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disordered ordered

ξ
linear quench

across critical point

Kibble-Zurek mechanism (KZM)

•KZM: topological defects number vs quench rate 
Tom W.B. Kibble Wojciech H. Zurek
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ξ ∝ |ϵ |−ν , τ ∝ |ϵ |−zν . ϵ = 1 − T/Tc = t/τQ

relaxation

 time

coherence 

length

•Near critical point of continuous phase transition

n ∝ (τQ)
−(D − d)ν

1 + zν

•KZM predicts a universal power law relation between the 
number density of topological defects and the quench rate τQ

D: dimension of space 
d: dimension of defects
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ξ ∝ |ϵ |−ν , τ ∝ |ϵ |−zν . ϵ = 1 − T/Tc = t/τQ

relaxation

 time

coherence 
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•Near critical point of continuous phase transition

n ∝ (τQ)
−(D − d)ν

1 + zν

•KZM predicts a universal power law relation between the 
number density of topological defects and the quench rate τQ

D: dimension of space 
d: dimension of defects n ∼ τ−1/2

Q
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•Liquid crystals: Chuang, et.al., Science 251 (1991) 1336; Bowick, 
et.al.,Science 263 (1994) 943; Digal, et.al., PRL 83 (1999) 5030 

•He-3 superfluids: Baeuerle,et.al.,Nature 382 (1996) 332; Ruutu et 
al. , Nature 382 (1996) 334  

•Thin-film superconductors: Maniv,et.al., PRL 91 (2003) 197001; 
PRL 104, 247002 (2010).  

•Quantum optics: Xu, et.al., PRL,112, 035701(2014)  
  …

Confirmed by various experiments in condensed matter
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•Vortices in 2+1 dim holographic superfluid: Chesler, Garcia-
Garcia and Liu, 1407.1862

Holographic KZM with U(1) symmetry breaking
•Winding numbers in 1+1 dim holographic superfluid: Sonner, 

del Campo and Zurek, 1406.2329

•Magnetic vortices in 2+1 dim holographic superconductors: 
Zeng, Xia, HQZ, 1912.08332
…
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How to realize discrete symmetry breaking in 
holography? 🤔

Simulate the kinks and domain walls 
in spin chain with strong couplings
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• Gauge transformation

• EoM of real fields

• Complex scalar fields with U(1) gauge fields

 symmetry: Z2 +Ψ ↔ − Ψ

Dμ = ∇μ − iAμ

Holographic kinks
Z-H Li, H-Q Shi, HQZ [2207.10995]
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•Simulate a holographic spin chain
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•Eddington-Finkelstein coordinates

f(z) = 1 − (z/zh)3

•Ansatz of fields 

•Note: must include , 4 independent equations to solve 4 fieldsMz

turn on all the fields, and all fields depend on (t, z, x)
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• Initial condition 
Static, spatial independent: EoMs of gauge fields becomes 

Mx = 0

Mz =
Mt

f

In normal state , Ψ = 0 Mt = μ − μz, Mz = (μ − μz)/f

}
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•Quench chemical potential = quench temperature

 is the critical chemical potential in static caseμc ≈ 4.06

• Small fluctuations of scalar field at initial time 

Gaussian white noise : ζ(xi, t)

h = 0.001

t

T(t)

Tc

1.4Tc

0.8Tc
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•Kink hairs in the bulk 
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•Time evolution of kinks on boundary 
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•Beyond KZ scaling relation del Campo, 1806.10646

Kinks in one dimensional quantum spin chain,  the first three 
cumulants  have the following universal relations κ1, κ2, κ3

κ2 = ⟨n2⟩ − ⟨n⟩2 =
2 − 2

2
κ1 ≈ 0.29κ1

κ3 = ⟨(n − ⟨n⟩)3⟩ = (1 − 3 2 + 2/ 3)κ1 ≈ 0.033κ1

κ1 = ⟨n⟩ ∝ τ−(D−d)ν/(1+zν)
Q
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•Cumulants vs. quench rate in holographic kinks
(D = 1,d = 0, ν = 1/2, z = 2)

⟨n⟩ = κ1 ∝ τ−1/4
Q

κ2/κ1 ≈ 0.312

κ3/κ1 ≈ 0.023
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•Gaussian distribution in large trial number

In the limit of large trial number 
with fixed average probability, 
distribution becomes Gaussian 
（Central limit theorem）
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•Adiabaticity limit: P(n=0)

P(n = 0) ≈
1
2πκ2

exp− ⟨n⟩2
2κ2
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•KZM is valid near the critical point

•Kinks satisfy the KZM away from critical point, because 
they are stable at late time.  
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• Domain wall length vs. time

A.J. Bray (1994), Adv. in Phys. 
the length scale ξ(t) ∼ t1/2

Area A

ξ

Number of domains: 

Length of domain walls:

L ∝ t−1/2

Holographic domain walls
🤔How the coarsening dynamics governs the domain wall length  
far-away from critical point? 

n = A/πξ2

L ≈ n ⋅ 2πξ = 2A/ξ
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•Condensate at large t and large τQ

Tian-Chi Ma, Han-Qing Shi, HQZ, Adolfo del Campo,  2406.05167
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•Condensate at large t and large τQ

Adiabatic evolution
at large time t ∝ τQ

L ∝ t−1/2 ∝ τ−1/2
Q

Tian-Chi Ma, Han-Qing Shi, HQZ, Adolfo del Campo,  2406.05167
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•Time evolution of domain walls 
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• Domain wall length vs. time

L ∝ t−1/2

Adiabatic evolution  t ∝ τQ

•Condensate at large t and large τQ
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• Domain wall length vs. quench rate 

(D = 2,d = 1,ν = 1/2,z = 2)L ∝ τ−1/4
Q

Beyond KZM

L ∝ τ−1/2
Q

KZM

}
}

L ∝ t−1/2 ∝ τ−1/2
Q

Near critical point

Far-away from  
critical point
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Summary 
•We have realized the kinks and domain wall structures holographically


•The distribution of kink numbers satisfies the KZM


•However, due to the coarsening dynamics, the KZ scalings for domain 
walls are only satisfied nearby the critical point


•Away from the critical point, this relation would be destroyed, and 
satisfy another power-law for domain wall 
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Thank you for listening! 
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