coloring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravi 0000000000 Conclusion 000

Resolving the Replica Problem with Supersymmetric SYK Models

Xian-Hui Ge

Shanghai University

Based on the work in cooperation with Chenhao Zhang. (arXiv:2507.XXXXX)

Holographic applications: from Quantum Realms to the Big Bang

中国科学院大学-国际会议中心, July 12 - July 19, 2025

ヘロン 人間 とくほど 人間と

2 Exploring the Exactly *n*-Replica Solution with SSYK

3 Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

4 Conclusion

э

イロト 人間ト イヨト イヨト

2 Exploring the Exactly *n*-Replica Solution with SSYK

3 Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

4 Conclusion

・ロト・日本・日本・日本・日本

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Non-Renormalizability of 4D Gravity

• Einstein-Hilbert action in 4D:

$$S_{\rm EH} = \frac{1}{16\pi G} \int d^4x \sqrt{-g}R$$

• Problem: Non-renormalizable UV behavior

- Perturbative expansion generates infinite counterterms
- Coupling constant G has negative mass dimension [G] = -2
- No predictive power at high energies
- Motivation for low-dimensional toy models
 - Simpler dynamics, controlled quantum gravity
 - SYK model as a dual to 2D JT gravity
- [1] 't Hooft and Veltman, **20** (1974) 69

イロト 人間ト イヨト イヨト

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Conclusion 000

Two-Dimensional Gravity and JT Model

• Jackiw-Teitelboim (JT) gravity:

$$S_{\rm JT} = \frac{1}{2} \int d^2x \sqrt{-g} \,\phi(R+2)$$

• Features:

- Topological gravity coupled to dilaton ϕ
- AdS₂ solutions with boundary dynamics
- UV-finite and analytically solvable

• Connection to SYK:

- · Low-energy limit of SYK matches JT boundary dynamics
- Schwarzian action emerges in both setups

[2] Almheiri and Polchinski, JHEP 11 (2015) 014

イロト 人間ト イヨト イヨト

Quantum No-Cloning and Replica Wormholes

• Quantum No-Cloning Theorem:

Unknown quantum states cannot be perfectly copied.

- Preparing n identical wormhole replicas requires full knowledge of the quantum state.
- Without prior knowledge, replica construction violates no-cloning principles.

• Information Recovery and Replicas:

- Fewer replicas $(n \rightarrow 1)$ minimize operational complexity and resource requirements.
- Smaller *n* risks incomplete information extraction from gravitational path integrals.
- Unexplored Physics of *n*-Dependence:
 - Finite-*n* quantum effects may enrich the physics of non-perturbative effects (e.g., topological wormholes, replica asymmetry).
 - The transition from wormhole saddle to Hawking saddle in gravitational path integrals may exhibit *n*-dependent directionality.

Wormholes in \overline{n} -replica SYK

Competing Saddles in Entanglement Entropy

Hawking Saddle: Neglects quantum gravity effects $\Rightarrow S_{rad}$ increases monotonically Replica Wormholes: Include non-perturbative contributions \Rightarrow Unitary Page curve

• Supersymmetric Enhancement

 $\mathcal{N}=1$ Supersymmetric SYK Model \Downarrow Analytically tractable replica wormhole solutions

[3] Penington et al., JHEP 03 (2020) 205

イロト 不得 トイヨト イヨト

xploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Conclusion 000

Special SYK with Replicas

Two-Copy SYK System

• Consider two independent SYK models: left (L) and right (R)

$$H_L = \sum_{1 \le i_1 < \dots < i_q \le N_L} J^{(L)}_{i_1 \cdots i_q} \psi_{i_1,L} \cdots \psi_{i_q,L}$$
$$H_R = \sum_{1 \le i_1 < \dots < i_q \le N_R} J^{(R)}_{i_1 \cdots i_q} \psi_{i_1,R} \cdots \psi_{i_q,R}$$

- Index structure:
 - $i \in \{1, \ldots, N_a\}$ —flavor index
 - $a \in \{L, R\}$ —physical system label
 - $\alpha \in \{1, \ldots, n\}$ —replica index

[4] G. Penington, S. H. Shenker, D. Stanford, Z. Yang, JHEP 03 (2022) 205

イロト イボト イヨト イヨト

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Conclusion 000

Inter-Replica Interactions as Wormholes

• Non-local interaction between replicas α and α' :

$$V^{\alpha\alpha'} = \sum_{\substack{1 \le i_1^{(1)} < \dots < i_{\bar{q}}^{(1)} \le N \\ 1 \le i_1^{(2)} < \dots < i_{\bar{q}}^{(2)} \le N}} \bar{J}_{i_1^{(1)} \dots i_{\bar{q}}^{(1)}; i_1^{(2)} \dots i_{\bar{q}}^{(2)}} \psi_{i_1^{(1)}}^{\alpha} \dots \psi_{i_{\bar{q}}^{(1)}}^{\alpha} \psi_{i_1^{(2)}}^{\alpha'} \dots \psi_{i_{\bar{q}}^{(2)}}^{\alpha'}}$$

• After disorder averaging: generates an effective bi-local interaction term

$$\mathcal{V} = \frac{1}{2} \frac{\overline{J}^2}{q} \int_C d\tau_1 d\tau_2 \sum_{\substack{\alpha,\alpha'\\\gamma,\gamma'}} \left[G_L^{\alpha\alpha'}(\tau_1,\tau_2) \right]^{\overline{q}} g^{\alpha\gamma}(\tau_1) g^{\alpha'\gamma'}(\tau_2) \left[G_R^{\gamma\gamma'}(\tau_1,\tau_2) \right]^{\overline{q}}$$

• **Physical interpretation:** such couplings mediate *replica wormholes* —correlations across spacetime boundaries in gravity dual.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Extending to *n* Replicas: Multi-Replica Interactions

Interacting Fermions Across n Replicas

• Consider non-local interaction terms involving fermions from n distinct replicas:

$$V^{\alpha_{1}\cdots\alpha_{n}} = \sum_{\substack{1 \leq i_{1}^{(1)} < \cdots < i_{\bar{q}}^{(1)} \leq N \\ \vdots \\ 1 \leq i_{1}^{(n)} < \cdots < i_{\bar{q}}^{(n)} \leq N}} \bar{J}^{\alpha_{1}\cdots\alpha_{n}}_{i_{1}^{(1)}\cdots i_{\bar{q}}^{(1)};\cdots;i_{1}^{(n)}\cdots i_{\bar{q}}^{(n)}} \prod_{a=1}^{n} \psi^{\alpha_{a}}_{i_{1}^{(a)}}\cdots \psi^{\alpha_{a}}_{i_{\bar{q}}^{(a)}}$$

- These interactions entangle all *n* replicas, potentially generating connected multi-replica geometries in the dual gravity.
- Interpretation: these couplings lead to *replica wormholes* that connect *n* geometries —central to resolving the entropy puzzle via the gravitational path integral.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravit

Conclusion 000

Interaction for the 3-th replica and the contours

$$V = \int_{C_1} \left(V^{11} + V^{22} + V^{33} \right) + \int_{C_2} \left(V^{12} + V^{21} + V^{13} + V^{31} + V^{23} + V^{32} \right)$$
$$+ \int_{C_2} \left(V^{123} + V^{213} + V^{132} + V^{312} + V^{231} + V^{321} \right) = \int_C \sum_{\alpha\beta\gamma} V^{\alpha\beta\gamma} g^{\alpha\beta\gamma} (\tau).$$

xploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Conclusion 000

Effective Action

• Effective Action for *n* Replicas:

$$\begin{split} I_{n} &= -\log\left(\partial_{\tau} \,\delta_{aa'}^{\alpha\alpha'} - \Sigma_{aa'}^{\alpha\alpha'}\right) + \frac{1}{2} \int_{C} d\tau_{1} \,d\tau_{2} \left[\Sigma_{aa'}^{\alpha\alpha'}(\tau_{1},\tau_{2}) \,G_{aa'}^{\alpha\alpha'}(\tau_{1},\tau_{2})\right] \\ &- \frac{J^{2}}{q} \left[G_{aa'}^{\alpha\alpha'}(\tau_{1},\tau_{2})\right]^{q} \left] - \mathcal{V}, \\ \bar{J}^{2}(n) &= \frac{2\bar{J}^{2}(2)}{n!}, \quad \frac{\bar{q}(n)}{n} = \frac{\bar{q}(2)}{2} \\ &\Rightarrow \quad I_{n}\left(\bar{q}(n), \bar{J}(n)\right) = I_{2}\left(\bar{q}(2), \bar{J}(2)\right) \end{split}$$

• Subtlety: For *n* ≥ 3, constructing consistent off-shell wormhole configurations becomes nontrivial.

э.

・ロト ・雪 ・ ・ ヨ ・

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravi

Conclusion 000

Challenges in n-Replica SYK Calculations

Key Obstacles to Full Understanding

• Limited Solvability:

Analytical methods break down for $n \ge 3$ due to increased complexity of replica wormholes.

• Off-Shell Ambiguity:

The path integral fails to capture essential off-shell contributions needed for entropy computations.

• Degenerate Saddles:

Multiple replica wormhole solutions complicate interpretation and dilute predictive power.

These issues obstruct a complete microscopic derivation of the Page curve in the *n*-replica SYK framework.

2 Exploring the Exactly *n*-Replica Solution with SSYK

3 Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

4 Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Exploring the Exactly n-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Conclusion 000

The $\mathcal{N} = 1$ Supersymmetric SYK Model

Supersymmetry Overview:

- $\mathcal{N} = 1$ SUSY introduces a fermionic generator Q satisfying: $Q^2 = \mathcal{H}$
- The Hamiltonian emerges as the square of the supercharge

Supercharge (for general *q*-fermion interactions):

$$Q = i^{\frac{q-1}{2}} \sum_{i_1, \dots, i_q} C_{i_1 \dots i_q} \psi^{i_1} \psi^{i_2} \dots \psi^{i_q}$$

Hamiltonian (e.g., for q = 3):

$$\mathcal{H} = Q^2 = E_0 + \sum_{i < j < k < l} J_{ijkl} \psi^i \psi^j \psi^k \psi^l$$

Supersymmetric Structure:

$$\{Q,\psi^i\} = Q\psi^i = i\sum_{j < k} C_{ijk}\psi^j\psi^k \equiv b^i$$

イロト イポト イヨト イヨト

Exploring the Exactly n-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grave

Conclusion 000

Coupled $\mathcal{N}=1$ SSYK Model

Total Hamiltonian:

$$H_{\text{total}} = H_L + H_R + H_{\text{int}}$$

Interaction Term:

$$H_{
m int} = i \mu \int d heta \left(\Psi_L \Psi_R - \Psi_R \Psi_L
ight)$$

Expanded in Components:

$$H_{\text{int}} = i\mu \left(\psi_L b_R - b_L \psi_R - \psi_R b_L + b_R \psi_L\right)$$

- μ controls the strength of the supersymmetric coupling between left and right systems.
- Interaction preserves $\mathcal{N} = 1$ SUSY and mixes fermionic and bosonic degrees of freedom across replicas.

[5] C.H. Zhang, W.H. Cai, Off-diagonal coupling of supersymmetric SYK model, JHEP 2025, 133 (2025).

W. Fu, D. Gaiotto, J. Maldacena, S. Sachdev, Phys. Rev. D 95, 026009 (2017).

イロト 人間ト イヨト イヨト

Fractal Extension of the $\mathcal{N} = 1$ SSYK Model (I)

Motivation: Explore hierarchical entanglement structures via iterated supersymmetric couplings.

Recursive Fermion Expansion:

$$\psi_n^i \to \psi_n^i + \psi_m^i \to \psi_n^i + \psi_m^i + \psi_l^i + \cdots$$

- Fermion degrees of freedom span multiple nested subsystems.
- Each level introduces additional symmetry or coupling.

Fractal Supercharge Structure:

$$Q_n \to Q_{nm} \to Q_{nm\dots l}$$
$$\{Q_{nm\dots l}, \psi_n^i\} \equiv b_{nm\dots l}^i$$

- Higher-order supercharges act across multiple layers.
- SUSY algebra produces increasingly structured bosonic partners.

Exploring the Exactly **n**-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Conclusion 000

Fractal Extension of the $\mathcal{N}=1$ SSYK Model (II)

Total Supersymmetric Action:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_n + \mathcal{L}_{nm} + \dots + \mathcal{L}_{nm\dots l}$$

- Each term \mathcal{L}_{\dots} describes a level in the recursive hierarchy.
- The action accumulates contributions from all nested SYK sectors.

Physical Picture:

- The model builds a **fractal-like** structure in theory space.
- Captures richer replica entanglement patterns and wormhole connections.
- Offers a natural generalization for constructing higher-order non-local couplings.

イロト 人間ト イヨト イヨト

Exploring the Exactly n-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Conclusion 000

Inner Structure of Superfields via Chord Diagrams

(a) Single-Layer Coupling

Supercharge terms C_{ijk} on the LHS act via bosonic partners b_n^i (pink chord region) on the RHS SYK model. *Interpretation:* Supersymmetry links fermions and bosons across subsystems.

(b) Multi-Layer Extension

Fermion doubling $(\psi_n^i + \overline{\psi}_n^i)$ enables construction of higher supercharges Q_{nm} , generating new bosons b_{nm}^i . *Interpretation:* Iterative replica couplings form nested chord structures.

A D F A B F A B F A B F

Superfield dynamics emerge naturally from recursive chord interactions in replicated SYK sectors.

Interaction to make nontrivial solution

Interactions by orders

$$H_{int} = i\mu^n \int d\theta \Psi^i_{L,n} \Psi^i_{R,n} + i\mu^{nm} \int d\theta \Psi^i_{L,nm} \Psi^i_{R,nm} + \ldots + i\mu^{nm\ldots l} \int d\theta \Psi^i_{L,nm\ldots l} \Psi^i_{R,nm\ldots l}$$

$$= i\mu^{n} (\psi_{L,n}b_{R,n} - b_{L,n}\psi_{R,n} - \psi_{R,n}b_{L,n} + b_{R,n}\psi_{L,n}) + i\mu^{nm} (\psi_{L,n}b_{R,nm} - b_{L,nm}\psi_{R,n} - \psi_{R,n}b_{L,nm} + b_{R,nm}\psi_{L,n}) + ... + i\mu^{nm...l} (\psi_{L,nm...l}b_{R,nm...l} - b_{L,nm}\psi_{R,nm...l} - \psi_{R,n}b_{L,nm...l} + b_{R,nm...l}\psi_{L,n}),$$
Physical constrain in thermal limit

$$C_{i_1i_2...i_q}^n \neq 0, \ C_{i_1i_2...i_q}^{nm} \to 0, \ C_{i_1i_2...i_q}^{nm...l} \to 0.$$

Introduction of reduction parameter

$$C_n^2 \mu^{nm} + \ldots + C_n^n \mu^{nm\ldots l} \to \mu'^{nm}$$

э.

人口 医水理 医水管 医水管下

Exploring the Exactly n-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravit

Conclusion 000

Thermal Phase Diagram

(a) No primary coupling $(\mu^{(n)} = 0)$: Increasing inter-replica coupling $\mu'^{(nm)}$ softens the phase transition.

(b) With primary coupling ($\mu^{(n)} = 0.3$): Two distinct transitions emerge at intermediate $\mu'^{(nm)}$.

・ロト ・ 日本・ ・ 日本・

Critical Point:
$$T_c = 1.15$$
 at $\mu_c^{(n)} = 0.3$, $\mu_c^{\prime(nm)} = 0.84$

э.

Exploring the Exactly n-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravi 0000000000 Conclusion 000

Effective Action in Lorentzian Time

Wick Rotation via Wightman Correlators:

$$\begin{aligned} \mathcal{G}^{\geq}_{AB}(t_1, t_2) &= -i \lim_{\epsilon \to 0^-} \mathcal{G}_{AB}(it_1 + \epsilon, it_2 - \epsilon) \\ \mathcal{G}^{\leq}_{AB}(t_1, t_2) &= -i \lim_{\epsilon \to 0^+} \mathcal{G}_{AB}(it_1 - \epsilon, it_2 + \epsilon) \end{aligned}$$

Time Evolution of Effective Action:

$$I(t) = I(0) + \int dt \, d\theta \, (2H_0 + H_{\text{int}})$$
$$I(t) = I(0) + 2 \int dt \left[\left(G_{\psi\psi}^{>}(t) \right)^{q-1} G_{bb}^{>}(t) + \left(G_{\psi\psi}^{>}(t) \right)^{q-2} G_{b\psi}^{>}(t) G_{\psi b}^{>}(t) \right]$$
$$+ i\mu \int dt \left[G_{\psi b}^{>}(t) - G_{b\psi}^{>}(t) \right]$$

- Lorentzian effective action tracks real-time dynamics of the coupled SSYK system.
- Wightman functions encode quantum fluctuations out of equilibrium.

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravi 0000000000 Conclusion 000

Effective Action Evolution in Lorentzian Time

Effective action $I_{eff}(t)$ dynamics in Lorentzian time

э.

A D F A B F A B F A B F

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Conclusion 000

Finite-N Modular Entropy via Full Diagonalization

(a) Non-SUSY: Stepwise convergence of $S_{mod}(n)$ as n increases.

Exploring the Exactly n-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grave

Conclusion 000

Finite-N Relative Entropy via Full Diagonalization

Key note: Strong subadditivity manifests via relative entropy monotonicity, confirming holographic subsystem inequalities

æ

ヘロト ヘ部ト ヘヨト ヘヨト

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravit

Conclusion 000

Entanglement Capacity: Finite-N Results

イロト イロト イヨト イヨト

э.

2 Exploring the Exactly *n*-Replica Solution with SSYK

3 Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

4 Conclusion

э.

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

Conclusion 000

Fractal Symmetry and Supersymmetry Breaking in $\mathcal{N} = 1$ SYK

Fractal Structure of Supercharges:

$$Q_{nm...l} = i^{\frac{q-1}{2}} \sum_{i_1 \cdots i_q} C^{nm...l}_{i_1 \cdots i_q} \psi^{i_1}_{nm...l} \cdots \psi^{i_q}_{nm...l}$$

Supersymmetry Breaking via Fermion Overlap:

$$b = \{Q, \psi\} = \{Q_{12}, \psi_1 + \psi_2\} = b_1 + b_2 + \text{cross terms}$$

- Cross terms arise from fermion mixing between layers.
- SUSY is explicitly broken when cross terms are non-vanishing.

Interaction Hamiltonian Decomposition:

 $H_{\text{int}} = H_{\text{int},1} + H_{\text{int},2} + \text{cross terms}$

• Cross-layer couplings induce SUSY-breaking interactions; Reflects spontaneous breaking of fractal symmetry at large *N*.

coloring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

Conclusion 000

The Law of Parallelism

Core Principle: Parallel Structure Across All Levels

In this framework, the $\mathcal{N} = 1$ supersymmetric SYK model maintains:

- Identical local dynamics at every site
- Recurrent structure at every recursive level

As a result:

Each component follows the same form of effective action, mirroring a parallel and self-similar structure.

イロト イポト イヨト イヨト

The Law of Parallelism: Superconformal Structure Across Replicas

Extended Superconformal Symmetry with Replica Indices:

$$\mathcal{G}^{(n)}(\tau_1, \theta_1; \tau_2, \theta_2) = \left(D_{\theta_1} \theta_1'\right)^{1/q} \left(D_{\theta_2} \theta_2'\right)^{1/q} \mathcal{G}^{(n)}(\tau_1', \theta_1'; \tau_2', \theta_2')$$
$$\mathcal{G}^{(nm\dots l)}(\tau_1, \theta_1; \tau_2, \theta_2) = \left(D_{\theta_1} \theta_1'\right)^{1/q} \left(D_{\theta_2} \theta_2'\right)^{1/q} \mathcal{G}^{(nm\dots l)}(\tau_1', \theta_1'; \tau_2', \theta_2')$$

Hierarchical Schwarzian-like Effective Action:

$$S_{A} = \int d\tau \, d\theta \Big[-N\alpha_{S}^{(n)} S\left(\tanh \frac{h_{A}^{(n)}}{2}, \theta_{A}^{(n)\prime}; \tanh \frac{\tau_{A}^{(n)}}{2}, \theta_{A}^{(n)} \right) \\ -N\alpha_{S}^{(nm\dots l)} S\left(\tanh \frac{h_{A}^{(nm\dots l)}}{2}, \theta_{A}^{(nm\dots l)\prime}; \tanh \frac{\tau_{A}^{(nm\dots l)}}{2}, \theta_{A}^{(nm\dots l)} \right) \\ -\cdots \Big]$$

- Each level of the hierarchy respects the same superconformal transformation rules.
- The effective action naturally extends in a recursive, parallel form.

The Law of Perpendicularity

Principle: Coordinate Invariance in Supersymmetric Theories

- The form of any physical action is determined by how it transforms under coordinate changes.
- If we understand how one part transforms, the rest follows from symmetry.

Implication for the Super-Schwarzian Action:

- Its structure is **invariant under super-reparameterizations** (coordinate changes in τ , θ).
- Transformations may introduce **boundary terms**, but do not alter the bulk dynamics.
- Guarantees consistency across all layers and replicas in supergravity or SSYK constructions.

xploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

Conclusion 000

The law of perpendicularity

The chain rule under finite reparameterizations

$$S[\tau'', \theta''; \tau, \theta] = \left(D\theta'\right)^3 S[\tau'', \theta''; \tau', \theta'] + S[\tau', \theta'; \tau, \theta]$$

Rewrite the effective action

$$I^{(n)} = -\sum_{n} \alpha_{S}^{(n)} \int_{\partial \widetilde{M}_{n}} d\tau \, d\theta S \left[\tau^{(n)} \prime, \theta^{(n)} \prime; \tau, \theta \right] - \dots$$

$$-\sum_{nm\dots l} \alpha_{S}^{(nm\dots l)} \int_{\partial \widetilde{M}_{nm\dots l}} d\tau \, d\theta S \left[\tau^{(nm\dots l)} \prime, \theta^{(nm\dots l)} \prime; \tau, \theta \right]$$

$$= -\sum_{n} \sum_{nm\dots l} \left(\alpha_{S}^{(n)} \prime + \alpha_{S}^{(nm)} \prime + \dots + \alpha_{S}^{(nm\dots l)} \prime \right) \int_{\partial \widetilde{M}_{n}} d\tau \, d\theta S \left[\tau^{(n)} \prime, \theta^{(n)} \prime; \tau, \theta \right]$$

$$+ \left(D_{\theta} \theta^{\prime \prime} \right)^{3} S \left[\tau^{(n)} \prime, \theta^{(n)} \prime; \tau^{(nm\dots l)} \prime, \theta^{(nm\dots l)} \prime \right] + \dots$$

э.

The Law of Finite Displacement

Key Principle: Super-Schwarzian coordinate transformations are not arbitrary —they are constrained to finite-dimensional submanifolds that preserve the underlying symmetries of the supersymmetric SYK model.

Implication: Hierarchical Influence in Fractal Geometry

- Higher-order (replica-extended) surfaces contribute dynamically to lower-order sectors.
- However, lower-order surfaces cannot influence higher-order ones.
- This asymmetry encodes a directional flow of information in the hierarchy of supersymmetric actions.

Analogy: Like gravitational backreaction from a bulk geometry to a brane —but not vice versa.

31

ヘロア 人間ア 人間ア 人間アー

xploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

Conclusion 000

Express the constrained theory

We use diagrams of discrete replicas related by path integrals over gray area boundaries. It illustrates Hawking and wormhole saddles, super-reparameterization of dilatons in the *nm*-sector, and interactions across sectors. Supersymmetry breaking prevents full mapping between some regions.

4

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

Conclusion

Research on deformed N=1 SJT gravity

The N=1 SJT gravity with replica ansatz

$$\begin{split} S &= -\frac{1}{16\pi G} \sum_{n} \sum_{nm} \sum_{nm} \sum_{nm...l} \left[\left[i \int d^2 z d^2 \theta \left(E^{(n)} \Phi^{(n)} + E^{(nm)} \Phi^{(nm)} + ... E^{(nm...l)} \Phi^{(nm...l)} \right) (R_{+-} - 2) \right] \\ &+ 2 \int_{\partial M^{(n)}} du^{(n)} d\theta^{(n)} \Phi^{(n)} K^{(n)} + 2 \int_{\partial M^{(nm)}} du^{(nm)} d\theta^{(nm)} \Phi^{(nm)} K^{(nm)} \\ &+ ... + 2 \int_{\partial M^{(nm...l)}} du^{(nm..l)} d\theta^{(nm..l)} \Phi^{(nm..l)} K^{(nm..l)} \right], \end{split}$$

Effective Schwarzian action on single surface

$$\begin{split} I^{(n)} &= -\sum_{n} \phi_{r}^{n} \int_{\partial \widetilde{M}_{n}} d\tau \, d\theta S \left[\tau^{(n)} \prime, \theta^{(n)} \prime; \tau, \theta \right] - \ldots - \sum_{nm\ldots l} \phi_{r}^{nm\ldots l} \int_{\partial \widetilde{M}_{nm\ldots l}} d\tau \, d\theta S \left[\tau^{(nm\ldots l)} \prime, \theta^{(nm\ldots l)} \prime; \tau \right] \\ &= -\sum_{n} \sum_{nm\ldots l} \left(\phi \prime_{r}^{n} + \phi \prime_{r}^{nm} + \ldots + \phi \prime_{r}^{nm\ldots l} \right) \int_{\partial \widetilde{M}_{n}} d\tau \, d\theta S \left[\tau^{(n)} \prime, \theta^{(n)} \prime; \tau, \theta \right] \\ &+ \left(D_{\theta} \theta^{\prime \prime} \right)^{3} S \left[\tau^{(n)} \prime, \theta^{(n)} \prime; \tau^{(nm\ldots l)} \prime, \theta^{(nm\ldots l)} \prime \right] + \ldots \end{split}$$

xploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravity 00000000000

Conclusion 000

The SYK constraint

Higher-ordered reparameterization

$$\begin{aligned} Dz^{\prime(nm...l)} &= \theta^{\prime(nm...l)} D\theta^{\prime(nm...l)}, \\ z^{\prime(nm...l)} &= t^{\prime(nm...l)} + i\epsilon \left(D\xi^{\prime(nm...l)} \right)^2, \\ Dt^{\prime(nm...l)} \left(u^{\prime(nm...l)}, \theta^{\prime(nm...l)} \right) &= \xi^{\prime} \left(u^{\prime(nm...l)}, \theta^{\prime(nm...l)} \right) D\xi^{\prime(nm...l)} \left(u^{\prime(nm...l)}, \theta^{\prime(nm...l)} \right). \end{aligned}$$

Low-ordered reparameterization

$$Dz'^{(n)} = \theta'^{(n)} D\theta'^{(n)},$$

$$z'^{(n)} = t'^{(n)} + i\epsilon \left(D\xi'^{(n)} \right)^2,$$

$$Dt'^{(n)} \left(u'^{(n)}, \theta'^{(n)} \right) = \xi \left(u'^{(n)}, \theta'^{(n)} \right) D\xi'^{(n)} \left(u'^{(n)}, \theta'^{(n)} \right).$$

The action on higher-ordered surfaces will influence the lower-ordered surfaces, but not vice versa.

э.

Exploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

SJT gravity with orders

In the extended NAdS₂ spacetime with JT gravity, the boundaries are reparameterized using a bosonic coordinate t and a Grassmann parameter θ .

2 Exploring the Exactly *n*-Replica Solution with SSYK

3 Fractal Symmetry, Superconformal Limit and Replica SJT Gravity

4 Conclusion

э.

・ロト ・ 日本・ ・ 日本・

Summary of Results

1. Multi-Ordered Trick

- Introduced a hierarchical framework for exact multi-replica wormhole solutions in $\mathcal{N} = 1$ supersymmetric SYK.
- Generalized from 2 to *n* replicas with systematically controlled off-diagonal interactions.

2. Fractal Symmetry and Supersymmetric Unification

- Leveraged recursive fractal structure to unify replica sectors through extended supercharges.
- Analyzed Lorentzian dynamics with emergent superconformal invariance and cross-replica reparametrizations.

3. Holographic Dual and Entanglement

- Matched the effective theory to $\mathcal{N}=1$ super-Jackiw–Teitelboim gravity.
- Computed entanglement measures via exact diagonalization across replica sectors.

xploring the Exactly *n*-Replica Solution with SSYK

Fractal Symmetry, Superconformal Limit and Replica SJT Grav

Conclusion

Thank You!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Resolving the Replica Problem with Supersymmetric SYK Models