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T-duality
Consider a Type II (closed) superstring moving in 10D with one spatial
direction X compactified on a circle with a radius R.
The T-duality implemented along this circle is

R → α′

R , K ↔ W, gs →
√
α′

R gs. (1.1)
Note that

α0 =

√
α′

2

(
K
R − WR

α′

)
, α̃0 =

√
α′

2

(
K
R +

WR
α′

)
. (1.2)

So the above T duality amounts to the following

α0 → −α0, ψ0 → −ψ0; α̃0 → α̃0, ψ̃0 → ψ̃0. (1.3)

This can be generalized to the oscillation modes and to have
αn → −αn, x ↔ x̂, ψt → −ψt;

XR(τ − σ) → −XR(τ − σ), ψR(τ − σ) → −ψR(τ − σ)
(1.4)

for the right-mover and
Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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T-duality
while leave the left-mover untouched α̃n → α̃n, x ↔ x̂, ψ̃t → ψ̃t;

XL(τ + σ) → XL(τ + σ), ψL(τ + σ) → ψL(τ + σ).

(1.5)

In the above the index n is an integer while the index t is an integer in R-sector
and a half-integer in NS-sector.

Under T duality, the generators of Virasoro algebra of the matter part for either
left or right mover remain invariant. We can see this easily from the following
zero modes as examples.

Lmatter
0 =

α′

4

(
K
R − WR

α′

)2

+
α′

4
p̂2 +

∞∑
n=1

α−n · αn +

∞∑
t>0

tψ−t · ψt,

L̃matter
0 =

α′

4

(
K
R +

WR
α′

)2

+
α′

4
p̂2 +

∞∑
n=1

α̃−n · α̃n +
∞∑

t>0

t ψ̃−t · ψ̃t,

(1.6)

where p̂ labels the momentum along the un-compactified directions.
Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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T-duality

Note that in R-sector, we have fermionic zero modes ψ0 and ψ̃0 and they
will transform under the T-duality along the compactified direction as

ψ0 → −ψ0, ψ̃0 → ψ̃0. (1.7)

Note also ψ0 ∼ Γ with Γ the Dirac matrix along the compact direction
(Note ψ̃0 ∼ Γ11Γ). This implies that Γ → −Γ under T-duality. So this
further implies that the chiral operator Γ11 → −Γ11. So under T-duality,
the chirality for one of the two chiral spinors in Type II flips which gives

IIA ↔ IIB. (1.8)

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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D-brane boundary state and T duality
It is known that a T-duality along a Dp brane worldvolume direction will
change it to a D(p -1) brane while a T duality along a direction transverse to it
will change it to a D(p + 1) brane.

Then how to implement this T duality on a Dp brane boundary state and to
the cylinder D brane amplitude?

We here list the (GSO projected) D-brane boundary state representation
carrying no worldvolume flux which is used in computing the closed string tree
cylinder amplitude between two D-branes. We have two sectors, namely,
NS-NS sector and R-R sector, to consider. They are

|B⟩NSNS =
1

2
[|B,+⟩NSNS − |B,−⟩NSNS] ,

|B⟩RR =
1

2
[|B,+⟩RR + |B,−⟩RR] . (2.1)

Here the boundary state |B, η⟩ with η = ± for a Dp-brane, say from Di Vecchia
et al hep-th/9912161, can be expressed as the product of a matter part and a
ghost part, i.e.

|B, η⟩ = |Bmat, η⟩|Bg, η⟩, (2.2)

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

T-duality in Type II D-brane BS and T-duality The cylinder amplitude The cylinder amplitude and T duality

D-brane boundary state and T duality
where

|Bmat, η⟩ = |BX⟩|Bψ, η⟩, |Bg, η⟩ = |Bgh⟩|Bsgh, η⟩, (2.3)
and

|BX⟩ = exp(−
∞∑

n=1

1

nα−n · S · α̃−n)|BX⟩0, (2.4)

and
|Bψ, η⟩NS = −i exp(iη

∞∑
m=1/2

ψ−m · S · ψ̃−m)|0⟩, (2.5)

for the NS-NS sector and

|Bψ, η⟩R = −exp(iη
∞∑

m=1

ψ−m · S · ψ̃−m)|B, η⟩0R, (2.6)

for the R-R sector. The ghost boundary states are the standard ones as given
in Billo et al hep-th/9802088.
The above matrix S for a Dp brane is, with α, β = 0, 1, · · · p and
i, j = p + 1, · · · 9− p,

Sp = (ηαβ ,−δij). (2.7)

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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D-brane boundary state and T duality
The zero-mode boundary state is

|BX⟩0 =
cp

2
δ(9−p)(qi − yi)|kµ = 0⟩, (2.8)

for the bosonic sector with the overall normalization cp =
√
π
(
2π

√
α′
)3−p

,
and

|Bψ, η⟩0R =

(
CΓ0Γ1 · · ·Γp 1 + iηΓ11

1 + iη

)
AB

|A⟩|B̃⟩, (2.9)

for the R-R sector.

In the above, the Greek indices α, β, · · · label the world-volume directions
0, 1, · · · , p along which the Dp brane extends, while the Latin indices i, j, · · ·
label the directions transverse to the brane, i.e., p + 1, · · · , 9.

We also have denoted by yi the positions of the D-brane along the transverse
directions, by C the charge conjugation matrix. |A⟩|B̃⟩ stands for the spinor
vacuum of the R-R sector.

Note that the η in the above denotes either sign ± or the worldvolume
Minkowski flat metric and should be clear from the content.

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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D-brane boundary state and T duality

We come now to examine how the boundary state transforms under a T-duality.

For this, let us first examine how each of the exponential factors due to either
the bosonic or the fermionic oscillators in the respective boundary states of
matter part transforms under the T -duality.

It is clear that the T-duality amounts to the change of the matrix Sp given in
(2.7) as

Sp = (ηαβ ,−δij) → Sp−1 = (ηα′β′ ,−δi′j′), (2.10)
with now α′, β′ = 0, 1, · · · p − 1 and i′, j′ = p, · · · 10− p if we choose for
simplicity, for example, the compactified X = Xp or

Sp = (ηαβ ,−δij) → Sp+1 = (ηα′β′ ,−δi′j′), (2.11)

with now α′, β′ = 0, 1, · · · p + 1 and i′, j′ = p + 2, · · · 8− p if we choose for
simplicity, for example, the compactified X = Xp+1.
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D-brane boundary state and T duality
If choose X = Xp, under the T duality, Γp → −Γp ⇒ Γ11 → −Γ11. We have
then from (2.9), noticing under T duality C → C,

|Bp
ψ, η⟩0R =

(
CΓ0Γ1 · · ·Γp 1 + iηΓ11

1 + iη

)
AB

|A⟩|B̃⟩

→ −
(

CΓ0Γ1 · · ·Γp 1− iηΓ11

1 + iη

)
AB

|A⟩|B̃⟩

= −
(

CΓ0Γ1 · · ·Γp−1 1 + iηΓ11

1 + iη

)
AD

|A⟩ (Γp)DB |B̃⟩.(2.12)

Note also that we can choose (Γ11)AB|B⟩ = |A⟩ and (Γ11)AB|B̃⟩ = ±|Ã⟩ with
the ‘+′ sign corresponding to IIB while the ‘−′ sign to IIA. Denoting
|B̃⟩ = − (Γp)BD |D̃⟩, we have (Γ11)AB |B̃⟩ = ∓|Ã⟩. In other words, after the T
duality, we transform |B̃⟩ to |B̃⟩ with an opposite chirality, i.e. IIA ↔ IIB, as
expected. We have then

|Bp
ψ, η⟩0R → −

(
CΓ0Γ1 · · ·Γp−1 1 + iηΓ11

1 + iη

)
AD

|A⟩ (Γp)DB |B̃⟩

=

(
CΓ0Γ1 · · ·Γp−1 1 + iηΓ11

1 + iη

)
AB

|A⟩|B̃⟩ = |Bp−1
ψ , η⟩0R.

(2.13)
Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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D-brane boundary state and T duality
On the other hand, if choose X = Xp+1, still Γ11 → −Γ11 due to
Γp+1 → −Γp+1 under the T duality. We then have, from (2.9),

|Bp
ψ, η⟩0R =

(
CΓ0Γ1 · · ·Γp 1 + iηΓ11

1 + iη

)
AB

|A⟩|B̃⟩

→
(

CΓ0Γ1 · · ·Γp 1− iηΓ11

1 + iη

)
AB

|A⟩|B̃⟩

=

(
CΓ0Γ1 · · ·Γp 1− iηΓ11

1 + iη
(
Γp+1)2)

AB
|A⟩|B̃⟩

=

(
CΓ0Γ1 · · ·ΓpΓp+1 1 + iηΓ11

1 + iη

)
AD

|A⟩
(
Γp+1)

DB |B̃⟩

=

(
CΓ0Γ1 · · ·ΓpΓp+1 1 + iηΓ11

1 + iη

)
AB

|A⟩|B̃⟩

= |Bp+1
ψ , η⟩0R, (2.14)

where |B̃⟩ ≡
(
Γp+1

)
BD |D̃⟩.

So under the T duality, we still have the expected |Bp
ψ, η⟩0R → |Bp+1

ψ , η⟩0R and
IIA ↔ IIB.
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D-brane boundary state and T duality
So the only thing left is to check how the bosonic zero mode boundary state
transforms under the T duality either along a longitudinal or transverse
direction.

Note that the bosonic zero-mode boundary state changes from the
non-compactified one (2.8) to the following compactified one

|Ωp⟩ = Np

k∏
i=1

∑
ωαi

e−i yαiωαi rαi/α
′
|nαi = 0, ωαi⟩

 |k0 = 0, k̂∥ = 0⟩

×
l∏

m=1

∑
njm

e−i yjm njm/Rjm |njm , ωjm = 0⟩

 δ̂(⊥)
(

q̂⊥ − ŷ⊥
)
|k̂⊥ = 0⟩,

(2.15)

where we consider a Dp brane with k longitudinal compactified directions of
radii rαi (i = 1, · · · k) and l transverse compactified directions of radii Rjm

(m = 1, · · · , l), generalized to different radii from that given in DiVecchia &
Liccardo hep-th/9912275 and we use ‘ ’̂ to denote those non-compactified
directions, either longitudinal or transverse.

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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D-brane boundary state and T duality
In the above, the normalization factor

Np =
cp

2

k∏
i=1

(
2πrαi

Φαi

)1/2 l∏
m=1

(
1

2πRjmΦjm

)1/2

. (2.16)

Following DiVecchia & Liccardo hep-th/9912275 , we introduce, for
convenience, the ‘position’ and ‘momentum’ operators, respectively, for the
momentum and winding degrees of freedom, as

[qµω, pνω] = iδµν , [qµn , pνn] = iδµν , (2.17)

where µ, ν are along either the longitudinal or the transverse compactified
spatial directions. We then have

pαn |Ωp⟩ = 0, pj
ω|Ωp⟩ = 0, (2.18)

where α represents one of αi and j represents one of jm. By denoting the
eigenstate |nν , ων⟩ of the respective ‘momentum’ operators, we have

pµn |nµ, ωµ⟩ =
nµ
aµ

|nµ, ωµ⟩, pµω|nµ, ωµ⟩ =
ωµaµ
α′ |nµ, ωµ⟩, (2.19)

where aµ is the radius of the compactified direction which can be either one of
rαi or one of Rjm mentioned earlier.

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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D-brane boundary state and T duality

So
|nµ, ωµ⟩ ≡ eiqµn nµ/aµ eiqµωωµaµ/α′

|0, 0⟩, (2.20)
with |0, 0⟩ denoting the zero-momentum and zero-winding state.

The normalization of this state is given

⟨n′
µ, ω

′
µ|nµ, ωµ⟩ = Φµ δn′

µ,nµ δω′
µ,ωµ

, (2.21)

where Φµ is the so called ‘self-dual’ volume which has the following properties

Φµ = 2πaµ if aµ → ∞; Φµ =
2πα′

aµ
if aµ → 0. (2.22)

Note also that in the decompactification limit we have when rα → ∞∑
ωα

ei(qαω−yα)ωαrα/α′
|0, 0⟩ → |0, 0⟩ (2.23)

where α is one of αi,

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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D-brane boundary state and T duality

and when Rj → ∞∑
nj

ei(qj
n−yj)nj/Rj |0, 0⟩ → Rj

∫
dkj ei(qj−yj)kj

|0, 0⟩ =

2πRj

∫
dkj

2π
ei(qj−yj)kj

|0, 0⟩ = 2πRjδ
(

qj − yj
)
|0, 0⟩, (2.24)

where j is one of jm. In the above, when taking rα → ∞, only the ωα = 0 term
survives in the sum in (2.23) while in (2.24) we have replaced the sum by an
integral of k given by kj = nj/Rj when Rj → ∞.

With the above, we now come to perform a T duality along either a
longitudinal or a transverse direction to the zero-mode state |Ωp⟩ to see if it is
consistent with our expectation.

Let us begin with a T duality along a longitudinal direction first. Without loss
of generality, let us perform this T-duality along the αk-direction. We then
need to send rαk → α′/rαk and nαk ↔ ωαk .

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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D-brane boundary state and T duality
We have then

|Ωp⟩ → Ñp

k−1∏
i=1

∑
ωαi

e−iyαiωαi rαi/α
′
|nαi = 0, ωαi⟩

 |k0 = 0, k̂∥ = 0⟩

×

∑
nαk

e−iyαk nαk/rαk |nαk , ωαk = 0⟩


×

l∏
m=1

∑
njm

e−i yjm njm/Rjm |njm , ωjm = 0⟩

 δ̂(⊥)
(

q̂⊥ − ŷ⊥
)
|k̃⊥ = 0⟩

= Ñp

k−1∏
i=1

∑
ωαi

e−i yαiωαi rαi/α
′
|nαi = 0, ωαi⟩

 |k0 = 0, k̂∥ = 0⟩

×
l+1∏

m=1

∑
njm

e−i yjm njm/Rjm |njm , ωjm = 0⟩

 δ̂(⊥)
(

q̂⊥ − ŷ⊥
)
|k̃⊥ = 0⟩,

(2.25)
where in the last equality we have taken njl+1 = nαk , jl+1 = αk, Rjl+1 = rαk .
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D-brane boundary state and T duality
Note also under this T duality, we have

Np → Ñp =
cp

2

(
2πα′

rαkΦαk

)1/2 k−1∏
i=1

(
2πrαi

Φαi

)1/2 l∏
m=1

(
1

2πRjmΦjm

)1/2

=
cp

2

(
2π

√
α′
)(

1

2πrαkΦαk

)1/2 k−1∏
i=1

(
2πrαi

Φαi

)1/2 l∏
m=1

(
1

2πRjmΦjm

)1/2

=
cp−1

2

k−1∏
i=1

(
2πrαi

Φαi

)1/2 l+1∏
m=1

(
1

2πRjmΦjm

)1/2

= Np−1. (2.26)

With the above, under this T duality, we have the expected transformation

|Ω⟩p → |Ω⟩p−1. (2.27)

By a similar token, one can also show, when a T duality is performed along a
transverse compactified direction,

|Ω⟩p → |Ω⟩p+1, (2.28)

which is also expected.
Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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The compactified D-brane cylinder amplitude
The vacuum amplitude between a Dp’ brane and a Dp brane, placed parallel at
a separation y, can be calculated via

ΓDp′|Dp = ⟨Bp′ |D|Bp⟩, (3.1)
where D is the closed string propagator defined as

D =
α′

4π

∫
|z|≤1

d2z
|z|2 zL0 z̄L̃0 . (3.2)

Picture-wise, it is

Dp'
Dp
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The compactified D-brane cylinder amplitude

In the above, L0 and L̃0 are the respective left and right mover total zero-mode
Virasoro generators of matter fields, ghosts and superghosts. For example,
L0 = LX

0 + Lψ0 + Lgh
0 + Lsgh

0 where LX
0 ,Lψ0 ,L

gh
0 and Lsgh

0 represent
contributions from matter fields Xµ, matter fields ψµ, ghosts b and c, and
superghosts β and γ, respectively, and their explicit expressions can be found in
any standard discussion of superstring theories, for example in Di Vecchia et al
hep-th/9912161, therefore will not be presented here.

The above total vacuum amplitude has contributions from both NS-NS and
R-R sectors, respectively, and can be written as ΓDp′/Dp = ΓNSNS

Dp′/Dp +ΓRR
Dp′/Dp.

In calculating either ΓNSNS
Dp′/Dp or ΓRR

Dp′/Dp, we need to keep in mind that the
boundary state used should be the GSO projected one as given earlier.

Computing each of them is boiled down to the following one in each sector

ΓDp′|Dp(η
′, η) = ⟨Bp′

, η′|D|Bp, η⟩, (3.3)

with the respective boundary state given by (2.2) for which we also include the
compactified case into consideration.
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The compactified D-brane cylinder amplitude

Note that ΓDp′|Dp(η
′, η) = ΓDp′|Dp(η

′η) and this amplitude can be factorized
as

ΓDp′|Dp(η
′η) =

α′

4π

∫
|z|≤1

d2z
|z|2 AX Abc Aψ(η′η)Aβγ(η′η). (3.4)

In the above, we have

AX = ⟨Bp′

X |zLX
0 z̄L̃X

0 |Bp
X⟩, Aψ(η′η) = ⟨Bp′

ψ , η
′||z|2Lψ0 |Bp

ψ, η⟩,

Abc = ⟨Bgh||z|2Lgh
0 |Bgh⟩, Aβγ(η′η) = ⟨Bsgh, η

′||z|2Lsgh
0 |Bsgh, η⟩.(3.5)

The total amplitude has a contribution from the R-R sector only when p = p′

for which this amplitude vanishes due to the cancellation between the
contribution from the NS-NS sector and that from the R-R sector because of
the 1/2 BPS nature of this system. This certainly still holds true when a T
duality is performed.
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The compactified D-brane cylinder amplitude

We can understand this easily as follows:
The bosonic zero-mode contribution to the boundary state remains the
same to both sectors.
The oscillator contributions to the amplitude from all sectors remain the
same as before and after the T duality due to that the only quantity
relevant to the T duality is the matrix SS′T Jia et al NPB953 (2020)
114947, with the respective S and S′ given by (2.7) for the Dp brane and
Dp′ brane, which remains invariant under the T duality along any
direction.
As demonstrated in the previous section, the fermionic zero mode
boundary state in R-R sector will have a sign change in front of Γ11, for
example, see the second line in (2.12) or (2.14), under the T duality. We
can absorb this ‘-’ sign by defining η̃ = −η and η̃′ = −η′. Since this
zero-mode contribution to the amplitude depends only on the product
η̃η̃′ = ηη′, not individual η̃ and η̃′, therefore this contribution will also
remain invariant under the T duality.
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The compactified D-brane cylinder amplitude
When p ̸= p′, the cylinder amplitude comes from the NS-NS sector only. As
discussed above, only the bosonic zero-mode contribution to the amplitude will
change under the T duality along any direction. So this is our focus in
computing the closed string tree cylinder amplitude for p − p′ = 2n with
n = 0, 1, 2, 3 though the amplitude vanishes when n = 0, 2.
The corresponding non-compactified cylinder amplitude for any of these cases
has been given before, say, in Jia et al NPB953 (2020) 114947 when we turn
off the worldvolume fluxes:

ΓD(p−2n)|Dp(y) =
22−n V1+p−2n

(8π2α′)
1+p−2n

2

∫ ∞

0

dt
t
9−p
2

e−
y2

2πα′t Z(p−2n)|p(t), (3.6)

where Z(p−2n)|Dp(t) = 0 for n = 0, 2,

Z(p−2)|p(t) =
(
1 + |z|4n)4

(1− |z|2n)6 (1 + |z|2n)2
, (3.7)

for n = 1 and

Z(p−6)|p(t) = −
∞∏

n=1

(1 + |z|4n)4

(1− |z|2n)2(1 + |z|2n)6
, (3.8)

for n = 3.
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The compactified D-brane cylinder amplitude
Note that the above Z(p−2n)|Dp(t), due to the oscillator contribution, remains
the same whether we have compactifications or not or further under T-duality.
Given what has been described, in order to compute the compactified cylinder
amplitude, all we need is to compute the corresponding bosonic zero-mode
contribution to this amplitude.
In other words, we need to compute

AX
0 = 0⟨Bp′

X |z
1
2
α2
0R+ 1

2
α̂2
0 z̄

1
2
α2
0L+ 1

2
α̂2
0 |Bp

X⟩0, (3.9)
where α0R, α0L denote the right-mover and left-mover bosonic zero modes,
respectively, along the compactified directions while α̂0 = ˆ̃α0 denote the
respective bosonic zero modes along the non-compactified directions. We will
use this AX

0 to replace the corresponding one in the non-compactified case in
the amplitude (3.4).

Note that in the compactified case |Bp
X⟩0 = |Ωp⟩, |Bp′

X ⟩0 = |Ωp′⟩, and also the
following

α0R =
ls
2

pR =
ls
2
(pn − pω) , α0L =

ls
2

pL =
ls
2
(pn + pω) , (3.10)

along with α̂0 = ˆ̃α0 = ls
2

p̂ ( ls =
√
2α′).
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The compactified D-brane cylinder amplitude

After long computations (see Lu’25 for detail), we end up with

AX
0 =

cp−2ncp

4(2π2α′)
9−p−l

2

V1+p−2n−k

k∏
i=1

2πrαi

∑
ωαi

e−
πtω2

αi
r2αi

2α′ −i
yαiωαi rαi

α′


×

l∏
m=1

 1

2πRjm

∑
njm

e
−
πtα′n2jm
2R2

jm
−i

yjm njm
Rjm

 e−
(ŷ⊥)2

2πα′t

t
9−p−l

2

. (3.11)

When we take the decompactification limit rαi → ∞ and Rjm → ∞,

AX
0 → cp−2ncpV1+p−2n

4(2π2α′)
9−p
2

e−
y2

2πα′t

t
9−p
2

, (3.12)

giving precisely the corresponding decompactification limit. In the above, we
have set V1+p−2n = V1+p+2n−k

∏k
i=1 2πrαi with rαi → ∞ and

y2 = (ŷ⊥)2 +
∑l

m=1(y
jm)2, the brane separation along the transverse directions

to both branes when the decompactification limit is taken.
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The compactified D-brane cylinder amplitude
With the above, we have the compactified D-brane cylinder amplitude as

ΓD(p−2n)|Dp(y) =
22−n−l V1+p−2n−k

(8π2α′)
1+p−2n−l

2

∫ ∞

0

dt
t
9−p−l

2

e−
(ŷ⊥)2

2πα′t Z(p−2n)|p(t)

×
k∏

i=1

2πrαi

∑
ωαi

e−
πtω2

αi
r2αi

2α′ −i
yαiωαi rαi

α′

 l∏
m=1

 1

2πRjm

∑
njm

e
−
πtα′n2jm
2R2

jm
−i

yjm njm
Rjm

 ,
(3.13)

which reduces to the expected decompactified one (3.6) when taking the
decompactified limit rαi → ∞ and Rjm → ∞, noticing

k∏
i=1

2πrαi

∑
ωαi

e−
πtω2

αi
r2αi

2α′ −i
yαiωαi rαi

α′

 →
k∏

i=1

2πrαi ,

l∏
m=1

 1

2πRjm

∑
njm

e
−
πtα′n2jm
2R2

jm
−i

yjm njm
Rjm

 →
l∏

m=1

e−
(yjm )2

2πα′t
√
2π2α′t

=
e−

∑l
m=1

(yjm )2

2πα′t

(2π2α′t) l
2

.

(3.14)
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The compactified D-brane cylinder amplitude

In summary,

we have computed the compactified cylinder amplitude (3.13) between a
D(p - 2n) and a Dp with 2n ≤ p ≤ 8.

This amplitude has k ≤ p − 2n compactified longitudinal directions and
l ≤ 9− p compactified transverse directions common to both the branes.

These two D branes are placed parallel along the non-compactified
transverse directions at a separation ŷ⊥ and along each of the
compactified transverse directions at |yjm |.

yαi are the Wilson lines turned on along the respective compactified
worldvolume directions of the Dp brane while keeping the D(p - 2n) brane
absent of these.

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality
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T dual along a brane longitudinal direction

Given the cylinder amplitude (3.13), performing a T duality along either a
compactified longitudinal direction or a compactified transverse direction
becomes easy.

Without loss of generality, let us first perform this T duality specifically along
the longitudinal αk direction. We expect to have

ΓD(p−2n)|Dp → ΓD(p−2n−1|D(p−1). (4.1)

Let us check if this is indeed true. For this, we send rαk → Rjl+1 = α′/rαk ,
ωαk → njl+1 = ωαk , and yαk → yjl+1 = yαk to the cylinder amplitude (3.13).
We have then

2πrαk

∑
ωαk

e−
πtω2

αk
r2αk

2α′ −i
yαkωαk rαk

α′ → 8π2α′

2

1

2πRjl+1

∑
njl+1

e
−
πtα′ n2jl+1

2R2
jl+1

−i
yjl+1 njl+1

Rjl+1 .

(4.2)
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T dual along the brane longitudinal direction
We have then from (3.13)

ΓD(p−2n)|Dp →
22−n−l V1+p−2n−k

(8π2α′)
1+p−2n−l

2

∫ ∞

0

dt

t
9−p−l

2

e−
(ŷ⊥)2

2πα′t Z(p−2n−1)|(p−1)(t)

×
k−1∏
i=1

2πrαi
∑
ωαi

e−
πtω2

αi
r2αi

2α′ −i
yαiωαi rαi

α′

 l∏
m=1

 1

2πRjm

∑
njm

e
−
πtα′n2jm
2R2

jm
−i

yjm njm
Rjm



×
8π2α′

2

1

2πRjl+1

∑
njl+1

e
−
πtα′ n2jl+1

2R2
jl+1

−i
yjl+1 njl+1

Rjl+1

=
22−n−(l+1) V1+(p−1)−2n−(k−1)

(8π2α′)
1+(p−1)−2n−(l+1)

2

∫ ∞

0

dt

t
9−(p−1)−(l+1)

2

e−
(ŷ⊥)2

2πα′t Z(p−2n−1)|(p−1)(t)

×
k−1∏
i=1

2πrαi
∑
ωαi

e−
πtω2

αi
r2αi

2α′ −i
yαiωαi rαi

α′

 l+1∏
m=1

 1

2πRjm

∑
njm

e
−
πtα′n2jm
2R2

jm
−i

yjm njm
Rjm


= ΓD(p−2n−1)|D(p−1), (4.3)

where in the first line we have sent Z(p−2n)|p(t) → Z(p−2n−1)|(p−1)(t) = Z(p−2n)|p(t) due to the inert
of various oscillator contributions to the amplitude under T duality and ŷ⊥ remains the same. So this goes indeed
as expected.
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T dual along a direction transverse to both branes

Again without loss of generality, we choose to perform the T duality along jl
direction. We then expect to have

ΓD(p−2n)|Dp → ΓD(p+1−2n)|D(p+1). (4.4)

For this, we send Rjl → rαk+1 = α′/Rjl , njl → ωαk+1 = njl and
yjl → yαk+1 = yjl .

We then have

1

2πRjl

∑
njl

e
−
πtα′n2jl
2R2

jl
−i

yjl njl
Rjl →

2

8π2α′ 2πrαk+1

∑
ωαk+1

e−
πtω2

αk+1
r2αk+1

2α′ −i
yαk+1ωαk+1

rαk+1
α′ . (4.5)

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

T-duality in Type II D-brane BS and T-duality The cylinder amplitude The cylinder amplitude and T duality

T dual along a direction transverse to both branes
We have then from (3.13)

ΓD(p−2n)|Dp →
22−n−l V1+p−2n−k

(8π2α′)
1+p−2n−l

2

∫ ∞

0

dt

t
9−p−l

2

e−
(ŷ⊥)2

2πα′t Z(p+1−2n)|(p+1)(t)

×
k∏

i=1

2πrαi
∑
ωαi

e−
πtω2

αi
r2αi

2α′ −i
yαiωαi rαi

α′

 l−1∏
m=1

 1

2πRjm

∑
njm

e
−
πtα′n2jm
2R2

jm
−i

yjm njm
Rjm



×
2

8π2α′
2πrαk+1

∑
ωαk+1

e−
πtω2

αk+1
r2αk+1

2α′ −i
yαk+1ωαk+1

rαk+1
α′

=
22−n−(l−1) V1+(p+1)−2n−(k+1)

(8π2α′)
1+(p+1)−2n−(l−1)

2

∫ ∞

0

dt

t
9−(p+1)−(l−1)

2

e−
(ŷ⊥)2

2πα′t Z(p+1−2n)|(p+1)(t)

×
k+1∏
i=1

2πrαi
∑
ωαi

e−
πtω2

αi
r2αi

2α′ −i
yαiωαi rαi

α′

 l−1∏
m=1

 1

2πRjm

∑
njm

e
−
πtα′n2jm
2R2

jm
−i

yjm njm
Rjm


= ΓD(p+1−2n)|D(p+1), (4.6)

where in the first line we have also set Z(p+1−2n)|(p+1)(t) = Z(p−2n)|Dp(t) for the same reason as
explained earlier. Again we obtain the expected one.

Jian-Xin Lu, ICTS, USTC The compactified D-brane cylinder amplitude and T duality



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

T-duality in Type II D-brane BS and T-duality The cylinder amplitude The cylinder amplitude and T duality

THANK YOU!
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