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On Carrollian Conformal Field Theory

Bin Chen

Institute of Fundamental Physics and Quantum Technology,
Ningbo University

Holographic applications: from Quantum Realms to the Big Bang,
UCAS, Beijing, 14-18, July 2025

Collaborators: Jue Hou, Reiko Liu, Hao-wei Sun and Yu-fan Zheng
Based on 2112.10514, 2301.06011, 2405.04105, 2406.17451 and 2503.22160
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Galilei & Carroll

The Galilei group could be produced by considering the c → ∞
(non-relativistic) limit of the Poincaré group.
On the contrary, the Carroll group was found by considering the c → 0
(ultra-relativistic) limit. J. Lévy-Leblond (1965); N.D. Sen Gupta (1966)

Carrollian boosts
x⃗ ′ = x⃗, t′ = t − b⃗ · x⃗.

With the translations and the rotations among spacial directions, we
obtain the Carroll group Carr(d + 1).
Intuitively, under the Carrollian limit, the lightcones collapse.
“since absence of causality as well as arbitrarinesses in the length of time
intervals is especially clear in Alice’s adventures (in particular in the Mad
Tea-Party) this did not seem out of place to associate Lewis Carroll’s
name” (Lévy-Leblond (1965))
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Carroll’s world
The Red Queen effect: running
without moving, “ultralocal”
... The most curious part of the
thing was, that the trees and the
other things round them never
changed their places at all:
however fast they went, they never
seemed to pass anything.

A free Carrollian particle is at rest
and does not move! C. Duval et.al 1402.0657,

E. Bergshoeff et al. 1405.2264
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Carrollian physics
The Carrollian boosts appear in the isometry group of plane-gravitational
wave. J. M. Souriau (1973);...

The Carrollian limit controls the dynamics of the gravitational field near a
spacelike singularity (BKL limit) M. Henneaux (1979);...

Carrollian physics at the black hole horizon. L. Donnay and C. Marteau 1903.09654;R. Penna

1812.05643;...

Carrollian gravity and cosmologyE. Bergshoeff et al. 1701.06156;J. de Boer et al. 2110.02319;...

Carrollian particle and fracton? J.Figueroa-O’Farrill et al. 2305.06730,2307.05674...

Carrollian conformal groups = BMS group C. Duval. et al. 1402.5894;...

This indicates that the Carrollian conformal field theory could play an
essential role in flat spacetime holography!
Flat space holography in 3D A. Bagchi et al. (2012); ...

Tensionless limits of strings A. Bagchi (2013);...

Celestial holography L. Donnay et al. 2202.04702; A. Bagchi et al. 2202.08438;...

......
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In the past few years, our group have been working on the Carrollian
conformal field theories.
1. 2D Galilean (Carrollian, BMS) analytic conformal bootstrap:

with P.X. Hao, Z.F. Yu and R. Liu,
2011.11092, 2203.10490, 2207.01474

1) Multiplet structure
2) Galilean conformal blocks for multiplets
3) Harmonic analysis of GCA: GCPW
4) Shadow formalism (ξ ̸= 0)
5) Four-point function in GGFT and BMS free scalar in different ways
6) Spectral density by using Hardy-Littlewood tauberian theorem.

2. 2D BMS field theories:
with Z.F. Yu, Z.Z. Hu and Y.F. Zheng,

2211.06926, 2302.05975, 2501.11011

3. Carrollian superstring: with Z.Z. Hu, 2501.11011
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How about higher dimensional case?

4. Higher dimensional Corrollian conformal field theories:
with Y.F. Zheng, R. Liu and H.W. Sun,

2112.10514, 2301.06011, 2406.17451

5. Carrollian ModMax: with J. Hou and H.W. Sun, 2405.04105

6. Carrollian (conformal) superalgebra: with Y.F. Zheng, 2503.22160
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Carrollian conformal algebra (CCA) and H.W. Reps.
BC, R. Liu and Y.F. Zheng, 2112.10514

One can obtain CCAd by taking the Carrollian limit of the usual d-dim.
conformal algebra.

{D,Pµ,Kµ, Jµν} −→ {D,Pµ,Kµ,Bi, Jij},

where µ = 0, 1, . . . , d − 1, i, j = 1, . . . , d − 1. The Carrollian boost
generators Bi come from the rotation generators: Ji0 c→0−→ Bi.

[D,Pµ] = Pµ, [D,Kµ] = −Kµ, [D,Bi] = [D, Jij] = 0,

[Jij,Gk] = δikGj − δjkGi, G ∈ {P,K,B}
[Jij,P0] = [Jij,K0] = 0,

[Jij, Jkl] = δikJjl − δilJjk + δjlJik − δjkJil,

[Bi,Pj] = δijP0, [Bi,Kj] = δijK0, [Bi,Bj] = [Bi,P0] = [Bi,K0] = 0,

[K0,P0] = 0, [K0,Pi] = −2Bi, [Ki,P0] = 2Bi, [Ki,Pj] = 2δijD + 2Jij.
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Stabilizer algebra and highest weight representations

The stabilizer algebra g0 is generated by dilation D, generalized rotations
M = {J,B} and special conformal transformations (SCTs) K

[D,M] = 0, [D,K] ⊂ K, [M,K] ⊂ K.

The commutativity of the dilatation and the rotations implies that the
local operators Oa can be diagonalized simultaneously into the
eigenstates of the dilation and the representations of generalized
rotations,

[D,O] = ∆OO, [M,Oa] = Ma
bOb.

∆O: conformal weight
Highest weight repr.: [K,Oa] = 0.
This is often referred to as the primary condition.
The nontrivial part is the representation of generalized rotation!
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Multiplets
For d ≥ 3 CCFT, the generalized rotation group, CCA rotation group, is
the Euclidean group ISO(d − 1). It is not semi-simple, and its finite
dimensional representations are generally reducible but indecomposable,
and can be organized as multiplet representations.

Example: vector representation Oµ of CCA4

[Jij,Ok] = δikOj − δjkOi, [Bi,Oj] = δijO0, [Jij,O0] = [Bi,O0] = 0.

Here

J = −iJ 12, J± =
1√
2
(∓J 23 + iJ 31), B± =

1√
2
(iB1 ± B2)
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Tensor representation

Figure: The rank-2 tensor representation of CCA4. It is decomposed into a
10-dimensional representation and a 6-dimensional representation
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The multiplet representations for d > 2 case have much more complicated
structures since there is a non-trivial ISO(d − 1) part, and lead to net
representations rather than just chain-like ones in logCFT2 or CCFT2.

Figure: All the four net representations are legal.

Nevertheless, the finite dimensional representation of the CCA rotations
are all multiplet representations with every sub-sector being irreducible
representation of SO(d − 1), due to a theorem by H. P. Jakobsen (2011).
Notations: the numbers in the bracket indicate the irr. representations
w.r.t. SO(d − 1), the arrows stand for the actions of the generators Bi.
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The multiplet representations for d > 2 case have much more complicated
structures since there is a non-trivial ISO(d − 1) part, and lead to net
representations rather than just chain-like ones in logCFT2 or CCFT2.

Figure: All the four net representations are legal.

Nevertheless, the finite dimensional representation of the CCA rotations
are all multiplet representations with every sub-sector being irreducible
representation of SO(d − 1), due to a theorem by H. P. Jakobsen (2011).
Notations: the numbers in the bracket indicate the irr. representations
w.r.t. SO(d − 1), the arrows stand for the actions of the generators Bi.
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Chain representations

The possible chain representations must take the following patterns:
rank 2

(j) → (j + 1),

(j) → (j), j ̸= 0,

(j) → (j − 1).

rank 3 or higher

(0) → (1) → (0),

· · · → (j) → (j + 1) → (j + 2) → · · · ,
· · · → (j) → (j − 1) → (j − 2) → · · · ,

where the patterns works for all possible values of j ∈ {0} ∪ Z+/2.
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Correlators of singlets
In principle, the 2-pt and 3-pt functions of the operators in CCFT can be
determined by using the Ward identities. However, due to complicated
structure in representations, it is hard to discuss the most general case.
We discussed the correlators of the operators in chain representations
carefully. BC, Reiko Liu and Yu-fan Zheng, 2112.10514

For a singlet in CCFT4, there is

⟨O1(t1, x⃗1)O2(t2, x⃗2)⟩ = c1
1

r∆1+∆2
+ c2δ(3)(⃗x12)

1

t∆1+∆2−3
,

▶ If c1 ̸= 0, c2 = 0, the Ward identities of Ki will force ∆1 = ∆2, and
the resulting 2-pt function coincides with the scalar 2-pt function in
CFT3.

▶ If c1 = 0, c2 ̸= 0, it can be understood in an concrete model: the
Carrollian free scalar with the action

S =

∫
d3x⃗dtϕ∂2

t ϕ.

Close relation between 3D Carrollian CFT and celestial holography!
L. Donnay et al.. 2202.04702,2212.12553; Bagchi et al.. 2202.08438; ...
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Correlators of singlets
In principle, the 2-pt and 3-pt functions of the operators in CCFT can be
determined by using the Ward identities. However, due to complicated
structure in representations, it is hard to discuss the most general case.
We discussed the correlators of the operators in chain representations
carefully. BC, Reiko Liu and Yu-fan Zheng, 2112.10514

For a singlet in CCFT4, there is

⟨O1(t1, x⃗1)O2(t2, x⃗2)⟩ = c1
1

r∆1+∆2
+ c2δ(3)(⃗x12)

1

t∆1+∆2−3
,

▶ If c1 ̸= 0, c2 = 0, the Ward identities of Ki will force ∆1 = ∆2, and
the resulting 2-pt function coincides with the scalar 2-pt function in
CFT3.

▶ If c1 = 0, c2 ̸= 0, it can be understood in an concrete model: the
Carrollian free scalar with the action

S =

∫
d3x⃗dtϕ∂2

t ϕ.

Close relation between 3D Carrollian CFT and celestial holography!
L. Donnay et al.. 2202.04702,2212.12553; Bagchi et al.. 2202.08438; ...
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Correlators of chain representations: trivial one

In the following discussion on correlators, we focus on the ones with only
spatial dependence.
Generic structure of 2-pt correlators:〈

O(m1,q1)
1 (x1)O(m2,q2)

2 (x2)
〉
= f m1,m2

q1,q2
(x12)

where qi is the order of the i-th operator in a multiplet.
For the relatively trivial case that O1,O2 ∈ (1) → (0),

Level 3: f m1,m2

2,2 =
C Im1,m2

1,1

|⃗x12|2∆
,

Level 2: f 0,m2

1,2 = 0, f m1,0
2,1 = 0,

Level 1: f 0,0
1,1 = 0,

O1 ∈
(1)

↓
(0)

O2 ∈
(1)

↓
(0)

with ∆1 = ∆2 = ∆.
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Correlators of chain representations: the simplest nontrivial
case

For the simplest nontrivial case,

O1 ∈ (1) → (0), O2 ∈ (0) → (1).

Level 3: f m1,0
2,2 =

C t12/|⃗x12| Im1
1,0

|⃗x12|2∆
,

Level 2: f 0,0
1,2 =

C
|⃗x12|2∆

, f m1,m2

2,1 =
C Im1,m2

1,1

|⃗x12|2∆
,

Level 1: f 0,m2

1,1 = 0.

O1 ∈
(1)

↓
(0)

O2 ∈
(0)

↓
(1)

with ∆1 = ∆2 = ∆.

Here I m1,m2

j1,j2 is the 2-point tensor structure.
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Remarks on correlators

▶ Due to the multiplet structure of the representations, the correlators
present multi-level structures. At each level, there are more than one
2-pt coefficients. Even if considering the basis change and
renormalization of the operators, not all 2-pt coefficients can be
fixed by the Ward identities;

▶ As the representations are reducible, there is short of selection rules
on the representations. This means that the 2-pt correlators of the
operators in different representations could be nonvanishing.

▶ We explored the 2-pt correlators of net representations and the 3-pt
correlators of chain representations. It turns out that the constraints
from the Ward identities are quite loose, and we had to compute
them case by case.
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fixed by the Ward identities;

▶ As the representations are reducible, there is short of selection rules
on the representations. This means that the 2-pt correlators of the
operators in different representations could be nonvanishing.

▶ We explored the 2-pt correlators of net representations and the 3-pt
correlators of chain representations. It turns out that the constraints
from the Ward identities are quite loose, and we had to compute
them case by case.
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Remarks on correlators

▶ Due to the multiplet structure of the representations, the correlators
present multi-level structures. At each level, there are more than one
2-pt coefficients. Even if considering the basis change and
renormalization of the operators, not all 2-pt coefficients can be
fixed by the Ward identities;

▶ As the representations are reducible, there is short of selection rules
on the representations. This means that the 2-pt correlators of the
operators in different representations could be nonvanishing.

▶ We explored the 2-pt correlators of net representations and the 3-pt
correlators of chain representations. It turns out that the constraints
from the Ward identities are quite loose, and we had to compute
them case by case.
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Constructions of CCFTBC, H.W. Sun and Y.F. Zheng 2301.06011

The explicit examples are vital to understand various properties of CCFT.

2D Carrollian conformal group ≃ BMS3

In 2D, a few field theories with BMS symmetry have been constructed
and studied:

BMS free scalar theory P.x. Hao et al.. 2111.04701,
BMS free fermion theory Z.f. Yu & BC. 2211.06926; P.x. Hao et al. 2211.06927; A. Banerjee et al.

2211.11639

BMS ghost system BC et al. 2302.05975

.....
In higher dim., the study of Carrollian field theories got revived in the
past few years. There are two existing ways to construct theories
▶ Hamiltonian formalism M. Henneaux et al.;...

▶ Taking Carrollian limit of the usual QFT C. Duval et al.;A. Bagchi et al.;...

We proposed a novel off-shell way to construct Carrollian (conformal)
field theories, starting from the Bargmann field theories. We have
successfully reproduced all Carrollian field theories in the literatures.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constructions of CCFTBC, H.W. Sun and Y.F. Zheng 2301.06011

The explicit examples are vital to understand various properties of CCFT.

2D Carrollian conformal group ≃ BMS3

In 2D, a few field theories with BMS symmetry have been constructed
and studied:

BMS free scalar theory P.x. Hao et al.. 2111.04701,
BMS free fermion theory Z.f. Yu & BC. 2211.06926; P.x. Hao et al. 2211.06927; A. Banerjee et al.

2211.11639

BMS ghost system BC et al. 2302.05975

.....

In higher dim., the study of Carrollian field theories got revived in the
past few years. There are two existing ways to construct theories
▶ Hamiltonian formalism M. Henneaux et al.;...

▶ Taking Carrollian limit of the usual QFT C. Duval et al.;A. Bagchi et al.;...

We proposed a novel off-shell way to construct Carrollian (conformal)
field theories, starting from the Bargmann field theories. We have
successfully reproduced all Carrollian field theories in the literatures.
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The explicit examples are vital to understand various properties of CCFT.

2D Carrollian conformal group ≃ BMS3

In 2D, a few field theories with BMS symmetry have been constructed
and studied:

BMS free scalar theory P.x. Hao et al.. 2111.04701,
BMS free fermion theory Z.f. Yu & BC. 2211.06926; P.x. Hao et al. 2211.06927; A. Banerjee et al.

2211.11639

BMS ghost system BC et al. 2302.05975

.....
In higher dim., the study of Carrollian field theories got revived in the
past few years. There are two existing ways to construct theories
▶ Hamiltonian formalism M. Henneaux et al.;...

▶ Taking Carrollian limit of the usual QFT C. Duval et al.;A. Bagchi et al.;...

We proposed a novel off-shell way to construct Carrollian (conformal)
field theories, starting from the Bargmann field theories. We have
successfully reproduced all Carrollian field theories in the literatures.
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The explicit examples are vital to understand various properties of CCFT.

2D Carrollian conformal group ≃ BMS3

In 2D, a few field theories with BMS symmetry have been constructed
and studied:

BMS free scalar theory P.x. Hao et al.. 2111.04701,
BMS free fermion theory Z.f. Yu & BC. 2211.06926; P.x. Hao et al. 2211.06927; A. Banerjee et al.

2211.11639

BMS ghost system BC et al. 2302.05975

.....
In higher dim., the study of Carrollian field theories got revived in the
past few years. There are two existing ways to construct theories
▶ Hamiltonian formalism M. Henneaux et al.;...

▶ Taking Carrollian limit of the usual QFT C. Duval et al.;A. Bagchi et al.;...

We proposed a novel off-shell way to construct Carrollian (conformal)
field theories, starting from the Bargmann field theories. We have
successfully reproduced all Carrollian field theories in the literatures.
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Bargmann symmetry
A Bargmann manifold has three ingredients, (B,G, ξ), where B is a
(d + 1)-dimensional manifold with metric G of Lorentz signature and a
vertical vector ξ, a nowhere vanishing null vector.

In the flat case, we can
write the structure using the coordinates (u, x⃗, v) as:

B = R× Rd−1 × R, G = 2dudv + δijdxidxj, ξ = ∂u,

where u, v are the lightcone coordinates. The Bargmann group is the
isometries of the flat Bargmann structure, which is a subgroup of
Poincaré group

Barg(d, 1) = ISO(d, 1)/{J 0
d+1, 1/

√
2
(
J i

0 − J i
d+1

)
}

that keep the null vector ξ invariant. The Bargmann generators are
{Pα, Ji

j,BB
i }, where BB

i is the Bargmann boost. The actions on point
(u, x⃗, v) in the manifold are shown in the following Table

generator vector field finite transformation

pα ∂α xα + xα0
mi

j xi∂j − xj∂ i (u,Mx⃗, v)

bB
i v∂i − xi∂u

(
u − ν⃗ · x⃗ − 1

2 ν⃗
2v, x⃗ + ν⃗v, v

)
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j,BB
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(u, x⃗, v) in the manifold are shown in the following Table
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pα ∂α xα + xα0
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Carrollian symmetry from Bargmann symmetry

Restricting the Bargmann group on the null hyper-surface v = 0, we can
immediately see the Bargmann structure reduce to Carrollian structure
(C, g, ξ) with the coordinates (t = u, x⃗), the degenerated metric

gµν = Gµν = δi
µδ

j
νδij

while ξµ being the timelike vector, and the Carroll group is subgroup of
Bargmann group Carr(d) = Barg(d, 1)/{Pv}.

This motivates us to construct Carrollian field theories by restricting
Bargmann field theories on the null hyper-surface.
However, trivially restricting Bargmann fields with configuration
Φ(u, x⃗, v) = Φ(u, x⃗)δ(v) on v = 0 causes many difficulty from the Dirac
delta function. The trick is to introduce an uniformly distributed function
over small interval of v.
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Restricting the Bargmann group on the null hyper-surface v = 0, we can
immediately see the Bargmann structure reduce to Carrollian structure
(C, g, ξ) with the coordinates (t = u, x⃗), the degenerated metric

gµν = Gµν = δi
µδ

j
νδij

while ξµ being the timelike vector, and the Carroll group is subgroup of
Bargmann group Carr(d) = Barg(d, 1)/{Pv}.
This motivates us to construct Carrollian field theories by restricting
Bargmann field theories on the null hyper-surface.
However, trivially restricting Bargmann fields with configuration
Φ(u, x⃗, v) = Φ(u, x⃗)δ(v) on v = 0 causes many difficulty from the Dirac
delta function. The trick is to introduce an uniformly distributed function
over small interval of v.
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Bargmann scalar field theories

The building blocks of Bargmann field theories are geometric invariants
Gαβ and ξα. For a free scalar Φ, the Bargman invariant action could be

SB
E =

1

2

∫
dd+1x ξαξβ∂αΦ∂βΦ, SB

M = −1

2

∫
dd+1x Gαβ∂αΦ∂βΦ.

The subscript M is for magnetic sector and E for electric sector,
corresponding to magnetic/electric Carrollian field theories. M. Henneaux and P.

Salgado-Rebolledo, 2109.06708
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Electric sector

SB
E =

1

2

∫
dd+1x ξαξβ∂αΦ∂βΦ.

Expanding Φ near v = 0, we have

Φ(u, x⃗, v) = ϕ(u, x⃗) + vπ(u, x⃗) +O(v2).

Inserting this in the action, and noticing ξα = (1, 0⃗, 0), we have

SB
E = −1

2

∫
dd+1x ∂uΦ∂uΦ = −1

2

∫
dd+1x ∂uϕ∂uϕ+2v∂uπ∂uϕ+O(v2),

and thus we have the Carrollian action

SC
E = lim

ϵ→0
SB

E,ϵ = −1

2

∫
ddx ∂0ϕ∂0ϕ.

Actually, it is not only Carrollian invariant, but even Carrollian conformal
invariant. From

⟨ϕ(x)ϕ(y)⟩ = i|t|
2
δ(d−1)(⃗x),

we see that ϕ is a primary operator when d > 2.
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E = lim
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∫
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Magnetic sector

SB
M = −1

2

∫
dd+1x Gαβ∂αΦ∂βΦ.

Inserting the expansion of Φ, we get:

SB
M = −1

2

∫
dd+1x 2∂uΦ∂vΦ+∂iΦ∂iΦ = −1

2

∫
dd+1x 2π∂uϕ+∂iϕ∂iϕ+O(v).

Thus we reproduce the action of magnetic Carrollian scalar theoryM. Henneaux

and P. Salgado-Rebolledo, 2109.06708.

SC
M = −1

2

∫
ddx 2π∂0ϕ+ ∂iϕ∂iϕ

The fundamental fields in this theory are ϕ and π.
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The above action is Carrollian conformal invariant as well. The scalar ϕ
is still a primary fields, and the field π appears as part of staggered
module of ϕ’s conformal family.

Figure: The staggered structure of fields ϕ, ∂µϕ and π.

⟨ϕ(⃗x1, t1)ϕ(⃗x2, t2)⟩ = 0

⟨ϕ(⃗x1, t1)π(⃗x2, t2)⟩ = − i sign(t)
2(1− α2)

δ(d−1)(⃗x)

⟨π(⃗x1, t1)π(⃗x2, t2)⟩ =
i|t|

2(1− α2)
∂⃗2δ(d−1)(⃗x)

where t = t1 − t2 and x⃗ = x⃗1 − x⃗2, and α is a parameter determined by
quantization. They indeed satisfy the Ward identities of CCA.
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Quantum aspects of CCFTBC, W.H. Sun and Y.F. Zheng 2406.17451

Some essential questions: quantizations, vacuum, state-operator
correspondence, ...
Quantization: Path-integralBC et al. 2301.06011, 2302.05975;Canonical quantization on
massive scalarJ. de Boer et al. 2307.06827; J. Cotler et al. 2407.11971

We studied the quantization of Carrollian conformal scalar theories in 2D
and 3D BC et al. 2406.17451

Q1: induced vacuum or highest-weight (h.w.) vacuum?
h.w. vacuum: no unitary Hilbert space
induced vacuum: can define unitary Hilbert space

Q2: state-operator correspondence: No!
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ModMax theory
ModMax: Modified Maxwell (ModMax)

Lγ(S,P) = −1

2
cosh γS +

1

2
sinh γ

√
S2 + P2, γ ∈ R,

with
S ≡ 1

2
FµνFµν , P ≡ 1

2
Fµν(∗F)µν .

1. It is maximally symmetric nonlinear extensions of Maxwell: conformal
invariant and EM invariant (E + iB) → e−iθ(E + iB). I. Bandos et al. 2007.09092; B.

Kosyakov 2007.13878

2. ModMax can be generated from the Maxwell theory by the
√

TT flow
perturbatively in d = 4 in the sense that H. Babaei-Aghbolagh et al. 2202.11156; C. Ferko et al.

2203.01085

∂LModMax
γ

∂γ
= Oγ√

T2
, LModMax

γ = LMaxwell +

∫
Oγ√

T2
dγ,

where
Oγ√

T2
=

√
1

d
(
Tµ

νTν
µ − rTµ

µTν
ν

)
.
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Carrollian ModMax BC, J. Hou and H.W. Sun, 2405.04105

LCMM
γ (S,P) =

1

4

(
eγS ∓ e−γ P2

S

)
,

with
S ≡ 1

2
FµνFµν = mµργνσFµνFρσ, P ≡ 1

2
Fµν F̃µν .

Note: The theory is defined on Carrollian geometry, and the Hodge dual
should be defined carefully.

1. It is Carrollian SO(2) EM duality invariant as well as conformal
invariant.
2. The Carrollian ModMax theories in the family deform among
themselves under

√
TT flow, except two end-points γ → ±∞, where the

flow is non-invertible.
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S

)
,

with
S ≡ 1

2
FµνFµν = mµργνσFµνFρσ, P ≡ 1
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Structure of Carrollian (conformal) superalgebra
Y.F Zheng and BC, 2503.22160

Aim: try to classify all possible structure of Carrollian (conformal)
superalgebra in d = 4 and d = 3.
Basic ansatz: the supercharges transforming in chain representations and
{Q,Q} ∼ P, [P,Q] = 0.
The Jacobi identities constrain the possible structures.
In 4D, we find nontrivial super-Carrollian algebra with certain pattern for
the Q representations, which can not be derived by taking
ultra-relativistic limit of usual super-Poincaré algebra.
In 3D, it is significantly challenging to systematically discuss the
nonconformal superalgebra since the restriction from the Carrollian
rotation is not enough. We therefore focus on the Carrollian
superconformal algebra
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For the Carrollian superconformal case, there are less allowed structures.
We demonstrate that the nontrivial Carrollian superconformal algebras
for d = 4 and d = 3 are isomorphic to super-Poincaré algebra of d = 5
and the one of d = 4 respectively.

Remarkably, neither of these
constructions requires R-symmetry to ensure the algebraic closure.
3D Carrollian conformal algebra can be infinitely extended to the BMS4

algebra. How about supersymmetric version?
Singlet super-BMS4 algebra is analogous to a homogeneous superalgebra
in 2D.Bagchi, et al., 1606.09628, 1710.03482,1801.03245;I. Lodato, et al., 1610.07506;BC, et al., 2302.05975

Moreover, we discover two multiplet chiral super-BMS4 algebras, which
parallel to the inhomogeneous superalgebra. Remarkably, they can not be
found from Carrollian superconformal algebra by extension.
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Summary
1. We tried to study the higher dimensional (d ≥ 3) Carrollian conformal
invariant theories in a systematic way. As the conformal algebra is not
semi-simple, the finite dimensional h.w.r. present some novel features:
multiplet structure, staggered module, chain-like and even net-like
representations.
▶ We classified all the chain representations
▶ We discussed the 2-pt and 3-pt correlators of operators in chain-like

representations.

2. We proposed a novel way to construct Carrollian field theories from
Bargmann field theories.
3. We studied the quantization of Carrollian conformal scalar theories in
2D and 3D, and discussed the physical implications of different vacua.
4. We investigated the duality symmetry group of Carrollian (nonlinear)
electrodynamics and proposed a family of Carrollian ModMax theories,
which are Carrollian EM and conformal invariant.
5. We tried to classify all possible structure of Carrollian (conformal)
superalgebra in d = 4 and d = 3.
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Thanks for your attention!
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Carroll group as kinematical group

Both the Galilei group and Carroll group are kinematical groups.H. Bacry and J.

Lévy-Leblond (1968).
Possible relativity groups in 4D: possible invariance groups of a 4D
physical theory that contains the generators of relativity, i.e. time
translations, space translations, spatial rotations and boosts.

Poincaré group, Galilei group, AdS/dS isometry group,
Newton-Hooke group, Carroll group

Different relativity groups are related by Inönü-Wigner contractions.
Actually all these groups can be obtained by certain contraction of AdS
and dS groups.
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Backup: Carrollian particle
To study the motion of a free Carrollian particle, we may start from the
massive particle moving in AdS/dS spacetime and then take the
Carrollian limit. In the end, we find the action

SC =

∫
dτ(−Eṫ + ˙⃗x · p⃗ − e

2
(E2 − M2))

which is invariant under the Carrollian transformation

t′ = t − b⃗ · Rx⃗ + at, x⃗ ′ = Rx⃗ + a⃗,
p⃗ ′ = Rp⃗ − b⃗E, E′ = E.

The free Carrollian particle is at rest and does not move! C. Duval et al 1402.0657, E.

Bergshoeff et al. 1405.2264

Symmetries: E. Bergshoeff et al. 1405.2264

1. The free Carrollian particle has infinite dimensional symmetry.
2. For the massless one, the symmetries get enhanced to Carrollian
conformal symmetry.
However, for two-particle system, there is non-trivial dynamics!
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