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Superconducting transition temperature (K)

1. Introduction
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In modern condensed matter physics, one of the unsolved mysteries is the
core mechanism governing the high-temperature superconductors which are
not described by the usual Bardeen-Cooper-Schrieffer (BCS) theory.




Black hole High Tc superconductor

a gravity theory in a conformal field
a n-dimensional AdS/CFT correspondence theory on the
anti-de Sitter (AdS) (n-1)-dimensional
spacetime boundary of AdS
Gravity Superconductor
Black hole Temperature

Charged scalar field Condensate




Need to find a black hole which has scalar hair at low temperatures,
but no hair at high temperatures! ------ How to find...?

Gubser (08) consider the action with a Maxwell field and a charged

complex scalar field: S.S. Gubser, PRD 78, 065034 (2008)
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the emergence of the the formation of a
scalar hair in the bulk charged condensation in
AdS black hole the boundary dual CFTs




Holographic s-wave superconductor in the probe limit
Hartnoll et al. PRL 101, 031601 (2008)

A Maxwell field and a charged complex scalar field with Lagrangian density :

1
L= —ZFabFab — V(|¥]) — |0¥ — i AV|?

2
The potential: V([w]) = _2|LL2‘

The planar Schwarzschild—anti-de Sitter black hole:

dr?

ds® = —f(r)dt +f(fr')

+ 7 (da® + dy?)

The metric function: f=—= - =



The equation of motion:
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Properties of the dual field theory can be read off from the asymptotic behavior of
the solution

Integrating out to infinity, these solutions behave as

g p2)
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H: chemical potential ; . charge density




The condensate of the scalar operator (D in the field theory dual to the field W is
given by |
(0,) =200 =12
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(0y) ~ HAT> (1 =T/T)?, T =T,

(0) = 93T, (1-T/T)Y*,  T=T,

It is expected that this condensate will lead to superconductivity




Conductivity of holographic superconductors with various condensates
Horowitz et al. PRD 78, 126008 (2008)

To compute the conductivity in the dual CFT, the perturbations of the vector potential
were considered
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For the case of d=3:
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For the case of d=4:
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For the case of d=3: the solid line is the real part and dashed is imaginary




For all cases with A > Agg, we find

W, the gap frequency;

Agp . corresponds to the case of lower bound called the Breitenlohner-Freedman
(BF) bound for the scalar mass

A robust feature: Since the corresponding BCS value is 3.5, this shows that the
energy to break apart the condensate is more than twice the weakly coupled value




Holographic superconductors with various condensates in Einstein-Gauss-Bonnet gravity

Gregory, Kanno and Soda, JHEP 10, 010 (2009)
Pan, Wang, et al. PRD 81, 106007 (2010)

Influences of the 1/N or 1/A (A is the 't Hooft coupling) corrections on the holographic dual models

The model:

Lp2 =& (R s R"° — AR, R" + R?)

<Oy>'
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d=6, m*L*==3

Higher order curvature corrections make the condensation harder to form




Holographic superconductor models with the Maxwell field strength corrections
Pan*, Jing and Wang, PRD 84, 126020 (2011)

The model: Lps = c1(F F")? + ¢oF,, F"° Fs, ™"

1 .
S = /ddx\/—g <_1FWFW + Lps — |V — i Ap|? — m2\¢|2)

<0_>

The scalar hair is harder to be formed when adding the corrections to the usual

Maxwell field. This effect is similar to that caused by the curvature correction.




Motivation: All the studies mentioned above concerning the
holographic superconductors are mainly based on
the ground state since it is the first state to condense

(@) In condensed matter physics, the physical system is not
necessarily in equilibrium, but may remain the excited
metastable states G.F. Zharkov, Phys. Rev. B 63 (2001)

(b) For the mesoscopic nanomaterials, the thermal fluctuation
of the system may make it turn into metastable states and
the system may remain in these states for a long time

F. Peeters, V. Schweigert, B. Baelus and P. Deo, Physica C 332, 255 (2000)

(c) For the nanowires, the potential of superconducting nanowires
lies in their long-lived excited states

J.E. Mooij and C.J.P. Harmans, New J. Phys. 7 (2005) 219



2. Holographic superconductors with excited states

2.1 Holographic s-wave superconductor with excited states (in the Einstein gravity)
Wang, Hu, Liu, Yang and Zhao, JHEP 06, 013 (2020)

The action:
S = 1o [ €' |R+ = 1F B = (D)D) —mPo”
In the probe limit, the metric: f(r) = 2—2(1 — 73 /1)
2
ds* = — f(r)dt* + % +r2(dz* + dy?)
The equation of motion: A = ¢(r)dt, P =(r)
/! f/ 2
o (Fr2) e G- =0,
2
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(937 (1— T/Tc@)l/2 , Ground state,
(O =~ 89TV (1—1/TN2, 1t excited state.
| 857 (1 —T/TPY2 . 2nd excited state.

where the critical temperatures TC@ ~ 0.226p"/2, TCQ) ~ 0.094p'/? and TC@ ~ 0.07p'/2,
correspond to the ground, first and second excited states, respectively.

(14472 (1 = 7)1 12 Ground state,
(O9) = { 320 (TXV2 (1 — /T )/2, 1t excited state,

(2) (2) :
| 512(T7)2 (1= T/T:7)12, 2nd excited state.

where T(SO) ~ 0.118p!/2, Tc(l) ~ 0.079p'/? and T(@ ~ 0.063p'/? correspond to the ground,
first and second excited states, respectively.

(1) The phase transition of the holographic s-wave superconductors with excited states
belongs to the second order with the critical exponent 1/2.
(2) The excited state has a lower critical temperature than the corresponding ground state,

Indicating that the higher excited state makes the scalar condensate harder to form,




The critical chemical potential

(O1) | 1.120 | 6.494 | 11.701 | 16.898 | 22.094 | 27.290 | 32.486
(Oy) | 4.064 | 9.188 | 14.357 | 19.538 | 24.725 | 29.915 | 35.107

Table 1. Critical chemical potential ;. for the operators @1 and Qs from the ground state to sixth
excited state.

5.217n 4+ 1.217, for Oy,
C 5177 +4.026,  for Os.

The difference of the dimensionless critical chemical
potential between the consecutive states is around 5




Conductivity of holographic superconductors with excited states
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The conductivity of each excited state has an additional pole
in the imaginary part of the conductivity and a delta function
in the real part arising at the low temperature inside the gap,

which is just the evidence of the existence of excited states.




2.2 An analytic study on excited states of holographic superconductors

Qiao, Wang, OuYang, Wang*, Pan* and Jing, PLB 811, 135864 (2020)
OuYang, Wang, Qiao, Wang, Pan* and Jing, SCPMA 64, 240411 (2021)

Sturm-Liouville (S-L) problem

Euler equation: o ( ( )du( )> +q(2)y(z) + Ar(2)y(z) = 0

the following boundary conditions:

(p(0)y' (1)) |sma =0 or y(a) prescribed
(p(x)y (2))]omp =0 or y(b) prescribed.

the determination of stationary values of the quantity )\ defined by the ratio

f“’ {p )y (2))* q(ir)yg(:r)}d:r
fal.) (a)y? (x)da

A=




The equations of the motion for the z coordinate:

o F 1 mE 1 g\
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and below the critical point:

¢!I _

$(2) = L(1 —2) = hryc(1 —2)

According to the asymptotical behavior of the scalar field, we take

wuyw(oﬁzﬁna F(0) =1
V2r

Ty
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+
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By making use of the Sturm-Liouville approach, we have

(ﬁ)z o JiT (F'2 = UF?)dz
It Jo TVF2dz
Including the ninth order of z in the trial function

F(z) = 1 — D) k= zakz" for the operator 04, and F(z)=1— ;j ?ak

Table 1

z* for the operator O

[25]: JHEP 06, 013 (2020)

The dimensionless critical chemical potential jt./ry for the operator O; and corresponding value of a; for the trial function F(z) =
1-— Ztg axz* in the holographic s-wave superconductor. The results of e /T4 are obtained analytically by the Sturm-Liouville method (left
column) and numerically by the spectral method [25] (right column) from the ground state to the fifth excited state.

no /T4 ay as ay as ag az ag dg

0 1.120 1120 0.628 -0.584 0.031 0.507 -0.636 0.412 -0.148 0.023

1 6.493 6.494 21.006 -12.433 -87.517 217.020 -242.872 150.734 -49.962 6.827

2 11.700 11.701 66.377 7.206 -1310.093 4208.241 -6279.568 5139.829 -2245.136 411,703

3 16.901 16.898 142.425 29.025 -5888.970 25509.602 -49071.741 49823.574 -26164.029 5624.096
4 22.258 22.094 370.979 -2616.084 3486.249 15827.106 -61194.858 85570.988 -55240.956 13794571
5 28.055 27.290 804.021 -10643.884 57037.950 -159446.972 252736.492 -229055.289 110764.290 -22192.871

By including more higher order terms in the expansion of the trial function,
we observe that the analytic results agree well with the numeric data, which

indicates that the Sturm-Liouville method is very powerful to study the

holographic superconductors even if we consider the excited states.




The analytical critical chemical potential

5.347n + 1.053, for 01

c

~

'+ 5.322n+3.840.  for 05

For the operator

(01)~
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6.6T V(1 — 1,112,

AN

6.2T2 (1 —T/TP)1/2
(119(T)2(1 — 11172

245(T"2(1 — /T 12

A

[ 364(T)2(1 = T/TE)2

the ground state with T’ ~ 0.226p!/2,

the 1st excited state with T\" ~0.094p1/2

the 2nd excited state with T$* ~0.070p1/2,
the ground state with T\” ~0.118p1/2,

the 1st excited state with T\ ~ 0.079p1/2

the 2nd excited state with T? ~ 0.063p1/2

Both of them agree well with the numerical data obtained
by the spectral method in JHEP 06, 013 (2020).



2.3 Holographic entanglement entropy and subregion complexity for excited states
of holog raphic superconductors (in the Einstein gravity and 4D Gauss-Bonnet gravity)

Wang, Qiao, Wang*, Pan*, Lai* and Jing, NPB 991, 116223 (2023)
Qiao, OuYang, Wang, Pan* and Jing, JHEP 12, 192 (2020)
Pan, Qiao, Wang, Pan*, Nie* and Jing*, PLB 823, 136755 (2021)

. 1
The action: S = fdtd%Nﬂ (ﬁﬁ%B — ZFWFW — |V —igAp|* — m2|¢|2>

1 6 Q 8 i i
E%;%B 2K2 {2R t 2 M+ 5 {81%2 —4RM — M? — 3 (SR@'RJ — 4R ;M"Y — M'ijMij)] }

Aoki, Gorji and Mukohyama, PLB 810 (2020) 135843; arXiv:2005.03859 [gr-qc]
The metric ansatz: (s? = g, da"dz” = —N2dt? + ~;;(dx’ + N'dt)(dx’ + N’ dt)

: 1
N = /f(r)je 72, N' =0, vi; = diag (f(r) - TQ)




The equations of motion: | A4 — ¢(;)dt Y = ()

/ ! X A2 2
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(2 207y
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The asymptotic expressions near the boundary
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Condensates of the scalar field (the Einstein gravity as an example)
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Fig. 2. The condensates of scalar operators O (left) and O_ (right) with excited states versus temperature for the fixed
mass m2L% = —2. In each panel, the blue, red, green and black lines denote the ground (n = 0), first (n = 1), second
(n =2) and third (n = 3) states, respectively.

Table 1

The critical temperature 7, of scalar operators @ and O_ with excited states for the fixed mass m2 L2 =
—2. g=1 k=0.05
n 0 1 2 3 -

<O4>  0.117710pY2  0.0763450'/2  0.058377p1/2  0.046861p'/2  0.038202p!/2
<O_> 02252712 0.092168p1/%2  0.066290p'/2  0.052181p1/%2  0.042283p!/2




Holographic entanglement entropy and subregion complexity
Consider a subsystem A with a straight strip geometry

—1/2<x<1/2 and —R/2 <y < R/2 (R — o)

with [: the size of region A, and R: a regulator which will be set to infinity

The induced metric on the minimal surface:

2 2
2 "+ I (dz 2 2
dsinduced = 2_2{|:1 + ﬁ(ﬂ) ]dx +dy }

The holographic entanglement entropy (HEE):

R (S + l) a UV cutoff €

R r 72
S= * dz =
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The holographic subregion complexity (HSC):
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The values of Tc reflected by the holographic entanglement entropy (HEE) and holographic subregion
complexity (HSC) are consistent with the results obtained from the condensate behavior, which means that both
the HEE and HSC can be utilized as good probes to the superconducting phase transition in the excited state.




3. Holographic superfluid with excited states (i the Einstein gravity)

Wang, Pan*, Lai* and Jing, PLB 845, 138134 (2023)
Xu*, Wang*, and Pan*, PRD 110, 046003 (2024)

did—1)
L2

The action: s :fdd“x\/—_g{z]? [R + } — %FWF“” — |V — iqgAy|? —m2|w|2}
In the probe limit, the planar Schwarzschild-AdS black hole:

2

d§==—fUMﬂ+—%%5+m%mm£ fary=r21 —rd /L2

Turning on the spatial component of the gauge field, we obtain the equations of motion:
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Near the AdS boundary, the asymptotic behaviors of the solutions:
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The grand potential in the superfluid phase:
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Fig. 1. The scalar field (z) as a function of the radial coordinate z outside the horizon (left) and the grand potential © as a function of the temperature T (right) for the
fixed mass of the scalar field m*L? = —2 and superfluid velocity Sy/u = 0.24 in the case of d = 3. In each panel, the blue, green and red solid lines denote the ground
(n=0), first (n=1) and second (n = 2) states, respectively. For the right panel, the magenta dotted line corresponds to the normal phase and the vertical line represents
the critical temperature (critical chemical potential) of the first-order phase transition.




Condensates of the scalar field
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(1) The higher excited state or larger superfluid velocity will make the scalar hair
more difficult to be developed.
(2) The superfluid phase transition will change from the second order to the first

order when the superfluid velocity increases.
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Fig. 3. The translating superfluid velocity S,// from the second to the first order as a function of the scalar mass m?L? for the ground (n =0, blue), first (n =1, green),
second (n =2, red) and third (n = 3, black) states, respectively.

The higher excited state or smaller mass of the scalar field makes it easier for the

emergence of translating point from the second-order transition to the first-order one.




Table 1

The critical chemical potential p. with the fixed mass of the scalar field m2L% = —2 for different values
of Sx/u from the ground state to the sixth excited state in the case of d = 3.

n 0 1 2 3 4 5 6

Sx/t=0.00 4.064 9.188 14.357 19.539 24.726 29.916 35.106
Sy/p=0.24 4.702 10.977 17.277 23.586 29.900 36.216 42.533
S/ =040 6.074 14.021 21.999 29.987 37.978 45.972 53.968

(5.177n4+4.026, Sx//1 = 0.00

Ue =~ 4 6.307n+4.678, Sx/u=0.24

| 7.984n 4 6.047,  Sx//1 = 0.40

(1) The critical chemical potential becomes evenly spaced for the number of
nodes, and the difference of between the consecutive states increases as
the superfluid velocity increases.

(2) This conclusion still holds in higher dimensions.
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Fig. 4. The condensate and grand potential as a function of the temperature with the fixed mass of the scalar field m?L? = —7/4 for different values of Sx/u from the ground
state to the third excited state in the case of d = 4. For the left three panels, the four lines in each panel from top to bottom correspond to the ground (n =0), first (n=1),
second (n=2) and third (n = 3) states, respectively. For the middle three panels, the line in each panel corresponds to the ground state n = 0. For the right three panels, the
two lines in each panel correspond to the ground state n =0 (blue solid) and the normal phase (magenta dotted) respectively.

The “Cave of Winds” phase structure will disappear but the first-order
phase transition occurs for the excited states, which is completely
different from the holographic superfluid model with the ground state.
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Fig. 5. The conductivity in the holographic superfluid with the fixed mass of the scalar field m?L? = —2 for different values of S/pt from the ground state to the second
X
excited state where the solid line and dashed line represent the real part Re(o) and imaginary part Im(a) of the conductivity. In each panel, the blue, green and red lines
denote the ground (n = 0), first (n =1) and second (n = 2) states, respectively.

There exist additional poles in Im[c(w)] and delta functions in Re[c(w)] arising at low

temperature for the excited states, and the higher excited state or larger superfluid

velocity results in the larger deviation from the expected relation in the gap frequency.




4. Conclusions

® Holographic superconductors with excited states

A. We proposed a general analytic technique to investigate its properties, and showed that the
excited state has a lower critical temperature than the corresponding ground state.

B. We observed that the holographic entanglement entropy (HEE) and holographic subregion

complexity (HSC) provide richer physics in phase transitions and condensation of scalar hair.

® Holographic superfluid with excited states

We constructed a novel family of solutions of the holographic superfluid model with the excited

states in the probe limit, and obtained the rich phase structure of the system.






