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Based on selected review of Koji’s lecture
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Deep Learning 101

My talk
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Standard Deep Learning
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Standard Deep Learning
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Ex) Gradient decent method
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Recap
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Standard Deep Learning
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Simple physic problem?
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Reference I
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Deep Learning for ODE: classical mechanics
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Deep Learning for ODE: classical mechanics
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Generalization
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AdS/Deep learning: optical conductivity

Action

EOM

Background

Flucutation 
EOM I

Flucutation 
EOM II

A(z)f′ ′ (z)+B(z)f′ (z)+C(z)f(z) = F(z)

m ··x = F

A(z)f′ ′ (z)+B(z)f′ (z)+C(z)f(z) = D(z)g(z)

E(z)g′ ′ (z)+F(z)g′ (z)+G(z)g(z) = H(z)f(z)
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Linear response

GKP-Witten Relation

One-point function

Source Expectation value

Corollary

�Ax(r,!) =
E

i!
+ Jx(!)r + · · ·

r = 0 horizon r = 1

On-shell action ~ partition function
Variation of the On-shell action  

~ One point function

Linear response theory: 2nd order ODE
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Reference I
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AdS/Deep learning: optical conductivity

Action

EOM

Background

Flucutation 
EOM I

Flucutation 
EOM II
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Setup

What is the bulk metric giving the conductivity at boundary

AdS/Deep learning: optical conductivity
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Harder problem
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Towards holographic strange model
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Some universal properties in CMT
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Some universal properties in CMT Anomalous Properties
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that the c-axis data11,17–20 for all of the single and double-
layer materials (Supplementary Table 2) are again well described
by a line with slope of unity. What is perhaps most remarkable is
that the a–b-plane and c-axis results may all be described by
the same universal line shown in Fig. 2, even though the two
results correspond to very different ranges of r s. The combined
data span nearly five orders of magnitude, from the insulating
behaviour along the c axis in the underdoped systems, to the
metallic behaviour in the a–b planes of the overdoped copper
oxides.
The scaling relation for the a–b planes can be interpreted in a

number of different ways. One of the most direct is the assumption
that all of the spectral weight (the area obtained from the integral of
the optical conductivity) associated with the free-carriers of the
normal state (nn) collapses into the superconducting condensate21

(n s ; nn) below T c. Allowing that the low-frequency conductivity
at T < T c can be described by the simple Drude theory for a metal,

j1(q) ¼ jdc/(1 þ q2t2) (where q is frequency), which has the
shape of a lorentzian centred at zero frequency with a width at
half-maximum given by the scattering rate 1/t, the area under
this curve may be approximated simply as j dc/t. Transport
measurements for the copper oxides22 suggest that 1/t near the
transition scales linearly with T c, so the strength of the condensate
is just r s / jdc T c, in agreement with the observed scaling relation.
This result requires that these materials approach the clean limit
(1/t ,, 2D, where 2D is the superconducting energy gap).

However, this approach cannot be applied to the properties along
the c axis, because it is generally conceded that transport in this
direction is incoherent, and therefore hopping rather than scatter-
ing governs the physics15. The quasi-two-dimensional nature of the
copper oxides, which often includes a semiconducting or activated
response of the resistivity along the c axis, has motivated the
description of the superconductivity in this direction in terms of
a Josephson-coupling picture16,17,23–26. The c-axis penetration depth
l is then determined by the Josephson current density J c and is
l 2 ¼ !c2/8pdeJ c, where J c ¼ (pD/2eRn)tanh(D/2kBT), d is the
separation between the planes, and Rn ¼ d/jdc is the normal-state
tunnelling resistance24. There is convincing evidence that the energy
gap in the copper oxides is d-wave in nature, containing nodes at the
Fermi surface27,28, making the determination of J c difficult. How-
ever, if the coupling between the planes originates at the (0,p), (p,0)
points29 where the gap is a maximum, D0, then we can approximate
D < D0. Furthermore, if D0 /Tc, then Jc /Tc=Rn and rs / jdcTc,
which yields the observed scaling behaviour in the c-axis direction.
Despite the different nature of the transport properties parallel and
perpendicular to the a–b planes, the universal scaling pertaining to
both directions is an unusual and surprising result that should
provide new insights into the origins of the superconductivity in
these materials. A

Figure 1 Plot of the superfluid density (rs) versus the product of the d.c. conductivity
(jdc) and the superconducting transition temperature (Tc) for a variety of copper oxides and

some simple metals. (jdc is measured just above the transition, and parallel to the

copper–oxygen (a–b) planes; data are shown on a log–log plot; see Supplementary

Table 1 for details, including errors.) The values for jdc and rs are obtained from optical

measurements of the reflectance. The reflectance is a complex quantity consisting of an

amplitude and a phase; in an experiment only the amplitude is usually measured.

However, if the reflectance is measured over a wide frequency range, the Kramers–

Kronig relation may be used to obtain the phase. Once the complex reflectance is

known, then other complex optical functions may be calculated (for example, the

dielectric function or the conductivity). The jdc used in this scaling relation has been

extrapolated from the real part of the optical conductivity jdc ¼ j1(q ! 0) at T < Tc.

For T ,, Tc, the response of the dielectric function to the formation of a condensate is

expressed purely by the real part, e1(q) ¼ e1 2 qps
2 /q 2, which allows the

superconducting plasma frequency qps to be calculated from qps
2 ¼ 2q 2e1(q) in the

q ! 0 limit, where qps
2 ¼ 4pn se

2/m* is proportional to the number of carriers in the

condensate. The strength of the condensate (rs) is simply rs ; qps
2 . The dashed and

dotted lines are described by rs ¼ (120 ^ 25)jdcTc. Within error, all the data for the

copper oxides are described by the dashed line. The data for the conventional

superconductors Nb and Pb, indicated by the atomic symbols within the circles, lie

slightly above the dashed line.

Figure 2 As Fig. 1 but for copper oxides only, and including data for the poorly conducting
c axis. The values for rs and jdc are obtained from optical measurements, as described in

Fig. 1 legend. In addition to the published results, new data are also included for

HgBa2CuO4þd and La22xSrxCuO4. Within error, all of the data fall on the same universal

(dashed) line with slope of unity, defined by rs ¼ 120jdcTc; the dotted lines are from

rs ¼ (120 ^ 25)jdcTc. See Supplementary Table 2 for details, including errors.

letters to nature

NATURE |VOL 430 | 29 JULY 2004 | www.nature.com/nature540 ©  2004 Nature  Publishing Group

Homes law ⇢s(T = 0) = C�DC(Tc)Tc
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Some universal properties in CMT

No concrete holography model of “T-linear resistivity + T2 -Hall angle together”  yet,  
even though there are many interesting holography models partly successful?
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ML Example: Holographic model

EMD(Einstein Maxwell Dilaton) model

Many variations

[ArXiv:1005.4690][hep-th], [ArXiv:1401.5436][hep-th]
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Towards holographic strange model

EMD(Einstein Maxwell Dilaton) model

Many variations

Something else
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Deep Learning for ODE: classical mechanics

physics informed neural networks
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Towards holographic strange model
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Towards holographic strange model

Y(ϕ) = 1Gubser Rocha model
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Towards holographic strange model

Y(ϕ) = 1
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Towards holographic strange model

EMD(Einstein Maxwell Dilaton) model

Many variations

Something else
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Ongoing and future work 

Methodology development 

- ResNet,  

- Neural ODE, Neural integral  

- PINN (Physics Informed Neural Network)  

- PDE 

Other physical quantities 

- ARPES: Fermionic spectral function 

- Quantum info: complexity, entanglement entropy, etc 

     - Applications to other physics problems (including ODE, PDE, Integral) 

Figuring out action itself for a specific problem 

- so far, the form of the action is fixed 

    - Linear T resistivity + T2 Hall angle together
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Job opportunity

Prof. Hyun-Sik Jeong 
Junior Research Group Leader

Looking for a postdoc who will work on physics (holography) by machine learning 
From Sep. 2025

apctp.hepth@gmail.com

mailto:apctp.hepth@gmail.com
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Thank you


