Applying Noether's theorem to the pure AdS₃ gravity

Jie-qiang Wu (ITP)

The talk is based on an ongoing work with
Zhe Feng, Zi-en Gao, Xiao-shuai Wang, Hongbao Zhang

Holographic applications: from Quantum Realms to the Big Bang

July 14th, 2025

- In this work, we revisit the approach with the covariant phase space formalism for the asymptotic symmetry analysis in the pure AdS₃ gravity
- We reformulate the approach into a version which is exactly in the framework of Noether theorem
- Specifically, we get the following two results:
 - First, we show that the asymptotic symmetries are indeed symmetries of the pure AdS₃ gravity in the sense of Noether theorem
 - Second, we compute the associated charges of the asymptotic symmetries with the expression of Noether charge, which reproduces the result from the ordinarily used approach with the covariant phase space formalism.

Quantum gravity

- Constructing quantum gravity is an important but difficult problem in physics
 - The singularity problem
 - The black hole information paradox
 - The trans-planckian problem
- However, these problems are too difficult for me

A simpler set up

- To really make some progress, we consider a simpler setup and ask ourselves the following question
- Restricting to the effective field theory, low energy, and few body level, do we fully understand quantum gravity?
- There are still some unsolved issues:
 - Conserved charges

```
Harlow, Wu, 1906.08616
```

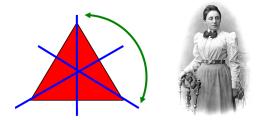
• Diffeomorphism invariant observables

```
Harlow, Wu, 2108.04841
Wang, Wu, 2312.10751
Held, Kaplan, Marolf, Wu, 2401.02487
```

- Solving the constraints in quantum level
- Constructing the Hilbert space
- Von-Neumann entropy
- Our focus: how to properly define conserved charges

Symmetries and conserved charges

- Symmetries and conserved charges are important topics in physics
- Noether's theorem



 Applications in classical mechanics, quantum mechanics, classical field theory, quantum field theory

The difficulty in applying Noether's theorem to gravity

- However, for gravitational system, the application of Noether's theorem is difficult
- The difficulty is from the diffeomorphism symmetries

Covariant phase space formalism

 The more ordinarily used approach: the covariant phase space formalism

```
lyer, Wald, gr-qc/9403028

Barnich, Brandt, hep-th/0111246

Compere. 0708.3153
```

Wide applications in the asymptotic symmetry analysis

```
Barnich, Brandt, hep-th/0111246
Compere, 0708.3153
Strominger, 1703.05448
```

Our goal

- Necessities for a modification:
 - Ambiguities in terms of the boundary terms
 - Completeness of the framework
- Our goal: reformulate the approach with the covariant phase space formalism into a version, which is exactly in the framework of Noether's theorem

 Previous attempts: finite systems with timelike or null boundaries

```
Harlow, Wu, 1906.08616

Shi, Wang, Xiu, Zhang, 2008.10551

Chandrasekaran, Speranza, 2009.10739
```

- Key point: treating the boundary effects systematically
- This work: infinite systems with asymptotic boundaries
- Preliminary attempt: the pure AdS₃ gravity

Noether's theorem

 \bullet We illustrate Noether's theorem with a 0+1 dimensional system

$$L = L(t; q_a, \dot{q}_a, \ddot{q}_a, ..., q_a^{(n)})$$

The covariant phase space formalism

- ullet To introduce Noether's theorem, we need to reformulate the 0+1 dimensional system into the Hamiltonian formalism
- Here, we take use of the covariant phase space formalism
- Structures in the covariant phase space formalism:
 - Pre-phase space $\widetilde{\mathcal{P}}$: the set of solutions
 - Symplectic form ω : read out from the Lagrangian

- ullet We now read out the symplectic form ω from the Lagrangian
- Variation of the Lagrangian $\delta L = E^a[t; q_a]\delta q_a + \frac{d}{dt}\theta[t; q_a, \delta q_a]$
- Symplectic potential: θ (a one-form of the set of configurations)
- Symplectic form: $\omega = \delta \theta$ (a two-form of the set of configurations)
- The symplectic form of the pre-phase space: $\omega|_{\widetilde{\mathcal{P}}}$ (The pull-back of ω to the pre-phase space $\widetilde{\mathcal{P}}$)

The symmetry

- We now introduce the notion of the symmetry. Here, we need to go back to Lagrangian formalism
- A symmetry in the frame of Noether's theorem:
 - an infinitesimal transformation;
 - it acts on all of the configurations;
 - its change on the Lagrangian is a total derivative, up to a configuration independent anomaly term
- Representation in a more rigorous level:
 - Symmetry: $X_{\lambda}=\int dt \delta_{\lambda} q_{a}(t) rac{\delta}{\delta q_{a}(t)}$
 - The change of the Lagrangian under the symmetry

$$X_{\lambda} \cdot \delta L = \frac{d}{dt} \alpha_{\lambda} [t, q_{a}] + \beta_{\lambda} (t)$$

 $X_{\lambda} \cdot \delta L$: acting the symmetry to the Lagrangian.

 $\frac{d}{dt}\alpha_{\lambda}$: the total derivative term.

 $\beta_{\lambda}(t)$: the anomaly term which is configuration independent

The Noether charge

- Noether charge: $Q_{\lambda} = X_{\lambda} \cdot \theta \alpha_{\lambda}$
 - X_{λ} : the symmetry, a vector field of the set of configurations θ : the symplectic potential, a one-form of the set of configurations
 - α_{λ} : the total derivative term appearing in $X_{\lambda} \cdot \delta L$

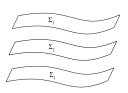
Noether theorem

- First, the Noether charge Q_{λ} is time independent, up to a configuration independent anomaly term $\frac{d}{dt}Q_{\lambda}|_{\widetilde{\mathcal{P}}}=\beta_{\lambda}.$
- Second, the symmetry indeed maps a solution to a solution $X \cdot E^a|_{\widetilde{\mathcal{D}}} = 0$
- Third, the Noether charge Q_{λ} is indeed the charge conjugate to the symmetry X_{λ} .

 Namely, they satisfy the following Hamiltonian equation $X_{\lambda} \cdot \omega|_{\widetilde{\mathcal{D}}} = -\delta Q_{\lambda}|_{\widetilde{\mathcal{D}}}$

Generalization to the higher dimensional systems

 Higher dimensional generalization: we view the spatial direction as the internal degrees of freedom; and we directly transplant the 0+1 dimensional result to the higher dimensional system



- The definitions of θ and α : $\delta S = \int d^{d+1}x E^a \delta \phi_a + \theta|_{\Sigma_f} - \theta|_{\Sigma_i}$ $X \cdot \delta S = \alpha|_{\Sigma_f} - \alpha|_{\Sigma_i} + \beta|_M$
- ullet The Noether's theorem is exactly the same as the one of 0+1 dimensional system

A comment for the computation of Noether charge

- Two approaches of the Noether charge
 - Approach I: with the Noether charge, $Q = X \cdot \theta \alpha$
 - ullet Approach II: with the Hamiltonian equation: $X\cdot\omega|_{\widetilde{\mathcal{P}}}=-\delta Q|_{\widetilde{\mathcal{P}}}$
- The first approach: exactly what we learn in classical mechanics, $H = p\dot{q} L$
- The second approach: the widely used one in gravity
- Our goal: compute the charge in gravity with the first approach, namely with the expression of the Noether charge

The application to the AdS₃ gravity

- We now apply Noether's theorem to the the pure AdS_3 gravity
- Specific targets: studying the asymptotic symmetries and their associated charges

The strategy

- The strategy:
 - Define the pure AdS₃ gravity in the Lagrangian formalism
 - Take a variation of the action Read out the symplectic potential θ
 - Act the asymptotic symmetries to the action Read out α , β
 - Compute the Noether charge with $Q = X \cdot \theta \alpha$

Technical issue

- Technical issue: a systematical treatment of the boundary effects
 - Definition: holographic renormalization de Haro, Skenderis, Solodukhin, hep-th/0002230
 - Reformulating into the covariant phase space formalism
 Harlow, Wu, 1906.08616
 - Acting the symmetry to the action

Acting the asymptotic symmetry to the action

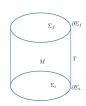
- The boundary effect in applying the asymptotic symmetry to the action
- The diffeomorphism is not parallel to the cutoff surface

- The effects:
 - For bulk Lagrangian density $X_{\xi} \cdot \delta(\int_{M_{\epsilon}} \mathbf{L}) = \int_{M_{\epsilon}} \mathcal{L}_{\xi} \mathbf{L} = \int_{M_{\epsilon}} d(\xi \cdot \mathbf{L}) \supset \int_{\Gamma_{\epsilon}} \xi \cdot \mathbf{L}$ • For boundary Lagrangian density

$$X_{\xi} \cdot \delta \mathbf{I} \neq \mathcal{L}_{\xi} \mathbf{I}$$

 The change of the action under the asymptotic symmetry:

$$X_{\xi} \cdot \delta S = \alpha_{\xi}|_{\Sigma_f} - \alpha_{\xi}|_{\Sigma_i} + \beta_{\xi}|_{M}$$



- The expressions of α_{ξ} , β_{ξ} $\alpha_{\xi} = \lim_{\epsilon \to 0} \left[\int_{\Sigma_{\epsilon}} \xi \cdot \mathbf{L} \int_{\partial \Sigma_{\epsilon}} \frac{1}{8\pi G} \left((K-1) \gamma^{\mu}_{\ \nu} \xi^{\nu} D^{\mu} (n_{\nu} \xi^{\nu}) \right) \epsilon^{\Gamma}_{\ \mu \mu_{1}} dx^{\mu_{1}} \right]$ $\beta_{\xi} = \int_{\Gamma} \frac{1}{32\pi G} R^{(0)} D^{(0)}_{\ a} \xi^{(0)a} \frac{1}{2} \epsilon^{(0)}_{\ a_{1}a_{2}} dx^{a_{1}} \wedge dx^{a_{2}}$ Here, α_{ξ} contains a bulk term and a boundary term β_{ξ} is configuration independent
- The asymptotic symmetry is indeed a symmetry in the sense of Noether's theorem
- Computing the Noether charge $Q_{\xi} = X_{\xi} \cdot \theta \alpha_{\xi}$

• Two results:

- The asymptotic symmetry is indeed a symmetry in the sense of Noether's theorem
- Noether charge:

$$\begin{aligned} Q_{\xi} &= X_{\xi} \cdot \theta - \alpha_{\xi} \\ &= \int_{\partial \Sigma} \frac{1}{8\pi G} (-K^{\mu\nu} + K \gamma^{\mu\nu} - \gamma^{\mu\nu}) \xi_{\nu} \epsilon^{\Gamma}_{\mu\mu_{1}} dx^{\mu_{1}} \end{aligned}$$

consistent with the covariant phase space formalism and the boundary stress tensor

Discussions

- A "new" approach; open questions:
 - TMG
 - Kerr/CFT
 - Higher dimensional theories
 - Theories in asymptotic flat spacetime
- Boundary effects
- Classical anomaly

Thanks for your attention!