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Overview

© Backgrounds
@ Bulk metric reconstruction
@ Pole-skipping points

© Bulk metric reconstruction by pole-skipping points
@ Flipping Near-Horizon Analysis
@ Reconstruction of gy, and gor,_,

© /:-polynomial constraints
@ specific form
@ Valid region
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Bulk metric reconstruction

@ Reconstruct the bulk spacetime from boundary QFT data.

@ Spacetime emerges from entanglement—reconstruct the bulk
geometry from boundary entanglement entropy.
[S. Ryu and T. Takayanagi, (2006)]; M. V. Raamsdonk, (2010); J. Maldacena and L. Susskind, (2013)]

[S. Bilson, (2011); B. Czech, X. Dong, and J. Sully, (2014); S. R. Roy and D. Sarkar, (2018)]

@ Employing machine learning techniques to explore the emergence
of bulk spacetime [K. Hashimoto, et al., (2018); X. Dong and L. Zhou, (2018)]

@ The bulk spacetime can be reconstructed from special boundary
locations, known as “pole-skipping points”, where the boundary
Green's function becomes ambiguous;

@ The reconstruction is fully analytical and only involves solving a set
of linear equations.
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Pole-skipping points

Figure: heatmaps showing the values of log |G (Imw, p1)| with p = k.

@ At pole-skipping points, the Green’s function takes the form ‘0/0.

[M. Blake, H. Lee, and H. Liu, (2018); S. Grozdanov, K. Schalm, and V. Scopelliti, (2018); M. Blake, et al. (2018)] 4/13



Pole-skipping points

@ In theories with perturbation modes of spin I, pole-skipping points
occur at complex Matsubara frequencies w, = i(I — n)2xT.
[D. Wang and Z.-Y. Wang, (2022); S. Ning, D. Wang, and Z.-Y. Wang, (2023)]

@ The EOM of bulk perturbations exhibits two linearly independent
ingoing solutions; The (wy, jun4) can be determined from the
‘near-horizon analysis’.

[M. Blake, et al. (2018); M. Blake, R. A. Davison, and D. Vegh, (2020)]

@ For a given n, different p,, ; with g € {1,...,n}, correspond to the
roots of a degree-n polynomial equation.

5/13



Pole-skipping points

Near-horizon analysis

@ Assuming a probe massless scalar field ¢(r) obeys the
Klein-Gordon equation: V2¢(r) = 0.

@ Its fourier mode ¢ admits: p(r) = (r — 1)* Z;‘;O on(r—1)". By
substituting this into the Klein-Gordon equation and expanding up
to order n at complex Matsubara frequency w,, = —in27T, one
obtains an 1 x n matrix M® (p).

@ The determinant of this matrix, Det(M ) (u)) = 0, leads to a
degree-n polynomial equation in p:

Vn,nMn + Vn,n—llun_l + 4+ Vn,llu + Vn,O =0, (1)

@ The specific form of V,, ,, depends on the details of the theory.
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Flipping Near-Horizon Analysis

Background spacetime

A static planar symmetric black hole metric in EF coordinate:
ds? = —guo(r)dv? + gor(r)dudr + r2dX2, with

8oo(r) = Gooy (r — 1) + ooy (r — 1) + ...

&or(1) = Gorg + 8on (1 = 1) + gor, (r = 1)* + ..

@ To apply our reconstruction method, we swap the roles of
(8vvu> Sory_y) @Nd (wy, pinq), treating the latter as input and the
former as unknowns.

@ In Eq. (1), V,,,» dependent on gy, and g, ,, While 1 assumes n
values fiy, 4.

@ Instead of treating # individual pole-skipping points separately, it is
more intuitive to exploit the S,, symmetry in Eq. 1 and work with
the related elementary symmetric polynomials, e.g.,

Ey(p) =,  Ea(p) = pon + po2
Er(4?) = moapnn,  Es(u?) = pzipisa + us2is3 + U303
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Reconstruction of g, and g, ,

@ Those elementary symmetric polynomials links to the g, and
Qor,_, by Vieta formula:

E,(u™) — UV;Z—;’” = 0 where we define v, = (—1)"""" V.

@ Forn =1, combining Eq(u) + {;ig”l =0andizl = 4?’;’;0 yielding:

2dw? idwy
oLt = N or, = ———. (:2)
8o = E ) 5 T TEi(p)

@ For n = 2, after substituting the solution at n = 1, the two
equations Ex(u!) = ZZ—; and E>(u?) = U” solves for guu, and gor,

 PutE(p?) | 247w} dzlez(u) 3dw?
S0 T 4R P TR EB@? | R
ld lez( ) id2w1 idzleZ(uz) idwl
ST OEW?  Eiw) 4E()? Eiw)

(3)
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Reconstruction of g, , and g,

@ For n > 2, there are n equations but only two variables: g, and
Sor,_, to solve.

Unique solutions

Only E, (") — 31 = 0 and E,,(u") — 52 = 0 are linear in terms of gy,
and gor, ;-

@ By computing g, and g, , to sufficiently large n, one can
approximate the metric functions g.,(r) and g.,(r) with arbitrary
accuracy within the convergence radius, determined by the nearest
singularities in the complexified r-plane.

@ The reconstruction can be generalized to the massive
Klein-Gordon equation and extended to reconstruct metrics with
Lifshitz scaling and hyperscaling violation.
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p-polynomial constraints

atn =34

@ How about the rest n — 2 equations: E, (1) — % 0 with m
being1ton —2?

@ Forn =3, E3(u) — Zi—z = 0 takes the form:

E3(,U;) + 3dgm;1 + ngvl + 4gvrlgvv1 _ ngvvz —0.

2851, S S Sorg
I
e P3(p) = E3(p) — 4E2(p) + 5E1(p) =0
)

p31+ p32 + p3s — 4(p2,1 + p22) +5p11 =0

@ Forn =4,
Py(pt) = Eq(pp) — 10Ex(p1) + 16E1 (1) = 0
Py(p?) = Eo(p?) — 6E3(p*) + 14E (1) — 9E2(11)* + 40Ex(p)E1(p)  (4)
—46E1(1)* =0
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p-polynomial constraints

at arbitrary n

@ In master equation of the form (V2 4- V(r))®(r) = 0, for arbitrary n,
the following n — 2 redundant equations:

[H. Kodama and A. Ishibashi, (2003); H. Kodama and A. Ishibashi, (2004)]

E, (") — 2r=m — 0, form=1,2,...,n—2.

Un,n
\
P,(p")y =0, form=1,2,...,n—2.

@ i.e. a set of n — 2 universal polynomial constraints on pole-skipping
1 alone, free of any other quantities.

@ For each n > 2, these u-polynomial constraints reduce the number
of independent Hing from n to 2, consistent with the number of the
bulk variables g,,, and gor, ;.

Precondition for ;i-polynomial constraints

Det(M ™ (u)) = 0 derived from (V2 + V(r))®(r) = 0 is a degree-n
polynomial in , taking the form of Eq. (1).




Some comments

Imw

Figure: 2n — 1 pole-skipping points — bulk metric (with KG equation) —
Green'’s function (numerically)
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Thank you!
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