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@ Motivation: Einstein equations cannot be solved analytically in less symmetric cases.

In particular, most of gravitational dynamics needs to be done numerically.
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@ Motivation: Einstein equations cannot be solved analytically in less symmetric cases.
In particular, most of gravitational dynamics needs to be done numerically.

o Difficulties: coordinate gauges and constraints, singularities, instabilities, ...

o Formalisms: space-like time slicing (3 4+ 1 formalisms) versus null (light-front) time

slicing (characteristic formalisms)

it
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Numerical relativity: formalisms

Space-like time slicing (3+1 formalisms)
e BSSN, CCZ4, ...

@ Generalized harmonic gauge

A

Null time slicing (characteristic formalisms)
e Newman-Unti (Chesler-Yaffe for AdS black holes)

@ Bondi-Sachs

@ Characteristic formalisms sometimes suffer from caustic formation. )

Gravitational physics is so complicated that no formalism is well suited for most problems. J
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Numerical relativity: applications

e Dynamics of real black holes/relativistic compact objects and gravitational waves

e Dynamics of theoretical gravitational models (higher dimensions, asymptotically

non-flat cases, singularities, cosmological censorship, no-hair theorem, ...)
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Numerical relativity: applications

e Dynamics of real black holes/relativistic compact objects and gravitational waves

e Dynamics of theoretical gravitational models (higher dimensions, asymptotically
non-flat cases, singularities, cosmological censorship, no-hair theorem, ...)
@ AdS/CFT duality (holography)

e Fundamental problems of the duality and quantum gravity
e Describing quantum fields or quantum many-body systems (applied holography)
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Levels of problems in numerical holography (with backreaction)

More generally, there are three kinds (levels) of problems for numerical relativity in
holography.
o Equilibrium (stationary solution)

Thermodynamics, phase transition, - - -
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Levels of problems in numerical holography (with backreaction)

More generally, there are three kinds (levels) of problems for numerical relativity in
holography.
o Equilibrium (stationary solution)
Thermodynamics, phase transition, - - -
@ Near equilibrium (linear perturbation)
Linear stability (related to phase transition), linear response (susceptibility, transport
coefficients), - - -

o Far from equilibrium (dynamical evolution)

Nonlinear transport, dynamical phase transition, general nonlinear dynamics, - - -
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Review of previous works

o Equilibrium: Stationary solution of coupled gravity-matter equations of motion

e Analytical solution

e Numerical solution with maximum symmetry

e Numerical solution with less symmetry: Deturk method
[O0.J.C. Dias, J.E. Santos & B. Way, arXiv:1510.02804]
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Review of previous works

o Equilibrium: Stationary solution of coupled gravity-matter equations of motion
e Analytical solution
e Numerical solution with maximum symmetry
e Numerical solution with less symmetry: Deturk method
[O0.J.C. Dias, J.E. Santos & B. Way, arXiv:1510.02804]
@ Near equilibrium: Linear perturbation on top of bulk black holes (in-going BC at the
horizon)
e Linear responses
e Quasi-normal modes (QNM) and linear stability

Many different perspectives and formalisms for the numerical computation!
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Review of previous works

o Far from equilibrium: Evolution of the coupled gravity-matter
dynamics by numerical relativity

e Homogeneous setups (setups with maximum spatial symmetry)
o Inhomogeneous setups
@ Chesler-Yaffe formalism (characteristic)
[Chesler & Yaffe, arXiv:1309.1439]
(Wilke van der Schee’s talk the day before yesterday)
@ BSSN or generalized harmonic gauge formalism (3+1)
(See, e.g. L. Rossi, arXiv:2205.15329 for a review.)
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Holographic evolution in the Chesler-Yaffe formalism

o The general (in-going) Chesler-Yaffe gauge:
ds® = 2dt(dr — Adt — Fidx') + X2hydx'dy’

with det(h;) = 1, (4, F;, ¥, hy;) functions of (¢, 7,X) and r is an affine parameter of

the null generators of a constant ¢ surface
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Holographic evolution in the Chesler-Yaffe formalism

o The general (in-going) Chesler-Yaffe gauge:
ds® = 2dt(dr — Adt — Fidx') + X2hydx'dy’

with det(h;) = 1, (4, F;, ¥, hy;) functions of (¢, 7,X) and r is an affine parameter of
the null generators of a constant ¢ surface
o Residual gauge freedom:

P =r+ A(t,3)

which can be used to fix the position of the apparent horizon to the boundary of the

computational domain
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Holographic evolution in the Chesler-Yaffe formalism

@ The (vacuum) Einstein equations (not fully independent due to the Bianchi identity)

o= Sgh) (X' :=0.X)
F! = Si(h,Y)

A" = Sq(h,%,F,d %, d h)
d+2) = Sax(h,X,F)
(dyhy) = S5 ,(h,%,F,d.¥)
(diF) = Sy p(h,%,F,dX,d h,A)
di(ds) = Spp(h,S,F.diS,dohA)

with dy := J; + A0, the null direction other than 0,

@.1)
2.2)
2.3)
(2.4)
2.5)
(2.6)
2.7)
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Holographic evolution in the Chesler-Yaffe formalism

Evolution scheme (basic):
© /;; given on the initial time slice 7y
@ X obtained from (2.1)
© F; obtained from (2.2)
Q d. 3% obtained from (2.4)
© d./ obtained from (2.5)
© A4 obtained from (2.3)

@ Evolution of 4;; obtained by 0,h;; = d hjj — AR

;j» marching ;; to the next time slice

and repeating the process from the start
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Holographic evolution in the Chesler-Yaffe formalism

Physical boundary conditions at the AdS conformal boundary » — oc:

Initial physical conditions

e Boundary energy density for d; 3 on the initial time slice #
e Boundary momentum density for F; on the initial time slice g

@ Boundary stress tensor for 4;; on the initial time slice 7y
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Holographic evolution in the Chesler-Yaffe formalism

Physical boundary conditions at the AdS conformal boundary » — oc:

Initial physical conditions

e Boundary energy density for d; 3 on the initial time slice #
e Boundary momentum density for F; on the initial time slice g

@ Boundary stress tensor for /;; on the initial time slice #

Subsequent physical conditions

e Evolution of the above quantities by the Ward-Takahashi identities
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Holographic evolution in the Chesler-Yaffe formalism

=\,

Gauge fixing boundary conditions for F; and gauge fixing conditions for A(¢, X)

Initial gauge fixing conditions

@ ) given on the initial time slice ¢y
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Holographic evolution in the Chesler-Yaffe formalism

=\,

Gauge fixing boundary conditions for F; and gauge fixing conditions for A(¢, X)

Initial gauge fixing conditions

@ )\ given on the initial time slice ¢y

Then evolution of A by

Subsequent gauge fixing conditions

o cither a prescribed 0;\ subsequently

@ or a g;\ determined by the apparent horizon fixing condition (solving a 2nd order

linear elliptic PDE for 4 on the horizon)
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Dynamical spacetime under the Bondi-Sachs gauge

@ Very brief history of the Bondi-Sachs gauge (and generally the characteristic
formalism)

[J. Winicour, Living Rev. Relativity 8 (2005) 10; A. Giannakopoulos, arXiv:2308.16001]
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Dynamical spacetime under the Bondi-Sachs gauge

@ Very brief history of the Bondi-Sachs gauge (and generally the characteristic
formalism)

[J. Winicour, Living Rev. Relativity 8 (2005) 10; A. Giannakopoulos, arXiv:2308.16001]

@ A simple and unified framework of numerical relativity for holographic systems
e Equilibrium configurations
e Linear responses and QNM

e Dynamical evolution
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Dynamical spacetime under the Bondi-Sachs gauge

@ The in-going Bondi-Sachs gauge (null foliation v = const with null generator 9.) for
general (1 + d)D AdS black holes:

L2 . ) . .
ds* = ;(—fe_xdv2 — 2e™Xdvdz + hyldx' — £'dv][d¥ — av))

with det(/;;) = 1 for the planar case (Poincare patch, meaning » = % the areal radius

or luminosity distance with L the AdS radius) and (f, x, hy, &) functions of (v, z,X)
[Z. Ning, Q. Chen, YT, X. Wu & H. Zhang, arXiv:2307.14156]
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Equations of motion under the Bondi-Sachs gauge

@ The (vacuum) Einstein equations (not fully independent due to the Bianchi identity)

X’ = Sx(h’) (X’ = 0.X) 3.1)
¢ = S{ LX) (32)
o= Sphx.¢) (3.3)
Wy = SJ(".x.&.f) (X :=0X) (34)
¢ = T X, E.S) (3.5)
fo= T, X80 (3.6)
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Equations of motion under the Bondi-Sachs gauge

@ The (vacuum) Einstein equations (not fully independent due to the Bianchi identity)

X = Sy (

& = Si(H X))
1= Sih,x,¢)

hy = S| €. ) (X =0aX)
& = TN ELS)

fo= T K€

3.1)
(3.2)
(3.3)
(3.4)
3.5)
(3.6)

o Independent equations can be taken as (3.1,3.2,3.3,3.4), while constraint equations

(3.5) and (3.6) act as boundary conditions (momentum and energy conservation).
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Discussion about the Bondi-Sachs gauge

e Dynamical fields: /;; (propagating degrees of freedom)
e Semi-dynamical fields: (x, &', 1)
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Discussion about the Bondi-Sachs gauge

e Dynamical fields: /;; (propagating degrees of freedom)
e Semi-dynamical fields: (x, &', 1)
e Explicitly reflecting the counting of degrees of freedom in the Einstein gravity

@ Very nice nested structure, convenient for numerical evolution
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Discussion about the Bondi-Sachs gauge

@ In 4D (d = 3), there are 6 fields in total and 2 dynamical fields in /;;. Particularly, if
the system is translation invariant in one of the spatial directions (say, y), it turns out
that ¢ and the off-diagonal component 4., can be consistently switched off, which

leads to the simplified metric ansatz
L2
ds* = —2(—fefxdv2 — 2e Xdvdz + edx — Edv]* + e ad?)
z

with & := ¢ and e := h,, = hy_yl.
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Discussion about the Bondi-Sachs gauge

o For the spherical case (global AdS), one just uses the coordinate transformation
x = — cos f to obtain the metric
d2:i2_—x 2 _9,—X Ald — Edvi2 + e gin2 2
s 22( fe" Xdv® — 2e  Xdvdz + € [df — £dv]® + e sin” 0d”)

et

sin? @

with y renamed as ¢, A= and ¢ := ¢ sin 0, which is axi-symmetric with the

corresponding Killing vector J,, but has no angular momentum.
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Discussion about the Bondi-Sachs gauge

o For the spherical case (global AdS), one just uses the coordinate transformation
x = — cos f to obtain the metric

L2 - ~ -
ds® = 2—2(—/’e_xa’v2 — 2e Xdvdz + e[df — £dv]? + e sin® Bdp?)

et

v and € := £sin 6, which is axi-symmetric with the

with y renamed as ¢, A=

corresponding Killing vector J,, but has no angular momentum.

@ The angular momentum can be turned on by turning on £¥ and 4, (corresponding to
& and h,, in the planar case).
@ The corresponding Einstein equations can be accordingly transformed from their

planar counterparts.
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Typical evolution scheme (brief)

o Initial data (unconstrained) on the v = 0 slice: dynamical fields 4;
@ Obtaining y from its constraint equation (3.1) with a gauge fixing BC

@ Obtaining ¢’ from its constraint equation (3.2) with a gauge fixing BC and a physical
BC from evolution (3.5) of the boundary value of ¢’

@ Obtaining /" from its constraint equation (3.3) with a physical BC from evolution (3.6)
of the boundary value of f

e Evolving hf-j with (3.4) to the next v slice and obtaining A;; with its physical BC

(source) at the conformal boundary z = 0

@ Repeating the above procedure with /;; on the next v slice as the initial data
[Z. Ning, Q. Chen, YT, X. Wu and H. Zhang, arXiv:2307.14156]
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Typical numerical implementation (4D)

o Fourier pseudo-spectral expansion in x and y

Fourier pseudo-spectral in ¢ and ¢
@ Chebyshev pseudo-spectral expansion in z

e For evolution: the 4th-order Runge-Kutta marching in v
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Examples of applications

@ Spontaneous deformation of spherical AdS black holes
[Z. Ning, Q. Chen, YT, X. Wu and H. Zhang, arXiv:2307.14156]
e Bondi-Sachs as a unified framework for static solutions, linear perturbations, and

nonlinear dynamics
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Examples of applications

@ Spontaneous deformation of spherical AdS black holes
[Z. Ning, Q. Chen, YT, X. Wu and H. Zhang, arXiv:2307.14156]

e Bondi-Sachs as a unified framework for static solutions, linear perturbations, and

nonlinear dynamics
o Static configurations with less symmetry (working for non-AdS asymptotics as well)

o Fluid/gravity duality and turbulence
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Fluid/gravity duality and turbulence

e Hydrodynamics as a universal effective field theory of interacting quantum

many-body systems at low energy and long wavelength

o Fluid/gravity duality as the low-energy, long-wavelength expansion of AdS/CFT
[S. Bhattacharyya, V.E. Hubeny, S. Minwalla & M. Rangamani, arXiv:0712.2456]
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Fluid/gravity duality and turbulence

e Hydrodynamics as a universal effective field theory of interacting quantum

many-body systems at low energy and long wavelength

o Fluid/gravity duality as the low-energy, long-wavelength expansion of AdS/CFT
[S. Bhattacharyya, V.E. Hubeny, S. Minwalla & M. Rangamani, arXiv:0712.2456]
@ Holographic turbulence from a shear flow and fractal horizons

[A. Adams, P.M. Chesler & H. Liu, arXiv:1307.7267]

@ Implementation of holographic turbulence in the Bondi-Sachs gauge (with no

symmetry), suitable for GPU acceleration



Introduction
0000

Numerical relativity in holography: previous works
000000000

Numerical relativity in holography: Bondi-Sachs gauge
0000000000080

Summary and outlook
000




Numerical relativity in holography: Bondi-Sachs gauge
00000000000 0e

Bondi-Sachs gauge vs Chesler-Yaffe gauge

@ Metrics (both with det(4;;) = 1)
e Bondi-Sachs:

L? o o
ds® = Z—Q(—fe—XdVQ — 2eXdvdz + hyldx' — 'dv][d¥ — & av])

o Chesler-Yaffe:
ds® = 2dt(dr — Adt — Fidx') + S*hdx'dx/
@ Similarities: Null foliation, nice nested structure of the Einstein equations

e Differences: Areal radius % vs affine parameter r, extra gauge freedom and one more
nontrivial equation of motion in Chesler-Yaffe, and different philosophies of

evolution schemes

e Bondi-Sachs goes deeper and deeper into the black hole during the evolution.
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Summary and outlook

@ The Bondi-Sachs gauge explicitly reflects the degrees of freedom of gravity.

o [t gives a simple and efficient numerical scheme for dynamics of AdS black holes.

@ The Chesler-Yaffe gauge provides another characteristic formalism in AdS, a little
more complicated than Bondi-Sachs but at the same time more flexible.

@ The nested structure in characteristic formalisms is fragile (may be ruined by matter
fields), so sometimes 3 + 1 is more suitable.

o Further exploration of optimized/adapted formalisms of numerical relativity for

various problems is still important.
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Thank You!



	Introduction
	Numerical relativity in holography: previous works
	Numerical relativity in holography: Bondi-Sachs gauge
	Summary and outlook

