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AdS;x M9 near-extremal spacetimes

@ Recent evidence for duality between near-AdS; spacetimes and SYK
models [KITAEV’'15, SACHDEV’15, MALDACENA & STANFORD’16, MALDACENA, STANFORD &

YANG'16, JENSEN’16, ENGELSOY, MERTENS & VERLINDE ‘16].

@ Large families of holographic theories have black hole solutions with
an AdS;xS9 near-extremal geometry.

@ Some thermodynamic properties of these black holes can be
deduced by KK—reducing to Ad52 [ALMHEIRI & POLCHINSKI'14, NAYAK ET AL'18,

ILiEstu & TURIACI'20].

@ To what extent are their dynamical properties at low temperature
controlled by the AdS, geometry/the Schwarzian effective action?



AdS;xR? near-extremal spacetimes

@ Charged planar black holes extensively investigated in applied
AdS/CFT, eg
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@ They are dual to charged fluids in a flat geometry, possibly subject
to various instabilities at low temperature.

@ In the normal phase, they often display an emergent AdS,xRY
near-extremal geometry
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AdS;xR? near-extremal spacetimes: EFT at finite T

@ At frequencies w, k < T, the low-energy dynamics is controlled by
hydrodynamlcs Whether Tre >1 [ERDMENGER ET AL’'08, BANERJEE ET AL'08] OF

~

Tre <1 (Boavar e ar09,710), eg for charged fluids:
VT =0 V,Jt=0

@ Solving for linear perturbations, retarded Green's functions display
gapless hydrodynamic poles

longitudinal sound: w(k, T) = +c(T)k — iT(T)k* + O(k?)

longitudinal thermal diffusion: w(k, T) = —iDw(T)k?* + O(k*)
transverse momentum diffusion: w(k, T) = —iD,(T)k*>+O(k*)



AdS;xR? near-extremal spacetimes: Low-T spectrum

T @ For Tr. <1, the hydrodynamic modes
coexist with a tower of gapped modes
controlled by the SL(2,R) symmetry of

the AdS, xR? geometry:
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Coalesce into a branch cut w?2(H)—1 at
0 . T=0 [FAULKNER ET AL’09, EDALATI ET AL'09,710].

0 1000 KT

[AREAN ET AL, 2011.12301]
@ Surprisingly, gapless modes persist at T = 0 besides the branch cut
[EDALATI ET AL'09,’10; DAVISON & PARNACHEV'13, AREAN ET AL'20].

w=—iDp(T =0)k> + ...

@ This usually signals an emergent global symmetry (eg Fermi liquids,
superfluids)



AdS;xR? near-extremal spacetimes

@ Can we derive an EFT which captures both the hydrodynamic
modes and the gapped critical modes?

@ What is the emergent symmetry and what causes it?
@ Relation to the Schwarzian and AdS,?

@ This could also be relevant for the strange metallic phase of cuprate
high T, superconductors.



Strange metals: Drude or quantum critical?
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@ p ~ T over most of the OD phase diagram. From the Drude

formula [LEGROS ET AL, 1805.02512]:
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@ Also reminiscent of quantum criticality [sacubsv, zaanen), where T is

the only scale.



Strange metals: Drude or quantum critical?
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@ AC conductivity displays a Drude peak and extra mid-IR spectral
weight. Emergent branch cut [VAN DER MAREL, COND-MAT/0309172; VAN HEUMEN ET
AL, 2205.00899] 7

@ Data also displays w/T scaling: quantum criticality?



(Yukawa-)SYK models
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@ 1d spatial extensions of SYK models also display a similar spectrum
at low temperatures.

@ 2d Yukawa-SYK models reproduce aspects of strange metal
thermodynamics and transport [patse st ar, 2203.04990; Guo et AL, 2308.01956].
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This talk

@ Present an analytic expression for the probe G_@ in a planar black
hole spacetime with a near-extremal AdS,xR? geometry.

@ The calculation is a careful extension beyond leading order of
matching calculations done in previous literature pavison & Parxacusy,
1303.6334], assuming

Wre ~ Tre ~ k2r§ <1

o Keeping track of irrelevant deformations away from AdS,xR? was
essential.

@ Captures all the dynamics of the hydro pole, the gapped poles, and
the emergent T = 0 spectrum: strongly suggests that the EFT can
be constructed a la fluids/gravity (see also norrra er av. 2005.00016: C.

YUE’s 'I'ALK]).
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Key result: Analytic computation of G,

w? (1 - Kk*G/3)
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Charge diffusion pole
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Key result: Analytic computation of G,

w? (1 - Kk*G/3)

G = ,
P i+ K (4T + 2(K% + iw)G + 3k log 3 — 6)
1\
6 Gapped IR poles
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Pole-snatching

w? (1 - Kk*G/3)

G = ,
P i+ K (4T + 2(K% + iw)G + 3k log 3 — 6)
8
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/&: 6 Parity: poles with a real part come
a > in pairs [KAMINSKI ET AL, 0911.3610].
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Key result: Analytic computation of G,

w? (1 - Kk*G/3)
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Key result: Analytic computation of G,

w? (1 - Kk*G/3)
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and log branch cut forms



Holographic model

@ Background spacetime

2
1
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2 dr?
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ds® = > < f(r)dt® + 0 +dx >,
m?r? m?r2\ r3 ;
f(r)=1- 5 —(1— 2h>rfj’ Y = mdyx'

@ Emergent AdS,xR? geometry

A r2 ) V6
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@ Analogous results for other spacetimes, eg Reissner-Nordstrém.
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Gauge field dynamics

@ Probe gauge field

S= —/d“x\/—T;%F2

@ Gauge field perturbation

0A, = e Wt=kg (1), E, = wax(r) + kay(r)

@ Perturbation equation

[%}/JFEX:o
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Matching calculation

f(NE, 7'
N ke’ S ——E =0
Lﬂ —wef(n] T
outer @ Outer region
. inner N r2w2/f2 r2k2/f <1
- @ Inner region

C/re7<h/re Z €

matching

@ Expand perturbation

equation in both regions.
[CrEDIT: C. SuPIOT]

@ Solve in each region: inner solution, outer solution.

@ Expand ingoing wave condition order by order in e:

. . " dr
SA. ~ eflw(H»r ) , *(r) = / 1
H ( ) o f(rl)

20



Backreaction?
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[AREAN ET AL’20)]

Leading order result from matching Davisox & Parxaciev'13]

w (k, T =0)=—iD,(T = 0)k* + O(k*)

Next-order correction, small temperature correction: WIP.

("] Non—analytic contributions? [MoITRA ET AL, 2005.00016; C. YUE’S TALK

(Yukawa-)SYK models?
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Summary and outlook

w? (1 - Kk*G/3)

GR = . (w, k, T) = re(w, k, T
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1ok @ Resultvalid atat 0 < r. T < 1: EFT
osl for scales all the way to 1/r.?
Q .
§ 0.6 @ Construct holographic effective action
g 0.4F [NICKEL & SoON, 1009.3094; DAVISON ET AL, 2210.14802]:
T oal Identification of emergent symmetry.
0.5 = @ Backreaction? Impact of Schwarzian

i = ?
KT action on T = 0 gapless modes?
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