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A parallelism between Y-SYK and quantum gravity
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Strange Metal. 
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Essence of High Tc is in 
the Normal state!
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• Exp: Universal behavior of   strongly correlated metal,  
Theory: Difficult to write a (solvable QFT) model  for 35 years. 

• Even the lowest dim.    produces  , 
==> No microscopic understanding for mechanism 

•  Phenomenology: momentum is dissipated Strangely Fast :  
    You will see why! 

Hint ρ ∼ Tα, α > 1

1/τ ∼ T

Problem
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 A model for Linear Resistivity
2023.Aug.  Patel and Sachdev  et.al, wrote 2+1 model based on SYK model. 
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1. Solvable.  
2.
3. Maximal Chaos
**** 
4. 0-dim => No transport! 

Γ~𝑇

Based on SYK : all to all with Random coupling 
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Yukawa-SYK  in 2+1 dim. 
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ℋ = ℋψ + ℋϕ + ∑
ijk

gijk(x)ϕiψjψk(t, x) + ∑
ij

vij(x)ψiψj

Resistivity linear in T at Low tem. 
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1. Yili Wang, Xian-Hui Ge, and S. Sin, arXiv: 2406.11170
2. Yili Wang, Young-Kwon Han, Xian-Hui Ge, and S. Sin, arXiv: 2501.07792 
3. ER=EPR and strange metal from quantum entanglement. 
4. Most general strange metal model. TBA

Yili Wang, XianHui Ge, YK Han +  SJS

  
1. How universal is the  (spatially random disorder) mechanism?  
     Yukawa-SYK, & Vector-SYK, Model.      
2.  Does it work in 3+1  ? No.   
      =>  layered structure is important. (  plane)  

3.  inverse Hall angle behavior?      No! 
4. The most general QFT model? 
     ,  dim 5/2 => all others are irrelevant  
 

ϕψ ψ, Aext
μ ψ∂μψ

CuO2

T2

ϕψ ψ, Aext
μ ψ∂μψ 7



Our Q: why it works as a  Mechanism for the  
                                             Planckian dissipation

ANS: randomness brings us Wormhole, a short cut in space 

Claim:

<—>

• Field theory wormhole • Gravitational Wormhole
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A non-Disordered Model: We start with an action
with disorder, Stot = Sω + Sε + Sint, where

Sω =

∫
dωd

2r
[ N∑

a=1

ε
†
a(r, ω)

(
ϑϑ →

↑
2

2m
→ µ

)
εa(r, ω)

+
N∑

a,b=1

Vab(r)ε
†
a(r)εb(r)

]
, (3)

Sε =
1

2

∫
dωd

2r
N∑

a=1

ϖa

(
→ϑ

2
ϑ →↑

2 +m
2
b

)
ϖa(r, ω), (4)

in the imaginary time ω , where Sint is given in (1) with
the condition (2) assumed. The potential Vab(r) ↓∑

i Vimp(ab)(r → ri) is created by imperfections at ri,
which satisfies ↔Vab(r)↗ = 0 and

↔V
→
ab(r)Va→b→(r

↑)↗ = v
2
ϱ(r → r↑)ϱaa→,bb→ , with v ↘ R.(5)

The path integral quantization of this system is given
by Z ↓

∫
D[!] exp(→Stot), with D[!] = D[ε,ε†]D[ϖ].

The quenched average aims for ↔lnZ↗dis ↓ Wq, which is
defined by

Wq =

∫
D[g]P [g]

[
ln

(∫
D[!]e↓Stot[g,ω,ε]

)]
, (6)

where P [g] represents the Guaßian distribution. Here,
the convention is that the dynamical variable ! should
be integrated before gijk(r), which means that the spa-
tial random correlation condition (2) is imposed after all
Feynmann rules of ε,ϖ system is worked out. In contrast,
an annealed average computes ln↔Z↗dis ↓ Wa, defined by

Wa = ln

(∫
D[!]

∫
D[g]P [g]e↓Stot[g,ω,ε]

)
, (7)

where the relaxation time of the disorder variable g is
shorter than the dynamical time of ε and ϖ. In this case,
one can integrate out the disorder variable gijk(r) to get
an e”ective theory, which can be described by replacing
the interaction (1) with

Sint ↓ →
g
2

2N2

∫
dω1dω2d

2r
N∑

a,b,c=1

ε
†
aεb(r, ω1)ϖc(r, ω1)

≃ε
†
bεa(r, ω2)ϖc(r, ω2). (8)

This term describes a coupling between Fermi surface
(FS) and scalar field, involving an interaction of higher
order than the original. It represents a phenomenon
where three particles disappear/appear at time ω1 and
reappear/vanish at time ω2 at the same (spatial) posi-
tion. After the random sum Dg, the resulting theory
contains no disorder variable, so it is a pure quantum
theory, no longer an ensemble average. We may there-
fore refer to the model (8) a ‘non-disordered’ theory. We
define the Feynman rule of this vertex, such that

(ω1, r) (ω2, r)
= g2

2
∫
dω1dω2d2r

. (9)

The dashed-dotted line, representting two spacetime
points sharing the same spatial positions and di”erent
times, has the same e”ect of the line of quenched disor-
der average in ref.[8, 14, 19].
Linear resistivity in the non-Disordered Model: In the

following, we will show that in the large N limit, an-
nealed system (8) should give the same results as the
quenched average (using the replica trick as is demon-
strated in refs.[8, 14, 19]). Rephrased, we will show that
the diagrams of the annealed average, which are absent
in quenched case, are in fact subdominant as N ⇐ ⇒, so
ln↔Z↗dis = ↔lnZ↗dis holds to the leading order in large-N
expansion. Furthermore, no diagrams in the quenched
case do not appear in the annealed case.
We now use the Feynman diagram method to find the

propagators and self-energies. The full propagators of
electrons and bosons read[20, 21]

G(iς,k) =
1

iς →
k2

2m + µ→ #(iς)
, (10)

D(i$, q) =
1

$2 + q2 +m
2
b →%(i$, q)

, (11)

respectively with corresponding self-energies # and %.
As we mentioned before, the large-N limit is essential

to reproduce the results [8] of the quenched average. Gen-
erally in large N theory, rainbow diagrams are dominant,
so others can be neglected. This simplifies the calcula-
tion greatly. In our model, even among these rainbow
diagrams, some are subdominant. For instance, the ac-
tion (8) allows for ‘semi-tadpole’ diagrams such as

, (12)

where the solid line and wavy line represent fermion
propagator and boson propagator respectively. Feynman
graph (12) is a tadpole diagram in time, as two sub-
vertices are temporally separated, but it is not a tadpole
diagram in space, since sub-vertices have the same spa-
tial location. Due to such di”erence, diagram of this type
is termed as semi-tadpole in this article. In QFT, tad-
poles are vacuum graphs of no consequence unless we are
interested in spontaneous symmetry breaking, but semi-
tadpoles can not be so a priori. Thanks to the large-
N limit, graph (12) contributes to electron self-energy a
term of order O(1/N), while the leading order of self-
energy is O(1). For this reason, all semi-tadpoles can be
neglected. [22]
Another example from electron self-energies is

. (13)

The contractions in space make this graph no longer
disconnected. We regard the red dashed-dotted line
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For annealed case, Hint(x) = g(x)2 + g(x)∫ dt𝒪(x, t) = [g(x) + ∫ dt𝒪(x, t)]2 − ∬ dt1dt2𝒪(x, t1)𝒪(x, t2)

  Quenched vs Annealed   

Quenched case: replica trick.  
Replica off diagonal case  is  
1/N suppressed.

 = ⟨log Z⟩dis

 = log⟨Z⟩dis
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iωn

i(ωn + !m)

(a) The simplest current-current correlator.

iωn

i(ωn + !m)

(b) The polarisation bubble of order g2.

FIG. 1: Plarisations contributing to the conductivity.

This theory gives linear-T resistivity at low temperatures,
just as the quenched average [8]. Although the calcula-
tions of these two average methods are very similar, we
emphasize again that in annealed average, our model (8)
is a pure quantum system after the random coupling is
integrated out.

ER = EPR in Strange Metal: We have shown that
in our model (8), as an the annealed average of disorder
yields the same result of quenched disorder. Although
there is a subtlety associated with the boson degree of
freedom [26] for the equivalence of the quenched and an-
nealed averages, there are reasons to trust the equiva-
lence [16, 27] in our Yukawa-SYK model. From now on
we assume that the the replica diagonal dominancy hold
in the large N limit following [8, 14], which makes the
proof trivial. Here our focus is to show that such equiv-
alence provides an alternative way to comprehend the
ER = EPR conjecture [17, 28]. First, we notice that in
the quenched average (of interaction (1)) we compute dy-
namical correlation function i.e, Feynman diagram first
and then impose the random correlation of couplings (2).
We claim that here lots of wormholes are created. To see
this, consider the Free energy in the quenched average
→Fq = ↑logZ↓dis which contains only connected diagram

→Fq =
→∑

n=0

∫

x1...xn

〈
↑

n∏

a=1

gijk(xa)Hijk(xa)↓!,c

〉

dis
, (25)

where x = (r, t) and ↑...↓!,c is connected diagrams for
fixed coupling, while ↑...↓dis =

∫
Dg...e

↑Sg is the disorder
average.

Our purpose here is to show how wormholes appears,
for which considering a few lowest diagrams are enough
and for this purpose we do not need to employ the replica
trick. Let consider the lowest order diagram coming from
n = 2 as an example:
∫

dx1dx2↑gijk(r1)gi→j→k→(r2)↓g ↑Hijk(x1)Hi→j→k→(x2)↓! .

This term is graphically represented by the first diagram
in (26).

< g(r2)g(r1) > (r1, t1)(r2, t2) , (26)

The blue dashed line represents ↑gijk(r1)gijk(r2)↓g. Ac-
cording to eqn.(2), it identifies the spatial positions of
two vertices at arbitrarily far separated points. This is
precisely what a wormhole does in gravity theory, give a
short cut of two positions, as illustrated by Fig.2. There-
fore we propose that the left hand side of (2) is the field
theory wormhole, and we call it simply wormhole when
no confusion is induced. A more complicated example
is given by the case of n = 4 in the second graph in
(26), which contains two such wormholes. Notice that

r1 r2

ω(r1 → r2)

FIG. 2: Schematic of the wormhole. Two distant spatial
points r1 and r2 are connected by a wormhole, whose throat

is of zero length. One may fold down the spacetime to
shorten the apparent length of the wormhole.

the wormhole connects arbitrarily far separated particles
allowing them interaction that establishes long distance
entanglement as well as long-range momentum delivery.
Therefore, the time bi-local interaction (8) should be re-
garded as a strong coupling, even in the case g

2
↔ 1,

because it can establishes arbitrarily long distance inter-
action without distance dependent suppression. Intro-
ducing the spatial random disorder changes the vertex
structure significantly by relaxing the momentum con-
servation, so that the propagators and the self-energies
change their behaviour accordingly, leading to the re-
markable linear resistivity [8, 9] by changing ω = ω0+T

ω

from ε = 2 or 4/3 to 1, which is summarized in a ta-
ble in [9]. In this sense, the field theory wormhole is
the mechanism of planckian dissipation and it is not just
qualitatively but also precisely . Notice that the worm
hole exist in the picture where the disorder field gI is
present.

In the annealed average, the coupling fields can
be integrated out first. Then the information of
disorder is wiped out right from the outset. This
results in an e!ective action (8) with a six-valent
vertex. Here the wormhole picture is not appli-

Quenched => wormhole
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structure significantly by relaxing the momentum con-
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from ε = 2 or 4/3 to 1, which is summarized in a ta-
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qualitatively but also precisely . Notice that the worm
hole exist in the picture where the disorder field gI is
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just as the quenched average [8]. Although the calcula-
tions of these two average methods are very similar, we
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integrated out.
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yields the same result of quenched disorder. Although
there is a subtlety associated with the boson degree of
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in the large N limit following [8, 14], which makes the
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∫

dx1dx2↑gijk(r1)gi→j→k→(r2)↓g ↑Hijk(x1)Hi→j→k→(x2)↓! .

This term is graphically represented by the first diagram
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n=2 : <g(x)g(y)> ⟨ϕψ ψ (x)ϕψ ψ (y)⟩

n=4

Wormhole

Many Wormholes

Hijk = ϕiψjψk(t, x)
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dom Gaußian average which minimally mimics the quan-
tum fluctuation of the gravity. Considering the vastly
small nature of the gravity compared with other inter-
action, our model is more realistic than that originally
suggested [16].

To conclude, we propose that the equivalence between
the annealed and quenched averages in SYK-inspired
models provides a concrete interpretation of the ER =
EPR conjecture. This equivalence suggests that strange
metals arise from long range quantum entanglements.
We hope this article sheds some light on the connec-
tion between SYK-inspired models and quantum entan-
glement, with further exploration to follow in subsequent
research.

(ω1, r)

(ω2, r)

(ω2, r2) (ω1, r1)

(ω1, r1)

(ω2, r2)

(a)

(b) (c)

FIG. 3: Process (a) represents an usual two-to-two electron
scattering process in Yukawa theory. Such a process

corresponds to (b) or (c) after disorder is introduced. When
separation between (ω1, r1) and (ω2, r2) are spacelike, the
amplitude of process (a) is suppressed to preserve the
causality. However, the wormhole in (b) drags all the

spacetime points into the light-cone of (ω1, r1), which has
the same e!ect of the temporally bi-local interaction given

by (c).
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 Annealed picture: vertex gives EPR  

2

and the annealed average leads to quantum entangle-
ments to the pair connected by the wormhole. Therefore,
the equivalence of these two establishes the ER =EPR
conjecture in the solvable model. This is particularly
interesting because it was not clear what is the matterial
souce of the wormhole in the gravity picture.

A non-Disordered Model in annealed average: We
start with an action with disorder, Stot = Sω+Sε+Sint,
where

Sω =

∫
dωd

2r
[ N∑

a=1

ε
†
a(r, ω)

(
ϑϑ →

↑
2

2m
→ µ

)
εa(r, ω)

+
N∑

a,b=1

Vab(r)ε
†
a(r)εb(r)

]
, (3)

Sε =
1

2

∫
dωd

2r
N∑

a=1

ϖa

(
→ϑ

2
ϑ →↑

2 +m
2
b

)
ϖa(r, ω), (4)

in the imaginary time ω , where Sint is given in (1) with
the condition (2) assumed. The potential Vab(r) ↓∑

i Vimp(ab)(r → ri) is created by imperfections at ri,
which satisfies ↔Vab(r)↗ = 0 and

↔V
→
ab(r)Va→b→(r

↑)↗ = v
2
ϱ(r → r↑)ϱaa→,bb→ , with v ↘ R. (5)

The path integral quantization of this system is given
by Z ↓

∫
D[!] exp(→Stot), with D[!] = D[ε,ε†]D[ϖ].

The quenched average aims for

↔lnZ↗dis =

∫
D[g]P [g]

[
ln

(∫
D[!]e↓Stot[g,ω,ε]

)]
, (6)

while annealed average computes

ln↔Z↗dis = ln

(∫
D[!]

∫
D[g]P [g]e↓Stot[g,ω,ε]

)
. (7)

In bith case, P [g] represents the Gaußian distribution.
In annealed average, one can integrate out the disorder
variable gijk(r) to get an e”ective theory that can be
described by the interaction term

Sint = →
g
2

2N2

∫
dω1dω2d

2r
N∑

a,b,c=1

ε
†
aεb(r, ω1)ϖc(r, ω1)

≃ε
†
bεa(r, ω2)ϖc(r, ω2). (8)

The resulting theory is a non-disordered with interaction
term that local in space but bi-local in time, which turns
out to be crutial to get linear in T resistivity. Sint gives
a process where two fermion disappear at time ω1 and
reappear at time ω2 at the same position. If original
fermions are not entangled, later fermions are entangled.
We define the Feynman rule of this vertex

(ω1, r) (ω2, r)
= g2

2
∫
dω1dω2d2r

. (9)

The dashed-dotted line, representting two spacetime
points sharing the same spatial positions and di”erent
times, has the same e”ect of the line of quenched disor-
der average in ref.[8, 14, 20].
Linear resistivity in the non-Disordered Model: In the

following, we will show that in the large N limit, an-
nealed system (8) should give the same results as the
quenched average (using the replica trick as is demon-
strated in refs.[8, 14, 20]). Rephrased, we will show that
the diagrams of the annealed average, which are absent
in quenched case, are in fact subdominant as N ⇐ ⇒, so
ln↔Z↗dis = ↔lnZ↗dis holds to the leading order in large-N
expansion. Furthermore, no diagrams in the quenched
case do not appear in the annealed case.
We now use the Feynman diagram method to find the

propagators and self-energies. The full propagators of
electrons and bosons read[21, 22]

G(iς,k) =
1

iς →
k2

2m + µ→ #(iς)
, (10)

D(i$, q) =
1

$2 + q2 +m
2
b →%(i$, q)

, (11)

respectively with corresponding self-energies # and %.
As we mentioned before, the large-N limit is essential

to reproduce the results [8] of the quenched average. Gen-
erally in large N theory, rainbow diagrams are dominant,
so others can be neglected. This simplifies the calcula-
tion greatly. In our model, even among these rainbow
diagrams, some are subdominant. For instance, the ac-
tion (8) allows for ‘semi-tadpole’ diagrams such as

, (12)

where the solid line and wavy line represent fermion
propagator and boson propagator respectively. Feynman
graph (12) is a tadpole diagram in time, as two sub-
vertices are temporally separated, but it is not a tadpole
diagram in space, since sub-vertices have the same spa-
tial location. Due to such di”erence, diagram of this type
is termed as semi-tadpole in this article. In QFT, tad-
poles are vacuum graphs of no consequence unless we are
interested in spontaneous symmetry breaking, but semi-
tadpoles can not be so a priori. Thanks to the large-
N limit, graph (12) contributes to electron self-energy a
term of order O(1/N), while the leading order of self-
energy is O(1). For this reason, all semi-tadpoles can be
neglected. [23]
Another example from electron self-energies is

. (13)

The contractions in space make this graph no longer
disconnected. We regard the red dashed-dotted line

5

in ref.[16], posits a deep connection between quantum
entanglement (EPR) and wormholes (ER). It suggests
that two entangled particles are connected by a micro-
scopic wormhole, and vice versa, although the details of
this conjecture including the meaning of the microscopic
wormhole remain unclear. Accepting and applying it ren-
ders the ER bridge in the quenched picture equivalent to
the presence of entanglement, thereby linking the origin
of linear resistivity to quantum entanglement.This pic-
ture for the quantum entanglements for the SYK-rised
models can be naturally applied to the original SYK
model in a similar manner by considering the indices
i, j, k as the discretized spatial positions. Especially no-
tice that in our model we gave a definite meaning of the
so called ’microscopic wormhole’ as the delta function
pseudo propagator connecting two arbitrarily far sepa-
rated points.

In our case, the quantum entanglement has been incor-
porated via the anneald average, even without invoking
the ER = EPR conjecture. On the contrary, the equiva-
lence of quenched and annealed disorder can o!er a clear
and explicit demonstration of the conjecture, with cal-
culations that are largely controlled. We have proposed
that averaging over certain observables, a quenched av-
erage introduces the feature of the ER that connects two
di!erent positions, whereas an annealed average assigns
the system a pure quantum description with an e!ec-
tive action. In the large-N limit, the annealed aver-
age produces physical quantities identical to those of the
quenched average, i.e,

Wq = Wa.

This equivalence can be graphically represented by [28]

=

(ω1, r)

(ω2, r)

ε(r→ r↑)

ER

(ω2, r↑) (ω1, r)

EPR
. (28)

Presence of wormholes is thus tantamount to having
quantum entanglements, which is precisely the central
idea of ER = EPR conjecture.

Discussions In this article, we perform an annealed
average over the disorder (1), which was first introduced
as a quenched disorder in Ref.[8]. The calculation shows
the equivalence between annealed average and quenched
average at large-N limit, and we suppose such an equiva-
lence can serve as an evidence of ER = EPR conjecture.

Based on the fact that annealed and quenched average
share the same Feynman diagrams at large-N limit, we
find that both annealed average and quenched avereage
of interaction (1) yields linear resistivity. Admittedly, the
annealed average and quenched average is not necessarily

equivalent even if they have the same Feynman diagrams
[29]. However, when we use replica trick to perform the
quenched average of interaction, a replica-diagonal saddle
can well capture its physics [14, 23], which ensure the
equivalence between two averages as N → ↑.
Though dominated by melonic graphs, the theory (8)

is di!erent with the SYK-like non-disordered Gurau-
Witten model [15], also featured by the melonic domi-
nance at largeN . Gurau-Witten model is a theory of ten-
sor fields representing geometric degrees of freedom. Ad-
ditionally, Amit-Roginsky model [30] is a melonic dom-
inant matter theory without disorder [30–32], but it in-
volves no electrons. So neither of these two models per-
mits electronic transport phenomena. More importantly,
interaction (8) originates from the annealed average of
random disorder (1), while Gurau-Witten model is ‘truly
clean’, which does not exhibit temporal bilocality and
thus cannot support the existence wormhole.
The ER = EPR conjecture [16] arises from a

gedankenexperiment, where two groups of entangled
particles collapse and form two entangled black holes.
Wheeler suggested a similar model seven decades ago,
where he supposed the electrons could be the mouths of a
wormhole in a doubly connected space [33, 34]. Our pro-
posal is similar to Wheeler’s description, as the existence
of black holes is inessential. Here, we introduced several
nuanced modifications to Wheeler’s framework. First,
the particles are not mouths. Second, in our model there
is a temporal separation |ω1 ↓ ω2| between (r1) and (r2),
although it is not shown in Fig.2 for simplicity. Such
a temporal separation, or delay in the interaction’s re-
sponse, is crucial for producing linear resistivity in our
model and also appears in argument in Ref.[16], in rela-
tion to wormholes and EPR pairs. It would be insightful
to explore its connection to the mechanism of supercon-
ductivity where time delay often plays a critical rôle in
the pairing [35].
To the best of our knowledge, our proposal is also the

closest realisation of the original conjecture [16]. Our
wormhole interpretation on quenched average cannot be
applied in original SYK model, since it has no spa-
tial dimension. Most works following ref.[16] use holo-
graphic approach such that an entangled state of coupled
SYK models dual to a traversable wormhole in higher-
dimensional bulk spacetime [36–38]. Therefore, these
works do not faithfully inherit the sprit of ER = EPR.
In our proposal, ER and EPR are in the same spacetime
without using holographic dictionary, which matches the
original idea that ER is a manifestation of EPR, instead
of being merely a dual.
Another achievement of this article is clarifying the

meaning of ‘microscopic wormhole’, which lacks a def-
inition in Ref.[16]. The ER = EPR conjecture implies
even one pair of entangled particles can form a Planckian
wormhole [16], whose explicit description involves quan-
tum gravity. In contrast, our proposal only need the ran-
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cable since there is no →gg↑. However, the con-
tact interaction (8) induces entanglement between
two sets of particles, ω

†
a(p1, ε1)ωb(p2, ε1)ϑc(p3, ε1) and

ω
†
b(k1, ε2)ωa(k2, ε2)ϑc(k3, ε2). The momentum conserva-

tion requires p ↓ (p1+p2+p3) = ↔(k1+k2+k3) ↓ ↔k,
so the particles at ε1 and ε2 are correlated in momentum
space. Namely, we have a composite system consists
of two sets of particles involved in the interaction (8),
and the pure and normlised state |!↑ of this compos-
ite system can be written as a Schmidt decomposition,
|!↑ =

∫
dp

√
P (p) |p,↔p↑, with

∫
dpP (p) = 1. Such

an quantum correlation is a generalisation of the origi-
nal EPR pair [19]. If we considered the process induced
by the 6-valent vertex where bosons form internal line
in the diagram, then we would get the entanglement be-
tween the two pairs. So the presence of wormholes in
quenched average is thus tantamount to having quantum
entanglements in the annealed average.

=

(ω1, r)

(ω2, r)

ε(r→ r↑)

ER

(ω2, r↑) (ω1, r)

EPR
. (27)

In summary, if we call the field theory wormhole still as
the Einstein-Rosen bridge, the ER in our quenched aver-
age becomes EPR in the annealed average. establishing
ER = EPR, which is a conjecture proposed in ref.[17] to
posit a deep connection between quantum entanglement
(EPR) and wormholes (ER). This is our main point. Here
the entanglement is easy since wormhole gives a short cut
interaction, but the strange metalicity is more quantita-
tive question and that is why we calculated resistivity in
annealed picture again.

Discussions The fact that the field theory is bilocal
in time is crutial for producing linear resistivity in our
model and also appears in argument in Ref.[17], in rela-
tion to wormholes and EPR pairs. It would be insightful
to explore its connection to the mechanism of supercon-
ductivity where time delay often plays a critical rôle in
the pairing [36].

Our proposal is also the closest realisation of the orig-
inal conjecture [17]. Our wormhole interpretation on
quenched average cannot be applied in original SYK
model, since it has no spatial dimension. Most works
following ref.[17] use holographic approach such that
an entangled state of coupled SYK models dual to a
traversable wormhole in higher-dimensional bulk space-
time [37–39]. Therefore, these works do not faithfully
inherit the sprit of ER = EPR. In our proposal, ER
and EPR are in the same spacetime without using holo-
graphic dictionary, which matches the original idea that
ER is a manifestation of EPR, instead of being merely

a dual. The random Gaußian average minimally mim-
ics the quantum fluctuation of the gravity. Neverthe-
less, there is a deep parallelism: if we take a view that
Hawking radiation is thermal, black hole information is
lost, while if follow ER=EPR, there is no black hole in-
formation. Similarly, in another work by Hawking[29],
he suggested that wormhole induces decoherence, which
in our case is consistent only if we take the view that
SYK model is a mixed system. In such view, field theory
wormhole should also be the source of the decoherence
but the time non-local vertex in annealed average still
induces entanglement which is not consistent. Indeed,
since SYK model (and all its alalogue) are unitary the-
ory for fixed coupling, there is no need to consider such
system as a mixed one.
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disorder is wiped out right from the outset. This
results in an e!ective action (8) with a six-valent
vertex. Here the wormhole picture is not appli-
cable since there is no →gg↑. However, the con-
tact interaction (8) induces entanglement between
two sets of particles, ω

†
a(p1, ε1)ωb(p2, ε1)ϑc(p3, ε1) and

ω
†
b(k1, ε2)ωa(k2, ε2)ϑc(k3, ε2). The momentum conserva-

tion requires p ↓ (p1+p2+p3) = ↔(k1+k2+k3) ↓ ↔k,
so the particles at ε1 and ε2 are correlated in momentum
space. Namely, we have a composite system consists
of two sets of particles involved in the interaction (8),
and the pure and normlised state |”↑ of this compos-
ite system can be written as a Schmidt decomposition,
|”↑ =

∫
dp

√
P (p) |p,↔p↑, with

∫
dpP (p) = 1. Such

an quantum correlation is a generalisation of the origi-
nal EPR pair [19]. If we considered the process induced
by the 6-valent vertex where bosons form internal line
in the diagram, then we would get the entanglement be-
tween the two pairs. So the presence of wormholes in
quenched average is thus tantamount to having quantum
entanglements in the annealed average as indicated in the
figure below.

=

(ω1, r)

(ω2, r)

ε(r→ r↑)

ER

(ω2, r↑) (ω1, r)

EPR
. (27)

In summary, if we call the field theory wormhole still
as the Einstein-Rosen bridge, the ER in our quenched av-
erage becomes EPR in the annealed average, establishing
ER = EPR, which is a conjecture proposed in ref.[17] to
posit a deep connection between quantum entanglement
(EPR) and wormholes (ER). This is our main point. Here
the entanglement is easy since wormhole gives a short cut
interaction, but the strange metalicity is more quantita-
tive question and that is why we calculated resistivity in
annealed picture again.

Discussions Our proposal is the closest realisation of
the original conjecture [17]. Our wormhole interpretation
cannot be applied in original SYK model where no spa-
tial dimension exists. Most works following ref.[17] use
holographic approach where wormhole exists in the dual
higher-dimensional spacetime [37–39] rather than in the
given spacetime. Therefore, these works do not faithfully
inherit the sprit of ER = EPR. In our proposal, ER
and EPR are in the same spacetime without using holo-
graphic dictionary, which matches the original idea that
ER is a manifestation of EPR, instead of being merely a
dual. Our ER can be regarded as the CFT dual of ER
in such approach.

The random Gaußian average minimally mimics the
quantum fluctuation of the gravity. Nevertheless, there

is a deep parallelism: if we take a view that Hawking
radiation is thermal, black hole information is lost, while
if follow ER=EPR, there is no black hole information.
Similarly, in another work by Hawking[29], he suggested
that wormhole induces decoherence, which in our case
is consistent only if we take the view that SYK model
is a mixed system. In such view, field theory wormhole
should also be the source of the decoherence but the time
non-local vertex in annealed average still induces entan-
glement which is not consistent, and possible unitarity
violation can be avoided by tuning o! the interaction
term at t = ±↗. Indeed, SYK model (and all its ala-
logue) are unitary theory for fixed coupling, there is no
need to consider such system as a mixed one.

The fact that the field theory is bilocal in time is cru-
tial for producing linear resistivity in our model and also
appears in argument in Ref.[17], in relation to worm-
holes and EPR pairs. It would be insightful to explore its
connection to the mechanism of superconductivity where
time delay often plays a critical rôle in the pairing [36].

Acknowledgments The authors would like to thank
Mikio Nakahara, Moon-Jip Park, and Jin-Wu Ye for the
helpful discussion. This work is supported by NRF of
Korea with grant No. NRF-2021R1A2B5B02002603, RS-
2023-00218998.

→ sjsin@hanyang.ac.kr
† wangyili@hanyang.ac.kr

[1] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a mott in-
sulator: Physics of high-temperature superconductivity,
Rev. Mod. Phys. 78, 17 (2006).

[2] P. W. Anderson, The theory of superconductivity in the

high-Tc cuprates (Princeton University Press, 2017).
[3] S.-S. Lee, Recent Developments in Non-Fermi Liquid

Theory, Ann. Rev. Condensed Matter Phys. 9, 227
(2018), arXiv:1703.08172 [cond-mat.str-el].

[4] R. L. Greene, P. R. Mandal, N. R. Poniatowski, and
T. Sarkar, The strange metal state of the electron-doped
cuprates, Annual Review of Condensed Matter Physics
11, 213 (2020), https://doi.org/10.1146/annurev-
conmatphys-031119-050558.

[5] C. M. Varma, Colloquium: Linear in temperature re-
sistivity and associated mysteries including high tem-
perature superconductivity, Rev. Mod. Phys. 92, 031001
(2020).

[6] S. A. Hartnoll and A. P. Mackenzie, Colloquium: Planck-
ian dissipation in metals, Rev. Mod. Phys. 94, 041002
(2022), arXiv:2107.07802 [cond-mat.str-el].

[7] P. W. Phillips, N. E. Hussey, and P. Abbamonte,
Stranger than metals, Science 377, abh4273 (2022),
arXiv:2205.12979 [cond-mat.str-el].

[8] A. A. Patel, H. Guo, I. Esterlis, and S. Sachdev, Univer-
sal theory of strange metals from spatially random inter-
actions, Science 381, abq6011 (2023), arXiv:2203.04990
[cond-mat.str-el].

[9] Y.-L. Wang, X.-H. Ge, and S.-J. Sin, Linear-T resistivity
from spatially random vector coupling, Phys. Rev. B 111,

In quenched ==> In annealed 
                  ER ==> EPR

This vertex gives Entanglement!

Hint(x) = g(x)2 + g(x)∫ dt𝒪(x, t) = [g(x) + ∫ dt𝒪(x, t)]2 − ∬ dt1dt2𝒪(x, t1)𝒪(x, t2)

13

Only one p conservation for two vertex->  
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A Parallelism in  information loss prob.

Quantum gravity vs Yukawa-SYK



Wormhole in QG and information loss

Hawking (1987) 
deCoherence  by the Wormhole : 

Info. can leak away by WormHole 

• Maldacena+Susskind : 
arXiv:1306.0533  
Any entangled pair is connected by a 
microscopic wormhole 

the stretched-horizon and zone of the black hole. Whether or not they were initially

scrambled, after a time of order M logM they will become scrambled and therefore highly

entangled in all combinations. It seems reasonable to expect the nucleus of figure 12 will

evolve into the interior of the black hole. In other words after the scrambling time (but long

before the Page time) the interior of the black hole is the Einstein-Rosen bridge system

that connects the massively entangled near-horizon system of a black hole.

3.6 Hawking Radiation

The Hawking radiation of a black hole is a scrambled cloud of radiation entangled with

the black hole. The obvious configuration of the Einstein-Rosen bridge would resemble

the standard two-black-hole case except that Alice’s black hole would be replaced by the

Hawking radiation. We can draw a very impressionistic cartoon of the black hole connected

to the radiation by a Einstein-Rosen bridge with many exits, see figure 13.

Black holeBlack hole

.

Hawking radiationBlack hole

Figure 13: Sketch of the entanglement pattern between the black hole and the Hawking
radiation. We expect that this entanglement leads to the interior geometry of the black
hole.

Another representation is shown in figure 14. This figure shows only the geometrical

Einstein-Rosen bridge part of space. On the far left the interior of a young, one-sided black

hole is shown. The black circle represents the horizon which should be identified with the

horizon as seen from the exterior side. In the beginning there is no Hawking radiation.

As we move to the right Hawking quanta are emitted, and since they are entangled with

the black hole, they have to be connected to the bridge. The red dots represent the places

where the Hawking quanta connect to the main body of the bridge. The earlier quanta

are to the right of the later quanta. The green circles represent slices through the bridge

that divide the system into two parts. To the right of the circle the quanta were emitted
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• Hawking Radiation is entangled by WH
• Not thermal, => info not lost.

ER=EPR
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• 1. Quenched <=>  Anealed  
           <=>  ER=EPR 

• 2.This is the origin of the  
  Planckian Dissipation.
(Because this is mechanism of 
long range p delivery.)

Parallelism in Yukawa-SYK and information loss   

Usual SYK is disorder averaged hence 
describe a Mixed state ! 

the coupling correlation is the way to 
deliver the information  from one vertex 
to the other.  

Consistent with Hawking’s view : 

=> SM is mixed state property not really a 
qm property.  
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in ref.[16], posits a deep connection between quantum
entanglement (EPR) and wormholes (ER). It suggests
that two entangled particles are connected by a micro-
scopic wormhole, and vice versa, although the details of
this conjecture including the meaning of the microscopic
wormhole remain unclear. Accepting and applying it ren-
ders the ER bridge in the quenched picture equivalent to
the presence of entanglement, thereby linking the origin
of linear resistivity to quantum entanglement.This pic-
ture for the quantum entanglements for the SYK-rised
models can be naturally applied to the original SYK
model in a similar manner by considering the indices
i, j, k as the discretized spatial positions. Especially no-
tice that in our model we gave a definite meaning of the
so called ’microscopic wormhole’ as the delta function
pseudo propagator connecting two arbitrarily far sepa-
rated points.

In our case, the quantum entanglement has been incor-
porated via the anneald average, even without invoking
the ER = EPR conjecture. On the contrary, the equiva-
lence of quenched and annealed disorder can o!er a clear
and explicit demonstration of the conjecture, with cal-
culations that are largely controlled. We have proposed
that averaging over certain observables, a quenched av-
erage introduces the feature of the ER that connects two
di!erent positions, whereas an annealed average assigns
the system a pure quantum description with an e!ec-
tive action. In the large-N limit, the annealed aver-
age produces physical quantities identical to those of the
quenched average, i.e,

Wq = Wa.

This equivalence can be graphically represented by [28]

=

(ω1, r)

(ω2, r)

ε(r→ r↑)

ER

(ω2, r↑) (ω1, r)

EPR
. (28)

Presence of wormholes is thus tantamount to having
quantum entanglements, which is precisely the central
idea of ER = EPR conjecture.

Discussions In this article, we perform an annealed
average over the disorder (1), which was first introduced
as a quenched disorder in Ref.[8]. The calculation shows
the equivalence between annealed average and quenched
average at large-N limit, and we suppose such an equiva-
lence can serve as an evidence of ER = EPR conjecture.

Based on the fact that annealed and quenched average
share the same Feynman diagrams at large-N limit, we
find that both annealed average and quenched avereage
of interaction (1) yields linear resistivity. Admittedly, the
annealed average and quenched average is not necessarily

equivalent even if they have the same Feynman diagrams
[29]. However, when we use replica trick to perform the
quenched average of interaction, a replica-diagonal saddle
can well capture its physics [14, 23], which ensure the
equivalence between two averages as N → ↑.
Though dominated by melonic graphs, the theory (8)

is di!erent with the SYK-like non-disordered Gurau-
Witten model [15], also featured by the melonic domi-
nance at largeN . Gurau-Witten model is a theory of ten-
sor fields representing geometric degrees of freedom. Ad-
ditionally, Amit-Roginsky model [30] is a melonic dom-
inant matter theory without disorder [30–32], but it in-
volves no electrons. So neither of these two models per-
mits electronic transport phenomena. More importantly,
interaction (8) originates from the annealed average of
random disorder (1), while Gurau-Witten model is ‘truly
clean’, which does not exhibit temporal bilocality and
thus cannot support the existence wormhole.
The ER = EPR conjecture [16] arises from a

gedankenexperiment, where two groups of entangled
particles collapse and form two entangled black holes.
Wheeler suggested a similar model seven decades ago,
where he supposed the electrons could be the mouths of a
wormhole in a doubly connected space [33, 34]. Our pro-
posal is similar to Wheeler’s description, as the existence
of black holes is inessential. Here, we introduced several
nuanced modifications to Wheeler’s framework. First,
the particles are not mouths. Second, in our model there
is a temporal separation |ω1 ↓ ω2| between (r1) and (r2),
although it is not shown in Fig.2 for simplicity. Such
a temporal separation, or delay in the interaction’s re-
sponse, is crucial for producing linear resistivity in our
model and also appears in argument in Ref.[16], in rela-
tion to wormholes and EPR pairs. It would be insightful
to explore its connection to the mechanism of supercon-
ductivity where time delay often plays a critical rôle in
the pairing [35].
To the best of our knowledge, our proposal is also the

closest realisation of the original conjecture [16]. Our
wormhole interpretation on quenched average cannot be
applied in original SYK model, since it has no spa-
tial dimension. Most works following ref.[16] use holo-
graphic approach such that an entangled state of coupled
SYK models dual to a traversable wormhole in higher-
dimensional bulk spacetime [36–38]. Therefore, these
works do not faithfully inherit the sprit of ER = EPR.
In our proposal, ER and EPR are in the same spacetime
without using holographic dictionary, which matches the
original idea that ER is a manifestation of EPR, instead
of being merely a dual.
Another achievement of this article is clarifying the

meaning of ‘microscopic wormhole’, which lacks a def-
inition in Ref.[16]. The ER = EPR conjecture implies
even one pair of entangled particles can form a Planckian
wormhole [16], whose explicit description involves quan-
tum gravity. In contrast, our proposal only need the ran-
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disorder is wiped out right from the outset. This
results in an e!ective action (8) with a six-valent
vertex. Here the wormhole picture is not appli-
cable since there is no →gg↑. However, the con-
tact interaction (8) induces entanglement between
two sets of particles, ω

†
a(p1, ε1)ωb(p2, ε1)ϑc(p3, ε1) and

ω
†
b(k1, ε2)ωa(k2, ε2)ϑc(k3, ε2). The momentum conserva-

tion requires p ↓ (p1+p2+p3) = ↔(k1+k2+k3) ↓ ↔k,
so the particles at ε1 and ε2 are correlated in momentum
space. Namely, we have a composite system consists
of two sets of particles involved in the interaction (8),
and the pure and normlised state |”↑ of this compos-
ite system can be written as a Schmidt decomposition,
|”↑ =

∫
dp

√
P (p) |p,↔p↑, with

∫
dpP (p) = 1. Such

an quantum correlation is a generalisation of the origi-
nal EPR pair [19]. If we considered the process induced
by the 6-valent vertex where bosons form internal line
in the diagram, then we would get the entanglement be-
tween the two pairs. So the presence of wormholes in
quenched average is thus tantamount to having quantum
entanglements in the annealed average as indicated in the
figure below.

=

(ω1, r)

(ω2, r)

ε(r→ r↑)

ER

(ω2, r↑) (ω1, r)

EPR
. (27)

In summary, if we call the field theory wormhole still
as the Einstein-Rosen bridge, the ER in our quenched av-
erage becomes EPR in the annealed average, establishing
ER = EPR, which is a conjecture proposed in ref.[17] to
posit a deep connection between quantum entanglement
(EPR) and wormholes (ER). This is our main point. Here
the entanglement is easy since wormhole gives a short cut
interaction, but the strange metalicity is more quantita-
tive question and that is why we calculated resistivity in
annealed picture again.

Discussions Our proposal is the closest realisation of
the original conjecture [17]. Our wormhole interpretation
cannot be applied in original SYK model where no spa-
tial dimension exists. Most works following ref.[17] use
holographic approach where wormhole exists in the dual
higher-dimensional spacetime [37–39] rather than in the
given spacetime. Therefore, these works do not faithfully
inherit the sprit of ER = EPR. In our proposal, ER
and EPR are in the same spacetime without using holo-
graphic dictionary, which matches the original idea that
ER is a manifestation of EPR, instead of being merely a
dual. Our ER can be regarded as the CFT dual of ER
in such approach.

The random Gaußian average minimally mimics the
quantum fluctuation of the gravity. Nevertheless, there

is a deep parallelism: if we take a view that Hawking
radiation is thermal, black hole information is lost, while
if follow ER=EPR, there is no black hole information.
Similarly, in another work by Hawking[29], he suggested
that wormhole induces decoherence, which in our case
is consistent only if we take the view that SYK model
is a mixed system. In such view, field theory wormhole
should also be the source of the decoherence but the time
non-local vertex in annealed average still induces entan-
glement which is not consistent, and possible unitarity
violation can be avoided by tuning o! the interaction
term at t = ±↗. Indeed, SYK model (and all its ala-
logue) are unitary theory for fixed coupling, there is no
need to consider such system as a mixed one.

The fact that the field theory is bilocal in time is cru-
tial for producing linear resistivity in our model and also
appears in argument in Ref.[17], in relation to worm-
holes and EPR pairs. It would be insightful to explore its
connection to the mechanism of superconductivity where
time delay often plays a critical rôle in the pairing [36].
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wormhole and information loss:  g vs  g(x) ?

g1 g2 g1 g2

System
System include both

17

Open system: information leaks  Closed system: No information loss 

sample  = Each box ,  
Mixed:  sum of independent many ,  



What do we mean by spatially Random g(x)

• 1. Spatial inhomogeneity is important.      

  =  ,           NOT       

•  <=> system is sum of many small pieces of subregions 
  

       

1.                                        2. sample= sum of the boxes  
                qm: the whole is 1  system by connection.  
  
Parallel to the Raamsdonk’s idea! Entanglement is a glue of spacetime. 

Sys ∑
i

(subSys)i Sys = ⟨Sysi⟩

Interacting <=> Entangled

Glue all to all fashion
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g1 g2 g3



Boson self-energy Electron self-energy

Potential disorder

Electron-boson coupling

Strange metalicity is more than Entanglement

Need all 3 conditions 
1. 2+1 dim! 
2. Spatial dependence of g ! 
3. Inclusion of minimal dim operator. 

Momentum conservation at each vertex is lost! 
together with two vertex=> conserved! ρ = ρ0 + T2 → ρ0 + T1
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0

0

residual 

resistivity
linearity

spatial randomness: changing the scaling law 
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Summary and future work

• Spatial random coupling => Wormhole 
        => EPR+ Strange transport (long range  momentum delivery).  

•  (quenched <—>  annealed)  =>   (ER = EPR) 

• Remaining   Q: In what system  Y-SYK is realized   and  
How Non-disordered system can be SM?
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Epilogue  from the movie “Dr. Strange”

• Dr. Strange came through the wormhole and shouted,  
                            운동량 배달 왔어요!   

•        Momentum delivery!  
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Thank you
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• Interacting pair  <=> Entangled pair 

• Strange Metalicity needs more quantitative dynamical answer.  

• Claim:  Random correlation of the coupling => wormhole  
                                                             => Plankian Transport  

Below we explain below one by one.

How our view on ER=EPR is di!erent from others.

In the original paper by Susskind and Maldacena[16], the authors suggested that any

entangled pair should be connected by a microscopic ER bridge. For them this ER bridge

is living in the same universe with the EPR pair (one particle inside and the other ourside

of the black hole.) Since a microscopic EPR pair has negligible e!ect on the gravity,

it is hard to imagine a microscopic wormhole structure in real space gravitationally

induced by such EPR pair, because the smaller is the wormhole, the larger should be

the curvature. The easiest resolution was to realize the ER in the ’dual graviy’ via state-

geometry duality of the ads/cft dictionary. In the paper [35] by Maldacena and Qi, they

took two copies of the SYK model with an interaction term:

H = HL +HR + iµ
∑

j

ωL
j ω

R
j . (1)

The gravity dual of this coupled (0-dimensional) SYK was suggested as the traversible

wormhole connecting the each side of the pair sitting at the left and right boundary

of the AdS2 black hole. ( See the appendix where such idea is summarized in consice

language.) In this picture, ER does not belong to the world containing the EPR pair but

to the gravity dual world of higher dimension. See the figure 1.

Given this situation, a sensible question is ’what is the CFT dual of the ER?’ Such

dual ER is a structure in quantum field theory (QFT) that entangles two particles

sitting in two points which can be causally disconnected. We would call this dual ER

should be considered as the what Maldacena and Susskind would need for the black hole

information problem. Our key point is the observation that the so called ’correlation of

the random couplings’

→gi(εx)gj(εx
→)↑ = ϑijϑ(εx↓ εx→) (2)

is precisely the dual ER one we are seeking, because, in Feynman diagram (in real

3
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A non-Disordered Model: We start with an action
with disorder, Stot = Sω + Sε + Sint, where

Sω =

∫
dωd

2r
[ N∑

a=1

ε
†
a(r, ω)

(
ϑϑ →

↑
2

2m
→ µ

)
εa(r, ω)

+
N∑

a,b=1

Vab(r)ε
†
a(r)εb(r)

]
, (3)

Sε =
1

2

∫
dωd

2r
N∑

a=1

ϖa

(
→ϑ

2
ϑ →↑

2 +m
2
b

)
ϖa(r, ω), (4)

in the imaginary time ω , where Sint is given in (1) with
the condition (2) assumed. The potential Vab(r) ↓∑

i Vimp(ab)(r → ri) is created by imperfections at ri,
which satisfies ↔Vab(r)↗ = 0 and

↔V
→
ab(r)Va→b→(r

↑)↗ = v
2
ϱ(r → r↑)ϱaa→,bb→ , with v ↘ R.(5)

The path integral quantization of this system is given
by Z ↓

∫
D[!] exp(→Stot), with D[!] = D[ε,ε†]D[ϖ].

The quenched average aims for ↔lnZ↗dis ↓ Wq, which is
defined by

Wq =

∫
D[g]P [g]

[
ln

(∫
D[!]e↓Stot[g,ω,ε]

)]
, (6)

where P [g] represents the Guaßian distribution. Here,
the convention is that the dynamical variable ! should
be integrated before gijk(r), which means that the spa-
tial random correlation condition (2) is imposed after all
Feynmann rules of ε,ϖ system is worked out. In contrast,
an annealed average computes ln↔Z↗dis ↓ Wa, defined by

Wa = ln

(∫
D[!]

∫
D[g]P [g]e↓Stot[g,ω,ε]

)
, (7)

where the relaxation time of the disorder variable g is
shorter than the dynamical time of ε and ϖ. In this case,
one can integrate out the disorder variable gijk(r) to get
an e”ective theory, which can be described by replacing
the interaction (1) with

Sint ↓ →
g
2

2N2

∫
dω1dω2d

2r
N∑

a,b,c=1

ε
†
aεb(r, ω1)ϖc(r, ω1)

≃ε
†
bεa(r, ω2)ϖc(r, ω2). (8)

This term describes a coupling between Fermi surface
(FS) and scalar field, involving an interaction of higher
order than the original. It represents a phenomenon
where three particles disappear/appear at time ω1 and
reappear/vanish at time ω2 at the same (spatial) posi-
tion. After the random sum Dg, the resulting theory
contains no disorder variable, so it is a pure quantum
theory, no longer an ensemble average. We may there-
fore refer to the model (8) a ‘non-disordered’ theory. We
define the Feynman rule of this vertex, such that

(ω1, r) (ω2, r)
= g2

2
∫
dω1dω2d2r

. (9)

The dashed-dotted line, representting two spacetime
points sharing the same spatial positions and di”erent
times, has the same e”ect of the line of quenched disor-
der average in ref.[8, 14, 19].
Linear resistivity in the non-Disordered Model: In the

following, we will show that in the large N limit, an-
nealed system (8) should give the same results as the
quenched average (using the replica trick as is demon-
strated in refs.[8, 14, 19]). Rephrased, we will show that
the diagrams of the annealed average, which are absent
in quenched case, are in fact subdominant as N ⇐ ⇒, so
ln↔Z↗dis = ↔lnZ↗dis holds to the leading order in large-N
expansion. Furthermore, no diagrams in the quenched
case do not appear in the annealed case.
We now use the Feynman diagram method to find the

propagators and self-energies. The full propagators of
electrons and bosons read[20, 21]

G(iς,k) =
1

iς →
k2

2m + µ→ #(iς)
, (10)

D(i$, q) =
1

$2 + q2 +m
2
b →%(i$, q)

, (11)

respectively with corresponding self-energies # and %.
As we mentioned before, the large-N limit is essential

to reproduce the results [8] of the quenched average. Gen-
erally in large N theory, rainbow diagrams are dominant,
so others can be neglected. This simplifies the calcula-
tion greatly. In our model, even among these rainbow
diagrams, some are subdominant. For instance, the ac-
tion (8) allows for ‘semi-tadpole’ diagrams such as

, (12)

where the solid line and wavy line represent fermion
propagator and boson propagator respectively. Feynman
graph (12) is a tadpole diagram in time, as two sub-
vertices are temporally separated, but it is not a tadpole
diagram in space, since sub-vertices have the same spa-
tial location. Due to such di”erence, diagram of this type
is termed as semi-tadpole in this article. In QFT, tad-
poles are vacuum graphs of no consequence unless we are
interested in spontaneous symmetry breaking, but semi-
tadpoles can not be so a priori. Thanks to the large-
N limit, graph (12) contributes to electron self-energy a
term of order O(1/N), while the leading order of self-
energy is O(1). For this reason, all semi-tadpoles can be
neglected. [22]
Another example from electron self-energies is

. (13)

The contractions in space make this graph no longer
disconnected. We regard the red dashed-dotted line
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For annealed case, 
g2 + g(x)𝒪(x) = (g + 𝒪(x))2 − 𝒪(x)𝒪(x)

III. Equivalence of the Quenched and Annealed disorder. 
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in ref.[16], posits a deep connection between quantum
entanglement (EPR) and wormholes (ER). It suggests
that two entangled particles are connected by a micro-
scopic wormhole, and vice versa, although the details of
this conjecture including the meaning of the microscopic
wormhole remain unclear. Accepting and applying it ren-
ders the ER bridge in the quenched picture equivalent to
the presence of entanglement, thereby linking the origin
of linear resistivity to quantum entanglement.This pic-
ture for the quantum entanglements for the SYK-rised
models can be naturally applied to the original SYK
model in a similar manner by considering the indices
i, j, k as the discretized spatial positions. Especially no-
tice that in our model we gave a definite meaning of the
so called ’microscopic wormhole’ as the delta function
pseudo propagator connecting two arbitrarily far sepa-
rated points.

In our case, the quantum entanglement has been incor-
porated via the anneald average, even without invoking
the ER = EPR conjecture. On the contrary, the equiva-
lence of quenched and annealed disorder can o!er a clear
and explicit demonstration of the conjecture, with cal-
culations that are largely controlled. We have proposed
that averaging over certain observables, a quenched av-
erage introduces the feature of the ER that connects two
di!erent positions, whereas an annealed average assigns
the system a pure quantum description with an e!ec-
tive action. In the large-N limit, the annealed aver-
age produces physical quantities identical to those of the
quenched average, i.e,

Wq = Wa.

This equivalence can be graphically represented by [28]

=

(ω1, r)

(ω2, r)

ε(r→ r↑)

ER

(ω2, r↑) (ω1, r)

EPR
. (28)

Presence of wormholes is thus tantamount to having
quantum entanglements, which is precisely the central
idea of ER = EPR conjecture.

Discussions In this article, we perform an annealed
average over the disorder (1), which was first introduced
as a quenched disorder in Ref.[8]. The calculation shows
the equivalence between annealed average and quenched
average at large-N limit, and we suppose such an equiva-
lence can serve as an evidence of ER = EPR conjecture.

Based on the fact that annealed and quenched average
share the same Feynman diagrams at large-N limit, we
find that both annealed average and quenched avereage
of interaction (1) yields linear resistivity. Admittedly, the
annealed average and quenched average is not necessarily

equivalent even if they have the same Feynman diagrams
[29]. However, when we use replica trick to perform the
quenched average of interaction, a replica-diagonal saddle
can well capture its physics [14, 23], which ensure the
equivalence between two averages as N → ↑.
Though dominated by melonic graphs, the theory (8)

is di!erent with the SYK-like non-disordered Gurau-
Witten model [15], also featured by the melonic domi-
nance at largeN . Gurau-Witten model is a theory of ten-
sor fields representing geometric degrees of freedom. Ad-
ditionally, Amit-Roginsky model [30] is a melonic dom-
inant matter theory without disorder [30–32], but it in-
volves no electrons. So neither of these two models per-
mits electronic transport phenomena. More importantly,
interaction (8) originates from the annealed average of
random disorder (1), while Gurau-Witten model is ‘truly
clean’, which does not exhibit temporal bilocality and
thus cannot support the existence wormhole.
The ER = EPR conjecture [16] arises from a

gedankenexperiment, where two groups of entangled
particles collapse and form two entangled black holes.
Wheeler suggested a similar model seven decades ago,
where he supposed the electrons could be the mouths of a
wormhole in a doubly connected space [33, 34]. Our pro-
posal is similar to Wheeler’s description, as the existence
of black holes is inessential. Here, we introduced several
nuanced modifications to Wheeler’s framework. First,
the particles are not mouths. Second, in our model there
is a temporal separation |ω1 ↓ ω2| between (r1) and (r2),
although it is not shown in Fig.2 for simplicity. Such
a temporal separation, or delay in the interaction’s re-
sponse, is crucial for producing linear resistivity in our
model and also appears in argument in Ref.[16], in rela-
tion to wormholes and EPR pairs. It would be insightful
to explore its connection to the mechanism of supercon-
ductivity where time delay often plays a critical rôle in
the pairing [35].
To the best of our knowledge, our proposal is also the

closest realisation of the original conjecture [16]. Our
wormhole interpretation on quenched average cannot be
applied in original SYK model, since it has no spa-
tial dimension. Most works following ref.[16] use holo-
graphic approach such that an entangled state of coupled
SYK models dual to a traversable wormhole in higher-
dimensional bulk spacetime [36–38]. Therefore, these
works do not faithfully inherit the sprit of ER = EPR.
In our proposal, ER and EPR are in the same spacetime
without using holographic dictionary, which matches the
original idea that ER is a manifestation of EPR, instead
of being merely a dual.
Another achievement of this article is clarifying the

meaning of ‘microscopic wormhole’, which lacks a def-
inition in Ref.[16]. The ER = EPR conjecture implies
even one pair of entangled particles can form a Planckian
wormhole [16], whose explicit description involves quan-
tum gravity. In contrast, our proposal only need the ran-

Quenched case: replica trick.  
Replica off diagonal case  is  
1/N suppressed.
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• For  
the replica index a from  

can be dropped after .  

• The equivalence can be shown case by case. 
We have done at the level of conductivity to discuss SM. 

gijk(x)ϕa
i ψa

j ψa
k (t, x)

R → 0

 , I=1,…, N, with large N,gijk(x)ϕiψjψk(t, x)
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SYK-rised Vector Model
vector field

SYK-rised random coupling

potential disorder
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02 SYK-rised Vector Model

Dyson’s Equations

Saddle Point Equation

G-Σ 
action

Vector 
model
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III. Equivalence of the Quenched and Annealed disorder. 

•  Quenched: , should use replica trick.  

=  

• Annealed :  

 

Hint = J𝒪

< O >Q = −
δ
δJ

< lnZ[J] >dis − lim
R→0

1
R

δZR[J]
δJ

< O >A = −
δ
δJ

ln < Z[J] >dis
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|p, ↑ ⟩

| − p, ↑ ⟩

So the pair is coming from  which is 
a triplet. So triplet superconductor is possible. While the 
singlet is possible only for the discrete 4 points. It is 
similar to the superconductor out of spineless fermions.  
The point of the chiral superconductor.

|p, ↑ ⟩ ⊗ | − p, ↑ ⟩
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