THE INFLUENCE OF WILSON LINES ON HOLOGRAPHIC HEAVY QUARK POTENTIAL AND EXCITATIONS

Mitsutoshi Fujita (University of South China)

Collaborators: Bing Chen, Xun Chen, Song He and Jun Zhang

References: MF-He-Sun, Phys. Rev. D102, 126019(2020), MF-He-Sun-Zhang JHEP01(2024)079, Chen-Chen-MF-He-Zhang, arXiv: 2502.16215 [hep-th]

A bottom-up model for color superconductivity

Basu-Nogueira-Rozali-Stang-Raamsdonk ``11

- ♦ 6 dimensional gravity dual has an extra scale
- ♦ AdS solitons have an IR scale originating from the radius of the compactified direction
 - \Rightarrow A confined phase with a mass gap
 - \Rightarrow The emergence of a discrete spectrum of glueball states
 - \Rightarrow Negative energy and being stable against perturbations

Csaki, Ooguri, Oz, Terning ``98, Horowitz-Myers ``98

 For AdS₇ soliton, dual theory can be seen as the high-temperature limit of 5d SYM theory, essentially representing 4d pure Yang-Mills theory at long distances

Witten ``98

3

Motivations of this paper

- The mass of operators such as heavy quarkonium of QFT with Wilson lines
 - ♦ Wilson lines (background gauge potential) can shift the mass of charged particles

J. Polchinski

- Gauge potential can change Casimir energy (twisted boundary condition)
 - *cf. imaginary chemical potential in QCD* The twisting parameter changes degrees of freedom
- DOF from EE (e.g. the coefficient of the A-type anomaly for a spherical entangling surface in CFT, *Solodukhin `08*)
 - ♦ Renormalized EE with a spherical entangling

Liu-Mezei `12

♦ The entropic C function from the EE with the striped subsystem

Nishioka-Takayanagi `06

7/18/2025

Generalized entropic C-function of SU(3) Yang-Mills theory on the lattice Itou-Nagata-Nakagawa-Nakamura-Zakharov `15

Entropic C function captures DOF at energy $E \sim 1/l$

$$C(l) = \frac{l^{d-1}}{V} \frac{dS}{dl}$$

(*V*: the volume *S*: entanglement entropy)

The black line: C=0.206

Decrease in the middle l=0.88 fm

Agreement with the critical temperature $T_c^{-1} = 0.714 \text{fm} (T_c = 280 \text{ MeV})$ and the Lambda scale $\Lambda_{MS}^{-1} \sim 0.8 \text{ fm}$

Entropic C function for QFT with Wilson lines

MF-He-Sun `20

Entropic C function can capture DOF along a circle $\phi \sim \phi + \frac{1}{M_0}$ and Wilson lines A_{ϕ} $\diamond a_{\Phi} \ll a_c : C \text{ decreases}$ like 2d entropic c function Nishioka-Takayanagi `06 $\diamond a_{\Phi} \sim M_0$: C increases until the middle $(l \sim 1/M_0)$ \Rightarrow It implies that Wilson lines make particles light

Massive modes decouple others soon

Entropic C function for QFT with Wilson lines

MF-He-Sun `20

- ♦ Entropic C function can capture DOF along a circle $\phi \sim \phi + \frac{1}{M_0}$ and Wilson lines A_{ϕ}
- $\diamond \ a_{\Phi} << a_c : C \text{ decreases}$ like 2d entropic c function $Nishioka-Takayanagi \ `06$
- ♦ $a_{\Phi} \sim M_0$: C increases
 until the middle ($l \sim 1/M_0$)
- ⇒ It implies that Wilson lines make particles light Massive modes decouple others soon

GRAVITY DUAL: SPACETIME WITH A BACKGROUND GAUGE FIELD

*

The AdS soliton with a background gauge field

- The double Wick rotation of the AdS Reissner Nordstrom black hole with imaginary chemical potential
- The metric of the AdS soliton with a background gauge field

$$ds_{d+1}^{2} = \frac{L^{2}}{z^{2}} \left(\frac{dz^{2}}{f_{d}(z)} + f_{d}(z)d\phi^{2} - dt^{2} + dR^{2} + R^{2}d\Omega_{d-3} \right) \qquad f_{d}(z) = 1 - \left(1 + \frac{\epsilon_{1}z_{+}^{2}a_{\phi}^{2}}{\gamma^{2}} \right) \left(\frac{z}{z_{+}} \right)^{d} + \frac{\epsilon_{1}z_{+}^{2}a_{\phi}^{2}}{\gamma^{2}} \left(\frac{z}{z_{+}} \right)^{2(d-1)},$$

$$a_{\phi} \text{ a constant gauge field }, \qquad A_{\phi} = a_{\phi} \left(1 - \left(\frac{z}{z_{+}} \right)^{d-2} \right), \quad \text{and} \quad \gamma^{2} = \frac{(d-1)g_{e}^{2}L^{2}}{(d-2)\kappa^{2}} \qquad z$$
The Kaluza-Klein mass
$$M_{0} = \frac{1}{4\pi z_{+}} \left(d - \frac{\epsilon_{1}(d-2)z_{+}^{2}a_{\phi}^{2}}{\gamma^{2}} \right) > 0.$$

$$R^{1/2} \times \left(\int_{R^{1/2} \times T} \left(\int_{R^{1$$

Dual 4d gauge theory corresponds to the high-temperature limit of a 5d gauge theory at an imaginary chemical potential and at long distances dual to the Reissner-Nordstr¨om AdS black hole

 $z = z_{\perp}$

Total energy of spacetime

 $\Rightarrow M = \langle T_{00} \rangle V_{d-2} / M_0$

$$M = \frac{1}{\kappa^2} \int d^{d-1}x N \sqrt{\sigma} (K - K_0) = -\frac{V_{d-2}}{M_0} \frac{R^{d-1}}{2\kappa^2 z_+^d} \left(1 - z_+^2 a_\phi^2\right)$$

* The boundary energy changes the sign when we change Wilson lines a_{φ}

$$\begin{cases} M < 0 & a_{\phi} < \frac{2\pi M_0}{d-1} \\ M > 0 & a_{\phi} > \frac{2\pi M_0}{d-1}. \end{cases}$$

For $a_{\varphi} = 0$, it realizes Casimir energy of 4d SYM theory.

Casimir energy is different among periodic and antiperiodic b.c.

Heavy quark potential (x=const)

Namb-Goto action with the static gauge

$$E = \frac{S}{\tau}, S = S_N G = \frac{1}{2\pi\alpha'} \int d\xi^0 d\xi^2 \sqrt{-\det g_{\alpha\beta}}$$

The boundary condition

$$z(\pm \frac{L}{2}) = 0, \quad z(0) = z_0, \quad (\partial_{\phi} z)^2 \Big|_{z=z_0} = 0.$$
 T

 Φ

The regularized energy (the subtraction up to the soliton's tip)

$$E = \frac{R^2}{\pi \alpha'} \int_0^{z_0} \Big(\frac{z_0^2}{z^2} \sqrt{\frac{1}{z_0^4 f(z) - z^4 f(z_0)}} - \frac{1}{z^2 \sqrt{f(z)}} \Big) dz - \frac{R^2}{\pi \alpha'} \int_{z_0}^{z_+} \frac{dz}{z^2 \sqrt{f(z)}} dz$$

Quark anti-quark potential

✤ Left: physics analogous to the dissociation

- \diamond For large a_{Φ} , the potential deepens.
- ♦ Right: $M_0=0$.

♦ Kaluza-Klein modes become massless and no dissociation

Solving the Schrodinger equation

✤ 5d quark anti-quark potential probing extra dimensions

$$\bar{V}(L) = -\gamma L^{-a} + \kappa L^b + v_0, \quad a, b > 0. \quad \bar{V}'(L) > 0, \quad \bar{V}''(L) \le 0.$$

* Binding energy in the leading order $E_{n,l} \sim \bar{V}(L_a) + \frac{1}{2}L_a\bar{V}'(L_a)$ (L_a : constant)

♦ The mass of bound state $m_{\bar{Q}Q} = 2m_Q + 2E_{n,l}$

- Fitting with a bottom-quark system
 - \Rightarrow A bound state called bottomonium is formed

Ikhdair-Sever, `09, Kim-Lee-Park-Sin, `08

12

Mass of Bottomonium

♦ **Bottomonium** for d=5 and $M_0=0.145$ in units of GeV

a_{ϕ}	L_a	Meson mass	Binding energy
3i	0.77	9.1	-0.27
i	0.68	9.3	-0.15
0.1	0.66	9.0	-0.30
0.23	0.66	8.9	-0.36

♦ The mass of bottom quark is 4.80 GeV cf. Y(1S) 9.46 GeV and $\eta_b(1S)$ 9.40 GeV

Spectrum of spin 0⁺⁺ glueball-like operators for QCD_4

✤ The mass is in units of GeV

States	Lattice QCD	$a_{\phi} = 0, \ M_0 = 0.145$	$a_{\phi} = \pi M_0/2, \ M_0 = 0.218$
0^{++}	1.48 - 1.73	1.48	1.48
0^{++*}	2.67 - 2.84	2.43	2.46
0^{++**}	3.37	3.36	3.41
0++***	3.99	4.27	4.35

♦ The fourth column: Kaluza-Klein mass is almost equal to the QCD critical temperature T_c =0.28 GeV and Lambda scale: $\Lambda_{\rm MS}$ =0.25 GeV

Discussion

- Holographic heavy quark potential is analyzed from holographic Wilson loops in the AdS soliton with gauge potential
- ✤ Case 1: physics analogous to the dissociation occurs
 - ♦ The mass of heavy quarkonium decreases with increase of the gauge potential
- ♦ Case 2: heavy quark potential shows the area law behavior
 - The mass of the excitation of QCD strings decreases with increase of the gauge potential
- * The mass of 0++ glueball-like operator decreases with increase of the gauge potential

Phase transitions

• AdS soliton with a gauge potential for Small $a_{\Phi} < a_0$:

Dissociation of quarks or an area law for 5d quarks

• AdS black hole for large $a_{\Phi} > a_0$:

Quark potential disappears and dissociation of quarks occurs

Thank you!

The AdS soliton

The double Wick rotation of the AdS black hole

It corresponds to the ground state of QFT with the anti-periodic boundary condition on fermions

$$ds^2 = \frac{L^2}{u^2} \left(-dt^2 + \frac{du^2}{f(u)} + f(u)d\varphi^2 + \sum dx^i dx^i\right),$$

where $f(u) = 1 - \left(\frac{u}{u_0}\right)^4$ and $x^3 = \varphi$

The mass of the AdS soliton = negative energy

Spectrum of spin 0^{++} glueball-like operators for QCD

Decrease with increase of energy *M* (also in other dimensions)

The relation to QCD with imaginary chemical potential *Ghoroku-Kashiwa-Nakano-Tachibana-Toyoda* `20

- ♦ A remnant of Z_N center symmetry remains in 4d QCD with imaginary chemical potential.
 ♦
- ♦ Quarks in 4d QCD satisfy the twisted boundary condition along the temporal circle.
 - \diamond The twist parameter=imaginary chemical potential μ_I

$$\phi\left(\vec{x},\beta\right) \sim e^{i\mu_{I}\beta}\phi\left(\vec{x},0\right)$$

- ♦ The periodicity of the partition function $Z[\mu_I] = \text{Tr}\left(e^{-\beta H + i\beta\mu_I N_q}\right)$
 - ♦ First order Roberge-Weiss phase transition

