
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We may suspect instabilities arising in the sound channel



Sound attenuation constant:
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Charge diffusion constant:
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w=¢+4+ P: enthalphy density
n : charge density

n > 0: shear viscosity

£ ) bulk viseosity

a > U condiietivity

Xab = Ong/Oup :  susceptibility matrix related to the Hessian

Note: charge diffusion constant is sensitive to the determinant changing sign



Hydrodynamics with multiple conserved charges

Conservation laws: 8MTW — () 8MJ5 == [} a=1,2,..N¢

Conservation laws are supplemented by the constitutive relations:
TEE - cghgt Lp AR pSEE L ARG g0 0(0%)

J2 —neult o AV 9 00

First order transport coefficients: 7] C Oab

(shear viscosity, bulk viscosity, conductivity matrix)

Parameters and tensor structures
Ya = MG/T

AR gt o e
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Kubo formulas for transport coefficients
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For small fluctuations around equilibrium, one has the system of equations

Oe Oe
AR T T a T £ e
(8T>,Y 00T + (3,% )T 0167, + (e+p)00u 0

2d.— 2

= ¢)0z0u” =0

op op
= — | 0,0T +T 0Ye —
(e+p) Oz0u” + (aT)7 0 £ (aua )T 020%q — (

Oy 00T + n, O0u” + T o O — Oap ('?i d. =10
ol ~ a,ub T



This system can be written in a matrix form

| Xup0: + Yap0, — Zap0s| Ve =0

¢ 0 Va 0 eH]) Oa 0 0 Oa
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The parameters are
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The hydro modes dispersion relations are determined from the condition

C

det [—wX + kY —ik*Z] =0



There are Nf diffusion modes
W(a)(k‘) = —iD(a)kQ He

and two sound modes
wilk) =tk %rzf -

whose parameters are determined by the matrices X,Y,Z, e.g.

: 1 det My
Coili==
= efp)iNe ) idet X

e Vioaw V2

I =
ctp | (etp)det(X)2e2

The analysis shows that positive definite Hessian (thermodynamic stability) implies
hydrodynamic stability



N = 4 supersymmetric SU(N) YM theory

Gliozzi,Scherk,Olive’77
Brink,Schwarz,Scherk’77

 Field content:

A, b ¥4 all in the adjoint of SU(N)

e Action:
1 4 1 2 2 1 2
5 — g%M/d:ctr{§FW+(DM<I>I) RS

+ 40T+ D, ¥ — OT [}, \If]}

e Large N: effective coupling = ‘t Hooft coupling ) = g%, NV

(super)conformal field theory = coupling doesn’t run



N = 4 supersymmetric SU(N) YM theory

Consider the theory at finite temperature and finite density of three R-charges
(or three chemical potentials)

a) In 3+1 Minkowski space

b) On a three-sphere (plus time)

Do we know the equilibrium state at all values of T'/;
including the low-temperature limit?

Holography may help to answer this question in the limit of infinite N and large ‘t Hooft
coupling. But we can also consider the perturbative regime, and compare

Here, we’ll focus on the scenario a). Scenario b) involves Hawking-Page transition
(see e.g. Yamada and Yaffe, hep-th/0602074)



4-dim gauge theory — large N,
10-dim gravity strong coupling

g~ HolOgraphically dual system
in thermal equilibrium

THawking SBekenstein-Hawking <—> s

Gravitational fluctuations

(and fluctuations of other fields) S Hamang ey eaULT I
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Quasinormal spectrum PELS

Birmingham, Sachs, Solodukhin, 2001; Son and AOS, 2002



In quantum field theory, the dispersion relations such as
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appear as poles of the retarded correlation functions, e.g.
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Singularities of a (retarded) Green’s function in the complex frequency plane

Quasinormal modes of dual black holes

Imro
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Shear channel ! :

Strong (infinite) coupling

Real spatial momentum q



Gravity dual to N=4 SYM
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The Lagrangian of 5d SUGRA contains the metric, three Abelian fields and three scalars

The STU background depends on the non-extremality parameter 7+ and three charges ();
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Gravity dual to N=4 SYM (continued)

Thermodynamics follows from the standard black brane thermodynamics

1
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The equation of state
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allows to find the stability region via the Hessian



The thermodynamic stability region

Computing the leading principal minors of the Hessian (rather than the eigenvalues),
we find the stability conditions in the space of 3 chemical potentials

Zero temperature
limit is shown as
a blue surface

K3

0

2—/{1—lﬁ)2—/ﬁ)3+/ﬁ)1/ﬁ32/63:0

K1+ Ko + k3 < 3



We can consider simple examples such as the case of a single chemical potential

(Kfla K2, "{'3) " ("17 07 O)

We can compute all parameters of the first-order hydro analytically:
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speed of sound

shear viscosity

bulk viscosity

shear momentum
diffusion constant

The R-charge
diffusion constant



The full set of hydro modes

In the sound channel - appearing as poles in the correlators
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In the shear channel - appearing as poles in the correlators
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Thermodynamic and dynamic instability

The Hessian in variables S,711,N92,N3

2—(—54+K)k (—14+kr)VKE
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ab = | 3v2mr(1+k)? 3(1+rK)? L det frap = 2472(1 + k)2
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Eigenvalues: A= o=
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There is a thermodynamic instability at x = 2



Thermodynamic and dynamic instability

Fluctuation equations of the STU background follow from the equations of motion of 5d SUGRA

m 1 Wi
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Generically, fluctuations of the metric, the three U(1) fields and the three scalars are coupled.

However, eigenvectors of the Hessian help to isolate the set of fluctuations
the unstable mode couples to. In the single charge case, the relevant U(1) field couples to
the metric, other two U(1) fields decouple.

In 1005.0819 [hep-th], Buchel numerically found an unstable mode of the type

(2 -K)
2l

w=—1A G rOlg) A 033

This is exactly the hydro diffusion mode postdicted by our analysis



Another interesting case to consideris (K1, k2, kK3) = (K, K, K)

The STU solution in this case is given by

(7TT0L)2
uH?

(rTyL)*H H L2

2 2 2 2
(dw + dy” + dz )—|—4fu2du

e L

L

)

A Aley 4 = A T/ 26(1 + K)

H(u) = Hi(u) = Ha(u) = H3(u) =1 + ku

The background metric can be brought to the AdS-Reissner-Nordstrom form, with
background scalars trivial:

To L2t ~ ThLi2El e
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V2Q(1 + k)a .
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Numerous bottom-up constructions use this background as a basic finite density gravity dual
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Thermodynamic and dynamic instability
in the case of three chemical potentials

Thermodynamic instability is seen by computing the Hessian:
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The eigenvalues of the Hessian are:
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Two identical eigenvalues change sign, the determinant remain non-negative

,‘ T T T T T T T T T T T T T T T T |
1-Of =
0.85 a
0.65 ]

i s ]
0.47 o - P 1

g iy
0.2 |

f Ay

0.07
| | | | |
0.0 0.5 1.0 1.5 2.0



Dynamic instability
in the case of three chemical potentials

We now consider linear fluctuations of the background
g,ul/ = g,ul/ T h,LW
AL — AL+ 6 A
N e oo : 1 2 3
ote that although Au = Au - Au , generically, 5Au = 5Au # 0A° , and

similarly for scalars

; : 3
h’tt = —gtt(U)G_lwt-i—ZqZHtt (U) 5A1 i 7TTO ( 1 + K; 1/2) —iwt+iqz z (U),
he =g Gl e R )
b %gzz(u)e_m“qz H,x(uw) SA; = TToV2 (H 15 1/2> sty gl
1 —twt+iqz
st Ly 0@’ + qo a’

hi, = gzze—iwt—l—iqz Hy, (u) ) )
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Generically, coupled fluctuations of the metric, 3 gauge fields and 3 scalars



Dynamic instability
in the case of three chemical potentials (continued)

Using the eigenvectors of the Hessian, we can re-arrange the fluctuations as
b =B 8 = 804 £5;
where the “center of mass” variables are defined as

EM = (E. +E2+E3) /3 Scm = (81 + 82+ s3) /3

The equations for the new variables decouple:
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The spectrum of linear fluctuations in the complex frequency plane for k<1 (blue) and k>1 (red)
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In fact, we can compute the diffusion coefficients analytically:

1 2—-kK)(2+k)

Single chemical potential state: Dp =
Snl 1+ kK
(k,0,0)
Two equal chemical potentials state: B e
2T 1+ Kk
(k, k,0)
Three equal chemical potentials state: b (2 i /{)(1 i H)
ArT(1 + k)
(K, K, K)

In all cases, the change of sign in the diffusion coefficient comes from the matrix of
susceptibility (i.e. thermodynamic instability implies hydro instability)



Conclusions

We have constructed relativistic fluid dynamics with multiple charges,
including relevant dispersion relations for quasiparticle excitations

We have explicitly demonstrated that due to the instability we identified,
the low-temperature equilibrium state of strongly coupled N=4 SYM theory
is not described by a dual AdS-Reissner-Nordstrom (RN-AdS) black hole,

contrary to a widely held belief (see also Minwalla et al, 2024).

This finding challenges the common paradigm of using the RN-AdS
solution as a benchmark in holographic models of low-temperature
condensed matter systems.

We show how predictions from fluid dynamics with multiple charges
help establish an explicit connection between
thermodynamic and dynamic instability in a
quantum field theory with a gravity dual.






