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Motivation and summary
• Quantum entanglement: essential for building spacetime geometry and for governing the

quantum properties in quantum gravity systems;
• Holographic entanglement structure: a very special one, strong, multi-partite entanglement

required in quantum error correction;
• Detecting the holographic entanglement structure: various bipartite and multipartite

entanglement measures in holography;
• An important measure: the conditional mutual information (CMI) between A and B with the

condition E:

• CMI quantifies the correlation between A and BE that is not just due to the correlation between A
and E

• CMI≥MI: MI fails to capture how "#$ is embedded in the full system
• Strong subadditivity ensures the non-negativity of CMI



Motivation and summary

• CMI as a probe of the holographic entanglement structure:
ØReveals real-space entanglement behavior, short/long range entanglement;
ØCaptures multipartite entanglement contributions: the multipartite entanglement

that two distant small subsystems participate would contribute to the CMI;

• A new proposal on the relation between quantum entanglement and geometry:
radial scale↔ boundary real space scale entanglement (Ju et.al, 2024 & Ji et.al,

2025) IR geometry --- long distance entanglement structure;

UV geometry --- short distance entanglement structure;

• The conditional region E has been chosen to be the subregion between the two
subsystems.



Motivation and summary

• Questions:
ØWhat is the role of this conditional region?
ØDoes this choice optimally reveal entanglement structure?
ØDoes it maximize CMI between subsystems?
• Answer: No
• What if we tune this conditional region: the behavior of CMI under variation of

E reflects the multipartite entanglement structure, especially the upper bound of
CMI
• CMI could be rewritten as:
• The upper bound of CMI upper bound of − "#(%: ': () with fixed A and B



Motivation and summary
• Goal:

ØIdentify the conditional region E that maximizes CMI ! ": $ % , and determine the upper
bound value of CMI.

ØGeneralizations: the upper bound of −1 )!) with general * and even more general
combinations of entanglement entropy for * subregions

• Key findings:
✦The region E in the upper bound limit typically consists of infinitely many intervals;
✦The upper bound values of −1 )!) and more general entropy combinations reveal the
multipartite entanglement of the holographic quantum many-body system: no real bipartite
entanglement in holography! All few partite entanglement emerge from more partite
entanglement

• Important for the understanding of the holographic multipartite entanglement structure as well as for
strongly coupled quantum many-body systems



Outline
• Upper bound of CMI (or – "#) in holography: fixing two subregions and tuning one

➢A straightforward way of calculation

➢A more universal method: (dis)connectivity conditions

➢Fewer partite entanglement coming from more partite entanglement: more evidence

• Upper bound of general −% &"& in holography: (dis)connectivity conditions

• Upper bound of more general entropy combinations: the lamp diagram method

• Open questions: the holographic exclusive multi-partite entanglement configuration



II. Upper bound of CMI (or – "#) in holography
• A straightforward search for the upper bound of CMI
in AdS3/CFT2:

• Based on the RT formula:

• For fixedA and B, vary E from the interval betweenA and B
and search for the E that maximizes the CMI

• First assume E has only one connected interval; minimal
surfaces chosen depending on the cross ratios



• Consider all possible RT
surface configurations,

choice of which depends

on the cross ratios

• Example: all possible
geodesic configurations for

the calculation of !(#$%)

II. Upper bound of CMI (or – ()) in holography



• The resulting value of CMI for E being only one connected
interval, which depends on various cross ratios

• Cross ratios defined by

II. Upper bound of CMI (or – "#) in holography



• We can find the maximum of the result tuning cross ratios
related to E

• There is indeed an upper bound for I(A : B|E) when 
varying the length of E: at !(#: %) = !(( ∶ %) = 1;

• The condition of a cross ratio being 1 is just the critical 
point for the entanglement phase transition between the
connected and disconnected phases of the entanglement
wedge;

• The interval E should be tuned to reach the critical points 
of both the entanglement phase transitions with A and B 
simultaneously: it is always possible;

• Example: when the length of A=B=1 separated at distance
1, we have E=0.464102 sitting at the middle at the CMI
upper bound

II. Upper bound of CMI (or – ,-) in holography



• Complexities arise when we know
that E could be a set of disjoint

intervals, while not just one interval

• Now let us assume E has two
intervals: more complicated

possibilities for RT surfaces

• Example: all geodesic possibilities

for the calculation of !(#$%)

II. Upper bound of CMI (or – ()) in holography



• Using similar calculations we can find the result of the CMI as a
function of 11 cross ratios with 5 of them independent; as one cross
ratio (!(#: %)) is fixed and an interchange symmetry betweenA and
B, only 2 independent ones left;

• The maximum of this function is found using numerics to be at a
special value of the two cross ratios, which corresponds to: '( and ')
should reach the critical points of four sets of phase transitions between the 
connected and disconnected phases of (1) '( and A; (2) '( and ')*+B; (3) 
') and B; (4) ') and A*('(.

II. Upper bound of CMI (or – -.) in holography



• But when E has more intervals, it will become more complicated.
• From the calculations we have: when region E is one/two intervals inside the gap 

region between regions A and B, CMI reaches the upper bound when two/four 
entanglement phase transitions of RT surfaces occur simultaneously.
• This could be generalized to the case of E being ! disjoint intervals:
• Multi-entanglement phase transition rule: for fixed A and B, the conditional 

mutual information I(A : B|E) for region E being m disjoint boundary intervals
reaches its upper bound at the critical point where 2m entanglement phase 
transitions happen simultaneously. 
• These 2m phase transition conditions uniquely determine the position of the 2m 

endpoints of intervals in E, i.e. the configuration of E at maximum CMI.

II. Upper bound of CMI (or – #$) in holography



• The maximal CMI occurs precisely at entanglement phase transition 
critical points when varying conditional region E.
• An intuitive sketch of why this is true from the iterative optimization approach, the

hill-climbing algorithm:
• Modify the endpoints of each interval of Ei in E while fixing other intervals;
• Each modification maximizes the CMI locally;
• Repeat this procedure for all intervals;

• As we move the end point of Ei in one direction, CMI increases or decreases 
monotonically (or remains constant) until an entanglement phase transition happens;
• As a result, CMI must reach its maximum at critical points of entanglement phase 

transitions

II. Upper bound of CMI (or – "#) in holography



• For E being m intervals with m fixed:
• Multiple but finite many configurations satisfy phase transition criteria (2m 

critical points)
• Only one configuration achieves global CMI maximum
• Requires exhaustive comparison of all critical configurations

• Multi-entanglement phase transition (MPT) diagram: which could 
depict the phase transition conditions in a concise way at the multi-
entanglement phase transition critical point, to find the correct phase
transition points

II. Upper bound of CMI (or – "#) in holography



• Examples of the MPT diagram:

• Dots indicating entanglement phase transition critical points
• Several rules to plot the correct diagram
• Only one correct diagram when E stays betweenA and Bs

II. Upper bound of CMI (or – "#) in holography



Generalized to the
case of intervals of E
living in different
regions: MPT
diagrams not unique

Example: four sets of
distinct values when
m=2

II. Upper bound of CMI (or – "#) in holography



Compare the four
distinct values to get
the maximum: the
firs two MPT
diagrams have the
maximum value

II. Upper bound of CMI (or – "#) in holography



• Challenge: though the total number of consistent MPT diagrams is finite, it is 
still very large, and drawing them one by one would be a formidable task. 
• Solution: we have to find stricter constraints for MPT diagrams. 
• Constraints: on the connectivity of entanglement wedges in the 

configuration that maximizes the CMI

II. Upper bound of CMI (or – "#) in holography



• These constraints are crucial in the following analysis and we will generalize
them into a more universal method for more general entropy combinations

• Intuitive explanations for the three constraints:
• For the first two constraints: for a given configuration, we could always

find a configuration that satisfies these two constraints with the same value
of CMI;
• For the third constraint: from analysis of the contribution of each term in

the CMI, we could see that the value of CMI will not be affected by the 
phase transition of AEi , only when the whole entanglement wedge AE 
reaches its phase transition critical point could CMI be affected.

II. Upper bound of CMI (or – "#) in holography



• Under these constraints, the number of MPT
diagrams is greatly reduced. 

• We can observe that the MPT diagram which reaches 
the maximum value has two features:
• The dots are arranged in a “zigzag” pattern: with 

transitions involving left and right Ei regions
interchangeably.
• The order of the phase transition between Ei and 

A is the exact opposite of the order of the phase 
transition between Ei and B. 

II. Upper bound of CMI (or – "#) in holography



• Varying the number of intervals in E: divergence behavior of CMI
• Final calculation of the upper bound values of CMI:
• grows with m, and is divergent when m goes to infinity
• The divergence behavior

• Consistent with the quantum information upper bound
which is saturated at

II. Upper bound of CMI (or – "#) in holography



• Interpretation of the results:
• Genuine tripartite entanglement among subsystems A, B, and E: all bipartite 

mutual information vanishes (I(A:B)=I(A:E)=I(B:E)=0) while I (A:BE)=2SA

• Significance of the measure of I₃:
• While I₃ typically fails as a tripartite entanglement measure
• In this specific configuration, I₃ effectively quantifies true tripartite 

entanglement
• Nearly all short range entanglement degrees of freedom in A and B (UV divergent

terms) are participating in the tripartite entanglement with E.
• A stronger conclusion later

II. Upper bound of CMI (or – #$) in holography



• The MPT method, only for the UV behavior of the entanglement, not useful in
higher dimensions which have more degrees of freedom in determining E;
• A more universal method: (dis)connectivity conditions
• Inspired by the previous direct calculations

• In this new method, we focus on configurations of E that satisfies:
• I, the entanglement wedge of ABE is fully connected; 
• II, the entanglement wedge of E is fully disconnected; 
• III, the disconnectivity condition

II. Upper bound of CMI (or – "#) in holography



• The first two constraints for the same reason.
• The third constraint: a weaker form of disconnectivity condition
• Given a configuration E with a non-vanishing I(A: E) or I(B : E), there always 

exists a disconnected configuration of E with vanishing I(A: E) and I(B : E) 
whose CMI I(A: B|E) is not less than the former one.

II. Upper bound of CMI (or – "#) in holography

Right figure: for a configuration whose intervals of E connect 
with both A and B inside the entanglement wedge of AE and 
BE respectively, one can always find another configuration 
whose intervals connect to at most one of A and B inside the 
entanglement wedge of AE and BE, with larger CMI.



• Explicit examples for this calculation of the upper bound value of CMI:
• 1,Asymptotic AdS3
• CMI simplified under the disconnectivity conditions

• An upper bound on the last two terms coming from the constraint of the disconnectivity
condition: the lengths of the connected geodesics must be larger than that of the 
disconnected geodesics as the latter are the real RT surfaces

II. Upper bound of CMI (or – "#) in holography



• When m approaches infinity, it becomes

which is the quantum information theoretic upper bound for 
any quantum system

• The saturation of this upper bound: when the system reaches 
the phase transition point of the RT surface of region AE (BE) 
if B(A) has smaller entropy, with m approaching infinity.

• At the saturation: I (A:B)=I (A:E)=I(B:E)=0, 

• I (A:BE)=2SA, all degrees of freedom in A, including the IR 
degrees of freedom, contribute to the tripartite entanglement

II. Upper bound of CMI (or – "#) in holography



• Explicit examples for this calculation of the upper bound value of CMI:
• 2,Two sided black hole
• The upper bound is

• The long-range nature in the tripartite global entanglement in ABE

II. Upper bound of CMI (or – "#) in holography



• Interpretation of the results:
• As A and B are two small, distant, arbitrarily chosen subregions, this implies that in 

holographic systems, any two small distant subregions are highly tripartite entangled 
with a third region. 
• All bipartite entanglement between A and BE emerges from the tripartite global 

entanglement among A, B and E.
• Another piece of evidence:

when it saturates: tripartite entanglement for two sufficiently small subregions a ⊂A 
and b ⊂B to participate along with another region e ⊂AB

II. Upper bound of CMI (or – #$) in holography



• Conclusion:

• No Bell pairs exist in holographic states; all bipartite entanglement emerges 
from tripartite entanglement; any two small distant subsystems are highly 
tripartite entangling with another system.

• Will be upgraded to a more partite version after the upper bound of In is 
obtained

II. Upper bound of CMI (or – "#) in holography



• The upper bound of general −" #$# when n-1 subregions are fixed while one subregion E varied

• Using the (dis)connectivity conditions
• I. EW (ABCDFG….E) being totally connected.
• II. EW (E) being totally disconnected.
• III. Entanglement wedges of any k<n subregions containing E are disconnected

• A dimensional difference:

• In AdS3/CFT2, upper bound of −" #$# is finite if we fix n-1 subregions and tune one region;
while in higher dimensions, the upper bound of −" #$# is UV divergent, which is 2SA

• Note that if we fix n-2 subregions and tune two regions, the upper bound of −" #$# in
AdS3/CFT2 could be divergent

III. Upper bound of −" #$# in holography



• At the upper bound configuration:
• The n subregions have global quantum entanglement with connected 

entanglement while any k<n subregions are disconnected without quantum 
entanglement
• Therefore the upper bound of −" #$# reflects genuine global multipartite 

entanglement
• The upgraded conclusion: 

These subregions fully participate in the n-partite global entanglement, where all m-
partite entanglement among m-partitions of these n subregions arises from it
• There is no genuine few partite entanglement in holography, all fewer partite entanglement 

arises from more partite entanglement

III. Upper bound of −" #$# in holography



IV. Upper bound of more general entropy combinations
• The upper bound of −" #$# reveals the multipartite entanglement structure at the upper bound 

configuration

• Consider more general entropy combinations other than −" #$#
• Holographic Upper Bound ≤ Information Theoretical Upper Bound

• Upper bound for more general entropy combinations with fixed n subregions and one varying
region E: reveals more multipartite entanglement structures that these subsystems participate

• We utilize the following systematic procedure to evaluate the upper bound.
• 1. Determine the (dis)connectivity of each entanglement wedge in the upper bound configuration via a 

so-called lamp diagram.
• 2. Calculating the exact upper bound for general configurations of n fixed regions using constraints from

fake RT surfaces being larger than real RT surfaces.

• Note that we consider balanced (in E) entropy combinations 



IV. Upper bound of more general entropy combinations
• Step 1: determining the (dis)connectivity of all entanglement wedges containing E, utilizing

a lamp diagram
• all connectivity refers to the connectivity between region E and the rest in the 

corresponding entanglement wedges.
• To find the (dis)connectivity of all entanglement wedges containing E at the upper bound

configuration, we must show that if a configuration of E yields entanglement wedges that do 
not satisfy the required (dis)connectivity conditions, then there always exists another 
configuration E′ that does satisfy them, with the value of the entropy combination being no 
less than that of the original configuration E
• EW(E) being totally disconnected; EW(AB...E) being totally connected for the same

reasons



IV. Upper bound of more general entropy combinations
• The lamp diagram to
determine the
(dis)connectivity condition

• One lamp diagram: a set of 
(dis)connectivity conditions of 
each entanglement wedge 
represented by each dot.

• Grey dots indicate connectivity of 
the corresponding entanglement 
wedge while colored dots indicate 
disconnectivity.

• The specific color is determined by 
the sign in front of the entropy 
term.

• Positive sign: blue; negative sign:
red; if S(AE) does not appear in the 
combination, in black.



IV. Upper bound of more general entropy combinations
• Splitting process represented by a sequence

of lamp diagrams
• A sequence of lamp diagrams indicates the 

splitting process: each splitting step would 
lead to the next lamp diagram in the 
sequence.
• Arrows: the direction in which the value of 

the entropy combination under study 
increases. 
• Diagrams connected by arrows represent 

configurations that can be transformed by a 
splitting process.



IV. Upper bound of more general entropy combinations
• Two types of possible balanced entropy combinations could use this method to

obtain the upper bound:
• The CMI type entropy combinations display only one local maximum 

configuration;
• While the I4 type entropy combinations feature two local maxima of subregion

configurations, one of which can be shown to be not the true maximum. 
Eventually, configurations corresponding to the global maximum in both the 
two cases can be verified to satisfy the required disconnectivity condition.



IV. Upper bound of more general entropy combinations
• A CMI type diagram:
• If the number of red lamps is greater than 

the number of blue lamps in the current
lamp diagram, then the splitting process 
to the next step will increase the value of 
the entropy combination; if the number of 
blue lamps is greater than the number of 
red lamps in the current diagram, then 
the splitting process to the next step will 
decrease the value of the entropy 
combination; if the numbers are equal, 
the next step of the splitting process will 
not change the value of the entropy 
combination



IV. Upper bound of more general entropy combinations
• An I4 type diagram:



IV. Upper bound of more general entropy combinations
• In both cases, the upper bound configurations
• EW(E) disconnected
• EW(ABCD…E) connected
• All other entanglement wedges containing E

disconnected: the same configuration for
upper bound of In



IV. Upper bound of more general entropy combinations
• Step 2: Derive the upper bound: constraints from fake RT surfaces
• Explicit inequalities that constrain the upper bound based on the principle 

that the minimal RT surface is always smaller than the non-minimal (or 
fake) ones.
• Achieving this first requires a universal classification of all the gap regions

according to their adjacent subregions, in order to derive the explicit 
constraints from fake RT surfaces.
• Finally, with classified gap regions, we could derive the upper bound from

fake RT surfaces and find the tightest upper bound using various analysis.



IV. Upper bound of more general entropy combinations

• Explicit upper bound values for examples of entropy combinations could be
found respectively, as a function of the fixed n subregions and existing gap
regions, which we do not show here;
• Upper bound values may not reach the quantum information theoretic upper

bound;
• A dimensional difference due to the classification of gap regions;



Conclusion and open questions
• An IR term could diverge when the number of intervals of a region tends to infinity.

• There are no bell pairs existing in holography. All bipartite entanglement emerged from tripartite 
entanglement. Any distant A, B are highly tripartite entangling.

• The upper bound of  I"(A: B: C: () is finite in  AdS,/CFT0 and infinite in higher dim holography, 
which reveals the fundamental difference in multipartite entanglement structure in different 
dimensions.

• The upper bound we find can be regarded as unbalanced holographic entropy inequalities. Our 
work provides a method to investigate them further in the future.



Open questions: the HEGMEC configuration

• Holographic exclusive genuine multipartite entanglement configuration: n subsystems with
connected entanglement wedge while any n-1 of them have no quantum entanglement

• Only genuine n-multipartite entanglement exists in the n subsystems
• The upper bound configuration being a special one with −1 #$# reaching the maximum: it
is the upper bound configuration of a lot of entropy combinations at given n, all these
entropy combinations are candidates describing multipartite entanglement of this pattern

• Connection with holographic quantum error correction
• A special pattern of multipartite entanglement, needs more analysis: properties of this
configuration helps us identify the holographic multipartite entanglement and the
multipartite entanglement pattern of strongly coupled quantum systems.



• Open questions:

• Multipartite entanglement measures tested in the HEGMEC: EWCS, squashed multipartite
entanglement, multi-entropy, genuine multi-entropy, Latent entropy, etc.

• Fixing m subregions and tune n-m subregions: already some preliminary results, more to be
investigated;

• Further understanding of the holographic multi-partite entanglement beyond the upper bound
analysis;

• Evolvement of the multi-partite entanglement structure in nonequlibrium

• Relation between the upper bound structure and geometry

• Connection with strongly coupled quantum many-body systems

• Connection with holographic entanglement inequalities



Thank you!


