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AdS2×Md near-extremal spacetimes

Recent evidence for duality between near-AdS2 spacetimes and SYK
models [Kitaev’15, Sachdev’15, Maldacena & Stanford’16, Maldacena, Stanford &

Yang’16, Jensen’16, Engelsoy, Mertens & Verlinde ‘16].

Large families of holographic theories have black hole solutions with
an AdS2×Sd near-extremal geometry.

Some thermodynamic properties of these black holes can be
deduced by KK-reducing to AdS2 [Almheiri & Polchinski’14, Nayak et al’18,

Iliesiu & Turiaci’20].

To what extent are their dynamical properties at low temperature
controlled by the AdS2 geometry/the Schwarzian effective action?
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AdS2×Rd near-extremal spacetimes

Charged planar black holes extensively investigated in applied
AdS/CFT, eg

L = R − 1
2∂ϕ

2 − V (ϕ) − Z (ϕ)
4 F 2 − Y (ϕ)

2

d∑
I=1

∂ψ2
I , ψI = mδIix i

They are dual to charged fluids in a flat geometry, possibly subject
to various instabilities at low temperature.

In the normal phase, they often display an emergent AdS2×Rd

near-extremal geometry

ds2 = ℓ2
2
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AdS2×Rd near-extremal spacetimes: EFT at finite T

At frequencies ω, k ≲ T , the low-energy dynamics is controlled by
hydrodynamics, whether Tre ≳ 1 [Erdmenger et al’08, Banerjee et al’08] or
Tre ≲ 1 [Edalati et al ‘09,’10], eg for charged fluids:

∇µT µν = 0 ∇µJµ = 0

Solving for linear perturbations, retarded Green’s functions display
gapless hydrodynamic poles

longitudinal sound: ω(k,T ) = ±cs(T )k − iΓ(T )k2 + O(k3)

longitudinal thermal diffusion: ω(k,T ) = −iDth(T )k2 + O(k4)

transverse momentum diffusion: ω(k,T ) = −iDη(T )k2+O(k4)

5



AdS2×Rd near-extremal spacetimes: Low-T spectrum

[Arean et al, 2011.12301]

For Tre ≲ 1, the hydrodynamic modes
coexist with a tower of gapped modes
controlled by the SL(2,R) symmetry of
the AdS2×R2 geometry:

ωn = −2iπT [∆(k) + n]

Coalesce into a branch cut ω2∆(k)−1 at
T = 0 [Faulkner et al’09, Edalati et al’09,’10].

Surprisingly, gapless modes persist at T = 0 besides the branch cut
[Edalati et al’09,’10; Davison & Parnachev’13, Arean et al’20].

ω = −iDth(T = 0)k2 + . . .

This usually signals an emergent global symmetry (eg Fermi liquids,
superfluids)
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AdS2×Rd near-extremal spacetimes

Can we derive an EFT which captures both the hydrodynamic
modes and the gapped critical modes?

What is the emergent symmetry and what causes it?

Relation to the Schwarzian and AdS2?

This could also be relevant for the strange metallic phase of cuprate
high Tc superconductors.
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Strange metals: Drude or quantum critical?

[Cooper et al, Science’09]

ρ ∼ T over most of the OD phase diagram. From the Drude
formula [Legros et al, 1805.02512]:

ρDrude = m
ne2 τtr ⇒ τtr = O(1) ℏ

kBT ≃ τPlanck

Also reminiscent of quantum criticality [Sachdev, Zaanen], where T is
the only scale.
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Strange metals: Drude or quantum critical?

[Van Heumen et al, 2205.00899] [Michon et al, 2205.04030]

AC conductivity displays a Drude peak and extra mid-IR spectral
weight. Emergent branch cut [Van der Marel, cond-mat/0309172; Van Heumen et

al, 2205.00899]?

Data also displays ω/T scaling: quantum criticality?
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(Yukawa-)SYK models

[Gu et al, 1609.07832]

[Choi et al, 2010.08558]

1d spatial extensions of SYK models also display a similar spectrum
at low temperatures.

2d Yukawa-SYK models reproduce aspects of strange metal
thermodynamics and transport [Patel et al, 2203.04990; Guo et al, 2308.01956].

10



This talk

Present an analytic expression for the probe GR
JJ in a planar black

hole spacetime with a near-extremal AdS2×R2 geometry.

The calculation is a careful extension beyond leading order of
matching calculations done in previous literature [Davison & Parnachev,

1303.6334], assuming
ωre ∼ Tre ∼ k2r2

e ≪ 1

Keeping track of irrelevant deformations away from AdS2×R2 was
essential.

Captures all the dynamics of the hydro pole, the gapped poles, and
the emergent T = 0 spectrum: strongly suggests that the EFT can
be constructed a la fluids/gravity (see also [Moitra et al, 2005.00016; C.

Yue’s talk]).
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Key result: Analytic computation of GR
JJ

GR
JJ =

ω2 (
1 − k2G/3

)
iω + k2

6
(
4πT + 2(k2 + iω)G + 3k2 log 3 − 6

) , (ω, k,T ) = re(ω, k,T )

G = π cot
(

iω
2T

)
+ γ + ψ

(
iω

2πT

)

− log
(

9
4πT

)
,

Result valid at at 0 ≪ reT ≪ 1
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Charge diffusion pole

GR
JJ =

ω2 (
1 − k2G/3

)
iω + k2

6
(
4πT + 2(k2 + iω)G + 3k2 log 3 − 6

) ,
G = π cot

(
iω
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)
+ γ + ψ
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)

− log
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9
4πT

)
hydro diffusion pole ω, k ≲ T
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+ . . .
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Key result: Analytic computation of GR
JJ

GR
JJ =

ω2 (
1 − k2G/3

)
iω + k2

6
(
4πT + 2(k2 + iω)G + 3k2 log 3 − 6

) ,

Gapped IR poles

ωn = −2iπT [∆(k = 0) + n]

∆(k) = 1
2 + 1

2

√
1 + 4k2

3

Originate from [Faulkner et al, 0907.2694]

GR
IR ∼ T 2∆−1 Γ(∆ − i ω

2πT )
Γ(1 − ∆ − i ω

2πT )
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Pole-snatching

GR
JJ =

ω2 (
1 − k2G/3

)
iω + k2

6
(
4πT + 2(k2 + iω)G + 3k2 log 3 − 6

) ,

Parity: poles with a real part come
in pairs [Kaminski et al, 0911.3610].

Hydro pole snatches one of the
poles from the tower of critical poles
and leaves the imaginary axis.

SL(2,R) invariance:

n(k ≪ T ) 7→ n(T ≪ k) − 1
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Key result: Analytic computation of GR
JJ

GR
JJ =

ω2 (
1 − k2G/3

)
iω + k2

6
(
4πT + 2(k2 + iω)G + 3k2 log 3 − 6

) ,
At T = 0

G = ±iπ + γ + log
(

2iω
9

)
Gapless pole survives

ω = −ik2+i 4
3k4 log(k)

+i 2
3k4

(
γ + log 2 − 5

4 log 3 ∓ iπ
)
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Key result: Analytic computation of GR
JJ

GR
JJ =

ω2 (
1 − k2G/3

)
iω + k2

6
(
4πT + 2(k2 + iω)G + 3k2 log 3 − 6

) ,
At T = 0

G = ±iπ + γ + log
(

2iω
9

)
Gapless pole survives

ω = −ik2+i 4
3k4 log(k)

+i 2
3k4

(
γ + log 2 − 5

4 log 3 ∓ iπ
)

and log branch cut forms
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Holographic model

Background spacetime

Sbackground =
∫

d4x
√

−g
[

R − 2Λ − 1
2

2∑
I=1

(∂ψI)2
]

ds2 = ℓ2

r2

(
−f (r)dt2 + dr2

f (r) + dx⃗2
)
,

f (r) = 1 − m2r2

2 −
(

1 − m2r2
h

2

)
r3

r3
h
, ψI = mδIix i

Emergent AdS2×R2 geometry

r = re − ϵ
r2
e

3ζ , rh = re − ϵ
r2
e

3ζh
, t = ϵ−1τ , re =

√
6

m

Analogous results for other spacetimes, eg Reissner-Nordström.
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Gauge field dynamics

Probe gauge field
S = −

∫
d4x

√
−g 1

4F 2

Gauge field perturbation

δAµ = e−i(ωt−kx)aµ(r) , Ex = ωax (r) + kat(r)

Perturbation equation[
f (r)E ′

x
ω2 − k2f (r)

]′

+ 1
f (r)Ex = 0
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Matching calculation
[

f (r)E ′
x

ω2 − k2f (r)

]′

+ 1
f (r)Ex = 0

[Credit: C. Supiot]

Outer region

r2ω2/f 2, r2k2/f ≪ 1

Inner region

ζ/re , ζh/re ≳ ϵ

Expand perturbation
equation in both regions.

Solve in each region: inner solution, outer solution.

Expand ingoing wave condition order by order in ϵ:

δAµ ∼ e−iω(t+r⋆) , r⋆(r) =
∫ r

0

dr1
f (r1)
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Backreaction?

[Arean et al’20]

Leading order result from matching [Davison & Parnachev’13]

ω⊥(k,T = 0) = −iDη(T = 0)k2 + O(k4)

Next-order correction, small temperature correction: WIP.

Non-analytic contributions? [Moitra et al, 2005.00016; C. Yue’s talk]

(Yukawa-)SYK models?
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Summary and outlook

GR
JJ =

ω2 (
1 − k2G/3

)
iω + k2

6
(
4πT + 2(k2 + iω)G + 3k2 log 3 − 6

) , (ω, k,T ) = re(ω, k,T )

G = π cot
(

iω
2T

)
+ γ + ψ

(
iω

2πT

)

− log
(

9
4πT

)
,

Result valid at at 0 ≪ reT ≪ 1: EFT
for scales all the way to 1/re?

Construct holographic effective action
[Nickel & Son, 1009.3094; Davison et al, 2210.14802]:
Identification of emergent symmetry.

Backreaction? Impact of Schwarzian
action on T = 0 gapless modes?
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