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Motivation

Interfaces are ubiquitous:

In condensed matter: boundaries between materials (QHE, topological
insulators), Josephson junctions, impurities (in wires),...

In relativistic quantum field theories: domain walls, Wilson lines (in 1+1), ...

In string theory: branes ending on branes, orientifolds, ...

From a theoretical perspective, they can be used to probe a theory beyond the
usual correlators of local operators

Change the vacuum, broken translation invariance

Both local and non-local quantities are affected

Charged under generalized symmetries

We are interested in the entanglement entropy
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Example of an interface:
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Entanglement entropy

To a state |ψ〉 we associate a density operator ρ̂ = |ψ〉〈ψ|

The Hilbert space s a direct product H = HA ⊗HĀ, the reduced density
operator in A is

ρ̂A = TrĀ(ρ̂)

In general, ρ̂A takes the form of the density operator of a mixed state in the
subspace A

The Entanglement Entropy of A is defined as the von Neumann entropy of
the reduced density operator

SA = −TrA (ρ̂A log ρ̂A)
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|ψ〉 = | ↑A↓Ā〉 ⇒ ρ̂A = | ↑A〉〈↑A | ⇒ SA = 0

|ψ〉 =
1√
2

(| ↑A↓Ā〉 − | ↓A↑Ā〉) ⇒ ρ̂A =
1

2
| ↑A〉〈↑A |+

1

2
| ↓A〉〈↓A |

⇒ SA = ln 2
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In our case A = compact region of space

TrĀ = ‘trace’ over d.o.f. outside of A *



Entanglement entropy

• Why are we interested in the EE?

- In this particular work for its connection to c-theorems

• What is a c-theorem?

- There is a quantity that is monotonically decreasing along the RG flow and
that counts in some way the number of degrees of freedom. It realizes the
intuitive idea of “integrating out” degrees of freedom along the flow.

• What makes the EE good for proofs of c-theorems?

- A property known as Strong Subadditivity (SSA). For two regions of space A
and B, there is the following inequality

S(A) + S(B)− S(A ∩B)− S(A ∪B) ≥ 0
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Our setup

We focus on codimension one interfaces in 1 + 1 dimensions

The interfaces preserve some conformal invariance: ICFTs

Concrete examples will be given in terms of their holographic duals

We study spacelike intervals and apply the Ryu-Takayanagi prescription

SA =
1

4G
(Minimal area of surfaces homologous to A)

[Imseis ’21]
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Regularized entanglement entropy

The EE of an interval depends on the distance of the endpoints to the interface

Crossing intervals

l = lR + lL

Non-crossing intervals

l = lR − lL

SA =
c

3
log

(
l

ε

)
+ log g(1)

CFT: log g(1) = 0

BCFT: log g(1) = log g

SA =
c

6
log

(
2lL
ε

)
+
c

6
log

(
2lR
ε

)
+ log g(2) BCFTL × BCFTR:

log g(2) = 0
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Special characteristics of EE in ICFTs

Both in free field theories and in holographic models:

1) geff -theorem for crossing intervals (follows from SSA) [Afxonidis, Karch, Murdia ’24]

lim
lL
lR
→0

d log g(2)

d log lL
lR

≤ d log g(2)

d log lL
lR

≤ 0

log g(2) is a monotonically decreasing function of lL/lR

2) Effective central charge when an endpoint is at the interface
[Sakai, Satoh ’08; Brehm, Brunner ’15; Karch, Luo, Sun ’21; Karch, Wang ’22]

SA ∼
c+ ceff

6
log

(
2lR
ε

)
Bound ceff ≤ min(cL, cR) [Karch, Kusuki, Ooguri, Sun Wang ’23, ’24]
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Holographic ICFTs and EE
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Holographic dual geometries of ICFTs
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ds2 = R2

(
dr2 + e2A(r)

(
−dt2 + dx2

x2

))



Holographic dual geometries of ICFTs

Pure AdS3 of radius R for eA = cosh r → CFT2

Simpler bottom-up model: Randal-Sundrum braneworld

Non-supersymmetric backreacted model: Janus solution

Supersymmetric top-down model: super Janus solution

Minimal value of the warp factor at r = r∗: A∗ = A(r∗)
Determines the effective central charge ceff = ceA∗

C. Hoyos (UO) ICFTs UCAS 2025 8 / 18

ds2 = R2

(
dr2 + e2A(r)

(
−dt2 + dx2

x2

))



Holographic dual geometries of ICFTs

RS braneworld (r∗ 6= 0) [Karch, Randall ’00, ’01]

eA = cosh(|r| − r∗), eA∗ = 1

Janus (r∗ = 0) [Bak, Gutperle, Hirano ’07]

eA =

[
1

2

(
1 +

√
1− 2γ2 cosh (2r)

)]1/2

, eA∗ =

(
1

2

(
1 +

√
1− 2γ2

))1/2

super Janus (r∗ = 0) [Chiodaroli, Gutperle, Krym ’09; Chiodaroli, Gutperle, Hung ’10; Baig, Karch, Wang ’24]

eA =
cosh r

coshψ cosh θ
, eA∗ =

1

coshψ cosh θ
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Minimal area surface

The profile x(r) is determined by

x′

x
= ± |cs|e−A√

R2 e2A − c2s
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Minimal area surface

Finite interface entropy contribution

log g(2) =
c

3

[∫ ∞
rmin

dr

(
eA

R
√
e2AR2 − c2s

− 1

)
− rmin

]

Ratio of the distance of the endpoints to the interface

log

(
lL
lR

)
= −2

∫ ∞
rmin

cse−
A√

e2AR2 − c2s
dr

Crossing intervals have rmin = 0 and non-crossing |rmin| ≥ r∗.
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Monotonicity properties

Change of interface entropy with ratio of distance of endpoints

d log g(2)

d log lL
lR

=
d log g(2)

dcs

(
d log lL

lR

dcs

)−1

The interface entropy is a monotonically decreasing function of the ratio

d log g(2)

d log lL
lR

= − c
6

cs
R
≤ 0

The change is faster for non-crossing intervals∣∣∣∣∣d log g(2)

d log lL
lR

∣∣∣∣∣
crossing

≤

∣∣∣∣∣d log g(2)

d log lL
lR

∣∣∣∣∣
non-crossing

Interval with endpoints at the boundary

lim
lL
lR
→0

d log g(2)

d log lL
lR

= −ce
A∗

6
= −ceff

6
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Interface entropy and effective central charge
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g-theorem for non-crossing intervals
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Sc (lL + εL, lR)+Snc (lL, lR + εR)−Sc (lL + εL, lR + εR)−Snc (lL, lR) ≥ 0



g-theorem for non-crossing intervals

−εR
(
∂Sc(lL, lR)

∂lR
− ∂Snc(lL, lR)

∂lR

)
+O

(
ε2
)
≥ 0

d log g
(2)
nc

d log lL
lR

≤ d log g
(2)
c

d log lL
lR

≤ 0

In agreement with monotonicity properties

One can reverse the argument and use the mono-
toncity properties to show that the SSA is satisfied
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Sc (lL + εL, lR)+Snc (lL, lR + εR)−Sc (lL + εL, lR + εR)−Snc (lL, lR) ≥ 0



Intervals with an endpoint at the interface

lL
lR

= 0 corresponds to cs = ReA∗

The integrands in log g(2) and log lL
lR

become divergent

eA(r) ≈ eA∗ + b2(r − r∗)2 + . . .

Then

1√
e2AR2 − c2s

≈ 1

R
√

(eA∗ + b2(r − r∗)2)2 − e2A∗
≈ 1

R
√
b2|r − r∗|

Which makes

log g(2) →∞, log

(
lL
lR

)
→ −∞

Expanding the integrals for cs → ReA∗ , r ≈ r∗, we find

log g(2) ∼ −ce
A∗

6
log

(
lL
lR

)
+ finite
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The origin of ceff

The position of the endpoint of an interval is determined up to distances of
the order of the cutoff lL = λε

SA ∼
c

6
log

(
2lR
ε

)
+
c

6
log

(
2λε

ε

)
+ log g(2)

∣∣∣∣
lL=λε

Using the limit of log g(2) for lL
lR
→ 0 (cs → ReA∗)

SA ∼
c+ ceff

6
log

(
2lR
ε

)
+ finite, ceff = ceA∗

We reproduce previous results

The effective central charge originates in the finite interface entropy!

C. Hoyos (UO) ICFTs UCAS 2025 15 / 18



A ceff-theorem

Introduce the pseudo-beta function

Bg =
d log g(2)

d log lL
lR

, Bg ≤ 0 (geff − theorem)

We can prove
dBg

d log lL
lR

≤ 0

Then, the following quantity behaves as a c-function of the ratio

Ceff = −6Bg,
dCeff

d log lL
lR

≥ 0,

UV: lim
lL
lR
→0

Ceff = ceff , IR: lim
lL
lR
→1

Ceff = 0

Note however that this is not an actual RG flow, the ICFT theory remains
fixed
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Other results

1) Boundary entropy number in crossing and non-crossing intervals:

lim
lL
lR
→1

log g(2)
c = log g, lim

lL
lR
→1

log g(2)
nc = − log g

2) We can define a finite scheme-independent finite interface entropy:

log gi ≡ lim
lL
lR
→0

(
Scrossing
A (lL, lR)− Snon-crossing

A (lL, lR)
)

In holographic models: log gi =
c

3

∫ r∗

0

dr
√

1− e−2(A−A∗)

(super) Janus: log gi = 0, RS braneworld: log gi = log cosh r∗

3) In an asymmetric ICFT cL 6= cR dual to an RS braneworld
Crossing intervals: ceff = min(cL, cR)
Non-crossing intervals: ceff = cL(cR) to the left (right) of the interface
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Outlook

Field theory calculation of interface entropy for non-crossing intervals

RG flows at the interface or in the bulk (e.g. Kondo-like impurities)
[Erdmenger, Flory, Hoyos, Newrzella, O’Bannon, Wu ’15; Erdmenger, Melby-Thompson, Northe ’20]

c and g-theorems for proper RG flows

Boosted intervals [Casini, Huerta ’04; Takayanagi ’11],
Covariant EE prescription [Hubeny, Rangamani, Takayanagi ’07]

Non-zero temperature [Affleck, Ludwig ’91; Friedan, Konechny ’03; Erdmenger, Flory, C. H.,Newrzella, Wu ’15]
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