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Numerical relativity: introduction

Motivation: Einstein equations cannot be solved analytically in less symmetric cases.

In particular, most of gravitational dynamics needs to be done numerically.

Difficulties: coordinate gauges and constraints, singularities, instabilities, ...

Formalisms: space-like time slicing (3 + 1 formalisms) versus null (light-front) time

slicing (characteristic formalisms)
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Numerical relativity: formalisms

Space-like time slicing (3+1 formalisms)

BSSN, CCZ4, …

Generalized harmonic gauge

…

Null time slicing (characteristic formalisms)

Newman-Unti (Chesler-Yaffe for AdS black holes)

Bondi-Sachs

Characteristic formalisms sometimes suffer from caustic formation.

Gravitational physics is so complicated that no formalism is well suited for most problems.
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Numerical relativity: applications

Dynamics of real black holes/relativistic compact objects and gravitational waves

Dynamics of theoretical gravitational models (higher dimensions, asymptotically

non-flat cases, singularities, cosmological censorship, no-hair theorem, …)

AdS/CFT duality (holography)

Fundamental problems of the duality and quantum gravity

Describing quantum fields or quantum many-body systems (applied holography)
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Levels of problems in numerical holography (with backreaction)

More generally, there are three kinds (levels) of problems for numerical relativity in

holography.

Equilibrium (stationary solution)

Thermodynamics, phase transition, · · ·

Near equilibrium (linear perturbation)

Linear stability (related to phase transition), linear response (susceptibility, transport

coefficients), · · ·

Far from equilibrium (dynamical evolution)

Nonlinear transport, dynamical phase transition, general nonlinear dynamics, · · ·
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Review of previous works

Equilibrium: Stationary solution of coupled gravity-matter equations of motion

Analytical solution

Numerical solution with maximum symmetry

Numerical solution with less symmetry: Deturk method

[O.J.C. Dias, J.E. Santos & B. Way, arXiv:1510.02804]

Near equilibrium: Linear perturbation on top of bulk black holes (in-going BC at the

horizon)

Linear responses

Quasi-normal modes (QNM) and linear stability

Many different perspectives and formalisms for the numerical computation!
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Review of previous works

Far from equilibrium: Evolution of the coupled gravity-matter

dynamics by numerical relativity

Homogeneous setups (setups with maximum spatial symmetry)

Inhomogeneous setups

Chesler-Yaffe formalism (characteristic)

[Chesler & Yaffe, arXiv:1309.1439]

(Wilke van der Schee’s talk the day before yesterday)

BSSN or generalized harmonic gauge formalism (3+1)

(See, e.g. L. Rossi, arXiv:2205.15329 for a review.)
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Holographic evolution in the Chesler-Yaffe formalism

The general (in-going) Chesler-Yaffe gauge:

ds2 = 2dt(dr − Adt − Fidx
i) + Σ2hijdx

idxj

with det(hij) = 1, (A,Fi,Σ, hij) functions of (t, r,~x) and r is an affine parameter of

the null generators of a constant t surface

Residual gauge freedom:

r̃ = r + λ(t,~x)

which can be used to fix the position of the apparent horizon to the boundary of the

computational domain
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Holographic evolution in the Chesler-Yaffe formalism

The (vacuum) Einstein equations (not fully independent due to the Bianchi identity)

Σ′′ = SΣ(h) (X ′ := ∂rX ) (2.1)

F ′′
i = SiF(h,Σ) (2.2)

A′′ = SA(h,Σ,F, d+Σ, d+h) (2.3)

(d+Σ)
′ = Sd+Σ(h,Σ,F) (2.4)

(d+hij)
′ = S

ij
d+h(h,Σ,F, d+Σ) (2.5)

(d+Fi)
′ = Sid+F(h,Σ,F, d+Σ, d+h,A) (2.6)

d+(d+Σ) = Sd2+F(h,Σ,F, d+Σ, d+h,A) (2.7)

with d+ := ∂t + A∂r the null direction other than ∂r
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Holographic evolution in the Chesler-Yaffe formalism

Evolution scheme (basic):

1 hij given on the initial time slice t0

2 Σ obtained from (2.1)

3 Fi obtained from (2.2)

4 d+Σ obtained from (2.4)

5 d+h obtained from (2.5)

6 A obtained from (2.3)

7 Evolution of hij obtained by ∂thij = d+hij − Ah′ij, marching hij to the next time slice

and repeating the process from the start
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Holographic evolution in the Chesler-Yaffe formalism

Physical boundary conditions at the AdS conformal boundary r → ∞:

Initial physical conditions

Boundary energy density for d+Σ on the initial time slice t0

Boundary momentum density for Fi on the initial time slice t0

Boundary stress tensor for hij on the initial time slice t0

Subsequent physical conditions

Evolution of the above quantities by the Ward-Takahashi identities
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Holographic evolution in the Chesler-Yaffe formalism

Gauge fixing boundary conditions for Fi and gauge fixing conditions for λ(t,~x):

Initial gauge fixing conditions

λ given on the initial time slice t0

Then evolution of λ by

Subsequent gauge fixing conditions

either a prescribed ∂tλ subsequently

or a ∂tλ determined by the apparent horizon fixing condition (solving a 2nd order

linear elliptic PDE for A on the horizon)
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Dynamical spacetime under the Bondi-Sachs gauge

Very brief history of the Bondi-Sachs gauge (and generally the characteristic

formalism)

[J. Winicour, Living Rev. Relativity 8 (2005) 10; A. Giannakopoulos, arXiv:2308.16001]

A simple and unified framework of numerical relativity for holographic systems

Equilibrium configurations

Linear responses and QNM

Dynamical evolution
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Dynamical spacetime under the Bondi-Sachs gauge

The in-going Bondi-Sachs gauge (null foliation v = const with null generator ∂z) for

general (1 + d)DAdS black holes:

ds2 =
L2

z2
(−fe−χdv2 − 2e−χdvdz + hij[dx

i − ξidv][dxj − ξjdv])

with det(hij) = 1 for the planar case (Poincare patch, meaning r = L
z
the areal radius

or luminosity distance with L the AdS radius) and (f , χ, hij, ξ
i) functions of (v, z,~x)

[Z. Ning, Q. Chen, YT, X. Wu & H. Zhang, arXiv:2307.14156]
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Equations of motion under the Bondi-Sachs gauge

The (vacuum) Einstein equations (not fully independent due to the Bianchi identity)

χ′ = Sχ(h
′) (X ′ := ∂zX ) (3.1)

ξi′′ = Siξ(h
′, χ′) (3.2)

f ′ = Sf (h, χ, ξ
′) (3.3)

ḣ′ij = S
ij
h (h

′′, χ, ξ′, f ′) (Ẋ := ∂vX ) (3.4)

ξ̇i′ = T i
ξ(ḣ

′, χ̇′, ξ′, f ′) (3.5)

ḟ = Tf (ḣ
′, χ̇′, ξ̇′, f ′) (3.6)

Independent equations can be taken as (3.1,3.2,3.3,3.4), while constraint equations

(3.5) and (3.6) act as boundary conditions (momentum and energy conservation).
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′, χ̇′, ξ′, f ′) (3.5)
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Discussion about the Bondi-Sachs gauge

Dynamical fields: hij (propagating degrees of freedom)

Semi-dynamical fields: (χ, ξi, f )

Explicitly reflecting the counting of degrees of freedom in the Einstein gravity

Very nice nested structure, convenient for numerical evolution
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Discussion about the Bondi-Sachs gauge

In 4D (d = 3), there are 6 fields in total and 2 dynamical fields in hij. Particularly, if

the system is translation invariant in one of the spatial directions (say, y), it turns out

that ξy and the off-diagonal component hxy can be consistently switched off, which

leads to the simplified metric ansatz

ds2 =
L2

z2
(−fe−χdv2 − 2e−χdvdz + eA[dx− ξdv]2 + e−Ady2)

with ξ := ξx and eA := hxx = h−1
yy .
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Discussion about the Bondi-Sachs gauge

For the spherical case (global AdS), one just uses the coordinate transformation

x = − cos θ to obtain the metric

ds2 =
L2

z2
(−fe−χdv2 − 2e−χdvdz + eÃ[dθ − ξ̃dv]2 + e−Ã sin2 θdϕ2)

with y renamed as ϕ, eÃ := eA

sin2 θ
and ξ̃ := ξ sin θ, which is axi-symmetric with the

corresponding Killing vector ∂ϕ but has no angular momentum.

The angular momentum can be turned on by turning on ξϕ and hθϕ (corresponding to

ξy and hxy in the planar case).

The corresponding Einstein equations can be accordingly transformed from their

planar counterparts.
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Typical evolution scheme (brief)

Initial data (unconstrained) on the v = 0 slice: dynamical fields hij

Obtaining χ from its constraint equation (3.1) with a gauge fixing BC

Obtaining ξi from its constraint equation (3.2) with a gauge fixing BC and a physical

BC from evolution (3.5) of the boundary value of ξ′

Obtaining f from its constraint equation (3.3) with a physical BC from evolution (3.6)

of the boundary value of f

Evolving h′ij with (3.4) to the next v slice and obtaining hij with its physical BC

(source) at the conformal boundary z = 0

Repeating the above procedure with hij on the next v slice as the initial data

[Z. Ning, Q. Chen, YT, X. Wu and H. Zhang, arXiv:2307.14156]
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Typical numerical implementation (4D)

Fourier pseudo-spectral expansion in x and y

Fourier pseudo-spectral in θ and ϕ

Chebyshev pseudo-spectral expansion in z

For evolution: the 4th-order Runge-Kutta marching in v
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Examples of applications

Spontaneous deformation of spherical AdS black holes

[Z. Ning, Q. Chen, YT, X. Wu and H. Zhang, arXiv:2307.14156]

Bondi-Sachs as a unified framework for static solutions, linear perturbations, and

nonlinear dynamics

Static configurations with less symmetry (working for non-AdS asymptotics as well)

Fluid/gravity duality and turbulence
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Fluid/gravity duality and turbulence

Hydrodynamics as a universal effective field theory of interacting quantum

many-body systems at low energy and long wavelength

Fluid/gravity duality as the low-energy, long-wavelength expansion of AdS/CFT

[S. Bhattacharyya, V.E. Hubeny, S. Minwalla & M. Rangamani, arXiv:0712.2456]

Holographic turbulence from a shear flow and fractal horizons

[A. Adams, P.M. Chesler & H. Liu, arXiv:1307.7267]

Implementation of holographic turbulence in the Bondi-Sachs gauge (with no

symmetry), suitable for GPU acceleration
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Bondi-Sachs gauge vs Chesler-Yaffe gauge

Metrics (both with det(hij) = 1)

Bondi-Sachs:

ds2 =
L2

z2
(−fe−χdv2 − 2e−χdvdz + hij[dx

i − ξidv][dxj − ξjdv])

Chesler-Yaffe:

ds2 = 2dt(dr − Adt − Fidx
i) + Σ2hijdx

idxj

Similarities: Null foliation, nice nested structure of the Einstein equations

Differences: Areal radius 1
z
vs affine parameter r, extra gauge freedom and one more

nontrivial equation of motion in Chesler-Yaffe, and different philosophies of

evolution schemes

Bondi-Sachs goes deeper and deeper into the black hole during the evolution.
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Summary and outlook

The Bondi-Sachs gauge explicitly reflects the degrees of freedom of gravity.

It gives a simple and efficient numerical scheme for dynamics of AdS black holes.

The Chesler-Yaffe gauge provides another characteristic formalism in AdS, a little

more complicated than Bondi-Sachs but at the same time more flexible.

The nested structure in characteristic formalisms is fragile (may be ruined by matter

fields), so sometimes 3 + 1 is more suitable.

Further exploration of optimized/adapted formalisms of numerical relativity for

various problems is still important.
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Thank You!
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