

HOLOGRAPHIC BUBBLE NUCLEATION IN ASTROPHYSICS OR THE EARLY UNIVERSE

PHASE TRANSITIONS IN A COOLING ENVIRONMENT

With Javier Subils and David Mateos

Reference: 2508.xxxxx

Wilke van der Schee

Holographic applications: from Quantum Realms to the Big Bang 11 – 19 July 2025, UCAS Beijing

OUTLINE

First order phase transitions

- Sources: early universe, astrophysics
- Signature: gravitational waves (mHz, MHz)
- A window into the Planck scale?

Dynamics

- Bubble nucleation and false vacua
 - Bubble velocities and shapes

Critical bubbles

- Determines the minimal size for relaxation to true vacuum
 - Technical: de Turck trick at constant temperature
 - Action, tunneling and the nucleation rate
 - Comparison with effective field theory

SUPERCOOLED

Fun fact

- Supercooled water at –44 degrees, one micrometer
- X-ray femtoscopy identifies high and low density liquids
- A second critical point in the supercooled region ©

More seriously

- If the Standard Model* has a first order phase transition (FOPT):
 - Universe cools down fast, but extremely homogeneous
 - Universe will supercool beyond critical temperature
 - Bubbles will nucleate, but at what rate? How?
 - *technically this is then beyond standard model (quite some examples)
 - Really unique opportunity to probe extremely high energy scales
- If QCD has a critical point:
 - FOPT potentially present during neutron star mergers

Wilke van der Schee, CERN/Utrecht

Experimental confirmation

Kim et al. provide experimental evidence for the Widom line and, hence, of a second-order critical point in the supercooled region of the water phase diagram.

High-density liquid (HDL)

BUBBLE COLLISIONS

Bubble collisions in the Early Universe or in Astrophysics

- If the Standard Model has a first order phase transition (FOPT):
 - Universe cools down fast, but extremely homogeneous
 - Universe will supercool beyond critical temperature
 - Bubbles will nucleate, but at what rate? How?
- FOPT potentially present during neutron star mergers
 - Merger could cause both superheating and supercooling (subcooling?)
- Collisions of bubbles: unique signature in gravitational waves (!)
 - LISA can potentially measure these (mHz)

NUCLEATION IN EFFECTIVE FIELD THEORY

An effective potential at constant temperature:

$$S(T) = \int_0^\beta d\tau \int d^3x \left(\frac{1}{2} Z(\varphi, T) \left((\partial_\tau \varphi)^2 + (\nabla \varphi)^2 \right) + V_{\text{eff}}(\varphi, T) \right)$$
$$V_{\text{eff}}(\varphi, T) = \frac{1}{2} \gamma (T^2 - T_0^2) \varphi^2 - \frac{1}{3} \alpha T \varphi^3 + \frac{1}{4} \lambda \varphi^4$$

Three regimes

- High temperature: one stable hot phase
- Intermediate (T₀<T<T_c): two (meta)stable phases
- Low temperature: one stable cold phase

Cooling the system:

• Below T_c and above T_0 the system can tunnel to the true minimum (supercooled)

BUBBLE NUCLEATION AND GROWTH

Vacuum-like decay

Wall velocity can accelerate to the speed of light

Thermal-like decay

A conjectured result for the nucleation rate is thus

$$\frac{\Gamma}{V}\Big|_{\text{high }T} \simeq \left(\frac{\lambda_{-}}{2\pi}\right) \left(\frac{\hat{S}_{3d}}{2\pi T}\right)^{\frac{3}{2}} \left|\frac{\det'[-\nabla^{2} + V''(\hat{\phi})]}{\det[-\nabla^{2} + V''(0)]}\right|^{-\frac{1}{2}} e^{-\beta \hat{S}_{3d}}.$$
(9.80)

It should be stressed, however, that the simplistic approach based on the negative eigenmode λ_{-} does not really give a theoretically consistent answer [9.22, 9.23]; rather, we should understand the above analysis in the sense that a rate exists, and the formulae as giving its order of magnitude.

- Deflagration: subsonic detonation
- Friction from the remaining plasma
- Energy density (typically) needs to be balanced
- This means a wall that becomes wider with time:

SUPERCOOL HOLOGRAPHY

A non-conformal holographic toy model

$$S = \frac{2}{8\pi G} \int_{\mathcal{M}} d^5 x \sqrt{-g} \left(\frac{1}{4} R[g] - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right)$$

$$L^{2}V(\phi) = -3 - \frac{3}{2}\phi^{2} - \frac{1}{3}\phi^{4} + \left(\frac{1}{3\phi_{M}^{2}} + \frac{1}{2\phi_{M}^{4}}\right)\phi^{6} - \frac{1}{12\phi_{M}^{4}}\phi^{8}$$

Source for scalar provides extra scale (j = 1)

The universe cools; what happens?

- First it becomes supercooled (metastable)
- If no bubbles form: it enters spinodal branch
 - · Negative specific heat, imaginary speed of sound
 - Gubser-Mitra: unstable (Gregory-Laflamme)
 - System phase separates
- If bubbles form:
 - They keep on colliding (gravitational waves!)
 - If given enough time only solution is phase separated at critical temperature (unlike water)
- Finally enters low energy phase

SUPERCOOLED AND CRITICAL HOLOGRAPHY

Bubble nucleation

- Small bubbles disappear (surface tension is too expensive)
- Large bubbles can expand
 - Somewhat non-trivial, but Gubser-Mitra implies that the end state is the phase separated state at the critical temperature
 - Interesting question if this is possible in an expanding universe (but for now we're in a box ☺)

A critical bubble

- An unstable time-independent solution of the EOM
- At T_c the phase separated phase satisfies this:
 - The limit of a large bubble

For smaller bubbles this would not be stable: the bubble would collapse

Some technicalities: DeTurck

Solve a slightly modified problem

- Take a reference metric (the homogeneous solution, \overline{G}^{MN}) and define $\xi^P = G^{MN}(\Gamma^P_{MN} \overline{\Gamma}^P_{MN})$
- Solve the modified Einstein equations:

$$R_{MN} - \frac{R}{2}G_{MN} - \left(\nabla_{(M}\xi_{N)} - \frac{1}{2}\nabla_{A}\xi^{A}G_{MN}\right) = \kappa_{5}^{2}T_{MN}$$

Check that:

$$\xi_A \xi^A = 0$$

- This helps imposing boundary conditions and to make the PDEs elliptic
 - Since we know the solution exists there should not be any `soliton' with ξ non-zero
- Technically we work at large but finite N_c , otherwise the nucleation rate vanishes
 - Spherical symmetry
 - Fully backreacted AdS₅ solutions though ©

SUPERCOOLED AND CRITICAL HOLOGRAPHY

A critical bubble

- An unstable time-independent solution of the EOM
- For smaller bubbles this would not be stable: the bubble would collapse
 - Stable if wall is less steep
 - Stable if more pressure at the centre of the bubble

SUPERCOOLED AND CRITICAL HOLOGRAPHY

A few more details: pressures

• Transverse pressure is always smaller than longitudinal pressure

Remember: at T_c pressures of both phases are equal

- Transverse pressure can be non-monotonic (always?)
- Longitudinal pressure is always monotonic

WHAT KIND OF BUBBLES WILL NUCLEATE?

We compute the action:

- Larger bubbles are (much) harder to nucleate
- No final answer, but quiet some supercooling can be expected
- Effective field theory approach can work well (red, after fitting (!))
- Thin wall works for large bubbles (orange, (T-T_c)⁻²)
- Small bubble effective description not as good (blue, $(T-T_0)^{4/3}$)

DISCUSSION

Bubble nucleation in holography

- Full microscopic construction of critical bubbles
 - Backreacted AdS₅, limiting behaviour fits effective potential
- No final answer, but quiet some supercooling can be expected
- Applications to neutron stars and early universe
 - Really not much certain both for nucleation and dynamics
 - Great help to have (toy!) models where microscopics is under full control
- Dynamics is clearly the next step
 - Velocities are interesting, wall profiles
 - Competition with cooling due to expansion

