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Bulk metric reconstruction

Reconstruct the bulk spacetime from boundary QFT data.

Spacetime emerges from entanglement—reconstruct the bulk
geometry from boundary entanglement entropy.
[S. Ryu and T. Takayanagi, (2006)]; M. V. Raamsdonk, (2010); J. Maldacena and L. Susskind, (2013)]

[S. Bilson, (2011); B. Czech, X. Dong, and J. Sully, (2014); S. R. Roy and D. Sarkar, (2018)]

Employing machine learning techniques to explore the emergence
of bulk spacetime [K. Hashimoto, et al., (2018); X. Dong and L. Zhou, (2018)]

The bulk spacetime can be reconstructed from special boundary
locations, known as “pole-skipping points”, where the boundary
Green’s function becomes ambiguous;

The reconstruction is fully analytical and only involves solving a set
of linear equations.
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Pole-skipping points

Figure: heatmaps showing the values of log |G(Imω, µ)| with µ = k2.

At pole-skipping points, the Green’s function takes the form ‘0/0’.
[M. Blake, H. Lee, and H. Liu, (2018); S. Grozdanov, K. Schalm, and V. Scopelliti, (2018); M. Blake, et al. (2018)]

[M. Blake, R. A. Davison, and D. Vegh, (2020)]
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Pole-skipping points

In theories with perturbation modes of spin l, pole-skipping points
occur at complex Matsubara frequencies ωn = i(l − n)2πT.
[D. Wang and Z.-Y. Wang, (2022); S. Ning, D. Wang, and Z.-Y. Wang, (2023)]

The EOM of bulk perturbations exhibits two linearly independent
ingoing solutions; The (ωn, µn,q) can be determined from the
‘near-horizon analysis’.
[M. Blake, et al. (2018); M. Blake, R. A. Davison, and D. Vegh, (2020)]

For a given n, different µn,q with q ∈ {1, . . . ,n}, correspond to the
roots of a degree-n polynomial equation.
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Pole-skipping points
Near-horizon analysis

Assuming a probe massless scalar field ϕ(r) obeys the
Klein-Gordon equation: ∇2ϕ(r) = 0.

Its fourier mode φ admits: φ(r) = (r − 1)α
∑∞

p=0 φn(r − 1)n. By
substituting this into the Klein-Gordon equation and expanding up
to order n at complex Matsubara frequency ωn = −in2πT, one
obtains an n × n matrix M(n)(µ).

The determinant of this matrix, Det(M(n)(µ)) = 0, leads to a
degree-n polynomial equation in µ:

Vn,nµ
n + Vn,n−1µ

n−1 + · · ·+ Vn,1µ+ Vn,0 = 0, (1)

The specific form of Vn,m depends on the details of the theory.
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Flipping Near-Horizon Analysis

Background spacetime

A static planar symmetric black hole metric in EF coordinate:
ds2 = −gvv(r)dv2 + gvr(r)dvdr + r2d⃗x2, with
gvv(r) = gvv1(r − 1) + gvv2(r − 1)2 + . . .

gvr(r) = gvr0 + gvr1(r − 1) + gvr2(r − 1)2 + . . .

To apply our reconstruction method, we swap the roles of
(gvvn , gvrn−1) and (ωn, µn,q), treating the latter as input and the
former as unknowns.
In Eq. (1), Vn,m dependent on gvvn and gvrn−1 , while µ assumes n
values µn,q.
Instead of treating n individual pole-skipping points separately, it is
more intuitive to exploit the Sn symmetry in Eq. 1 and work with
the related elementary symmetric polynomials, e.g.,
E1(µ) ≡ µ1,1, E2(µ) ≡ µ2,1 + µ2,2
E2(µ

2) ≡ µ2,1µ2,2, E3(µ
2) ≡ µ3,1µ3,2 + µ3,2µ3,3 + µ3,3µ3,1
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Reconstruction of gvvn and gvrn−1

Those elementary symmetric polynomials links to the gvvn and
gvrn−1 by Vieta formula:
En(µ

m)− vn,n−m
vn,n

= 0 where we define vn,m = (−1)n−mVn,m

For n = 1, combining E1(µ) +
dgvv1
2g2

vr0
= 0 and iω1

2π =
gvv1

4πgvr0
yielding:

gvv1 =
2dω2

1
E1(µ)

, gvr0 = − idω1

E1(µ)
. (2)

For n = 2, after substituting the solution at n = 1, the two
equations E2(µ

1) =
v2,1
v2,2

and E2(µ
2) =

v2,0
v2,2

solves for gvv2 and gvr1

gvv2 =
d2ω2

1E2(µ
2)

4E1(µ)3 +
2d2ω2

1
E1(µ)

−
d2ω2

1E2(µ)

E1(µ)2 +
3dω2

1
E1(µ)

,

gvr1 =
id2ω1E2(µ)

2E1(µ)2 − id2ω1

E1(µ)
− id2ω1E2(µ

2)

4E1(µ)3 − idω1

E1(µ)
.

(3)
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Reconstruction of gvrn−1 and gvvn

For n > 2, there are n equations but only two variables: gvvn and
gvrn−1 to solve.

Unique solutions

Only En(µ
n−1)− vn,1

vn,n
= 0 and En(µ

n)− vn,0
vn,n

= 0 are linear in terms of gvvn

and gvrn−1 .

By computing gvvn and gvrn−1 to sufficiently large n, one can
approximate the metric functions gvv(r) and gvr(r) with arbitrary
accuracy within the convergence radius, determined by the nearest
singularities in the complexified r-plane.

The reconstruction can be generalized to the massive
Klein-Gordon equation and extended to reconstruct metrics with
Lifshitz scaling and hyperscaling violation.
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µ-polynomial constraints
at n = 3, 4

How about the rest n − 2 equations: En(µ
m)− vn,n−m

vn,n
= 0 with m

being 1 to n − 2?
For n = 3, E3(µ)−

v3,2
v3,3

= 0 takes the form:

E3(µ) +
3dgvv1
2g2

vr0
+

8gvv1
g2

vr0
+

4gvr1 gvv1
g3

vr0
− 8gvv2

g2
vr0

= 0.

⇓
P3(µ) ≡ E3(µ)− 4E2(µ) + 5E1(µ) = 0

⇕
µ3,1 + µ3,2 + µ3,3 − 4(µ2,1 + µ2,2) + 5µ1,1 = 0

For n = 4,
P4(µ) ≡ E4(µ)− 10E2(µ) + 16E1(µ) = 0

P4(µ
2) ≡ E4(µ

2)− 6E3(µ
2) + 14E2(µ

2)− 9E2(µ)
2 + 40E2(µ)E1(µ)

− 46E1(µ)
2 = 0

(4)
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µ-polynomial constraints
at arbitrary n

In master equation of the form (∇2 + V(r))Φ(r) = 0, for arbitrary n,
the following n − 2 redundant equations:
[H. Kodama and A. Ishibashi, (2003); H. Kodama and A. Ishibashi, (2004)]

En(µ
m)− vn, n−m

vn, n
= 0, for m = 1, 2, . . . ,n − 2.

⇓
Pn(µ

m) = 0, for m = 1, 2, . . . ,n − 2.

i.e. a set of n − 2 universal polynomial constraints on pole-skipping
µ alone, free of any other quantities.
For each n > 2, these µ-polynomial constraints reduce the number
of independent µn,q from n to 2, consistent with the number of the
bulk variables gvvn and gvrn−1 .

Precondition for µ-polynomial constraints

Det(M(n)(µ)) = 0 derived from (∇2 + V(r))Φ(r) = 0 is a degree-n
polynomial in µ, taking the form of Eq. (1).
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Some comments

Figure: 2n − 1 pole-skipping points → bulk metric (with KG equation) →
Green’s function (numerically)
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Thank you!
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