

中國科學院為能物招稱完備 Institute of High Energy Physics Chinese Academy of Sciences

- 之前使用的 MC 是用 Whizard 产生, bhabha 过程 higgs 只有 25pb, ~2Hz; Z: 59pb
 - 产生时添加了能量 cut ,两个粒子的能量差要大于 10GeV

Process	Luminosity[ab ⁻	⁻¹] Final states	X-sections(fb)
$e^+e^- ightarrow e^+e^-$	5.6	e^+e^-	24770.90
上周用 babayaga ,去	、掉能量差的 cut ,	要求加探测器覆盖系	范围 8 度到 172 度

- 要求出射正负电子及光子都在 8 度到 172 度得到: Higgs: 652 pb; Z: 4031pb , ~ 2kHz
- 只要求出射正负电子在 8 度到 172 度得到: Higgs: 1000 pb ,~ 100Hz; Z: 6593pb ,~ 3kHz
- 用 Whizard 计算 bhabha 过程:
 - 要求出射正负电子及光子都在 8 度到 172 度得到: Higgs: 743 pb; Z: 13147pb , ~ 6kHz
 - 只要求出射正负电子在 8 度到 172 度得到: Higgs: 5782 pb; Z: 27778pb ,~ 13kHz
- 对比 BesIII: 800Hz

! Au	utor	natio	cally	ge	enerated	set of cuts	
! Pi	roce	ess l	bhabh	a:			
1	е	a-e	->	e	a-e gam	าล	
!	16	8	->	1	2	4	
ргос	cess	bha	abha				
cut	Mc	of	3		within	1.00000E+01	1.00000E+99
cut	Mc	of	5		within	1.00000E+01	1.00000E+99
cut	Mc	of	6		within	1.00000E+01	1.00000E+99
cut	Мc	of	17		within	-1.00000E+99	-1.00000E+01
cut	Mc	of	20		within	-1.00000E+99	-1.00000E+01
cut	M c	of	10		within	-1.00000E+99	-1.00000E+01
cut	Mc	of	12		within	-1.00000E+99	-1.00000E+01

- 文章: Large-angle Bhabha scattering, Link
 - 10度 <θ<170度(CEPC: 8-172度)
 - Z pole 截面 ~6000pb=6nb ,接近 babayaga 结果
- 对比 BesIII: bhabha 事例约 800Hz ,对应 800nb
 - Babayaga 计算 bhabha 事例约为 700nb
- 对 ZH , 按照树图计算的截面: σ~1/CoM².
 - ZH pole bhabha 截面 =Z pole bhabha 截面 *91*91/240/240

=Z pole bhabha 截面(~6nb) *0.144~0.9nb

Fig. 3. The total cross section as a function of the energy, using an angular cut of 10° and an energy cut of 10 GeV. The conventions a.e the same as in fig. 2.

$$rac{\mathrm{d}\sigma}{\mathrm{d}(\cos heta)} = rac{\pilpha^2}{s}\left(u^2\left(rac{1}{s}+rac{1}{t}
ight)^2+\left(rac{t}{s}
ight)^2+\left(rac{s}{t}
ight)^2
ight)$$

束流本底更新

- 之前: HCal 端盖有非常大的能量沉积,导致触发比较困难
 - 左: ECal 端盖;中: HCal 端盖一端;右: HCal 端盖另一端,有一个非常大的亮斑

- 现在: 这周发现亮斑是个 bug , 去掉后端盖没有亮斑了
 - 触发相对容易许多,简单的能量阈值就能去掉大于 99% 的束流本底

Muon 径迹

• 之前:没有数字化,端盖有大量束流本底的能量较低的 hit ,重建非常困难

Muon 径迹

- 最近 CEPCSW 加入了 Muon 端盖数字化
 - 加了沉积能量的 cut ,去掉大量本底的 hit
 - 左: 数字化前; 右: 数字化后,方块代表一个 hit

// loop over all cells
<pre>for (const auto& item1 : map_cell_edep)</pre>
{
key1 = item1.first;
<pre>cellid1 = key1[0];</pre>
<pre>Edep = map_cell_edep[key1];</pre>
<pre>if (Edep < 0.0001) continue;</pre>
<pre>int anotherlayer_cell_num = 0;</pre>
ADC = map_cell_adc[key1];
<pre>layer1 = map_cell_layer[key1];</pre>
<pre>slayer1 = map_cell_slayer[key1];</pre>
<pre>strip1 = map_cell_strip[key1];</pre>
<pre>Fe1 = map_cell_fe[key1];</pre>

MuonEndcapTrackerHits.position.x:MuonEndcapTrackerHits.position.y

Muon 径迹

- 以 Muon 探测器前三层的 hit 为 seed, 寻找其他 hit 满足 ΔR(seed, hit)<0.05
 - 要求 barrel 和 endcap 的 hit 的总个数大于 3
 - 对 Z(νν)H(μμ), 效率为 98.6%; 对束流本底, 效率为 1.8%。可以继续优化

TDR:事例率

- 多加了一个表格总结各种过程的事例率
 - ZH 的各种过程正在产生中,之后能给出更细致的结果
 - Z用的是 low lumi Z 之前 1/5 的亮度,需要等加速器那边更新具体的亮度后再重新计算

12.2.2 Event rate & background rate estimation

The event rates of the CEPC trigger system for ZH and Z modes are summarized in Table 12.1 and 12.2.

Processes	Event rate (Hz)	After L1 (Hz)	After HLT (Hz)
ZH	0.017	0.017	0.017
Two Fermions background (exclude Bhabha)	5.3	5.3	5.3
Four Fermions background	1.6	1.6	1.6
Bhabha	80	80	80
Beam background	$> 10^{6}$	~13,000	~1,000
Total	$> 10^{6}$	~13,000	~1,000

Table 12.1: Expected trigger rate at the ZH mode for 50 MW

2

12.3 Overall Design

Processes	Event rate (Hz)	After L1 (Hz)	After HLT (Hz)
qq	11,648	11,648	11,648
Bhabha	2,505	2,505	2,505
μμ	584	584	584
TT	579	579	579
Beam background	$> 10^{7}$	~120,000	~12,000
Total	$> 10^{7}$	~120,000	~25,000

Table 12.2: Expected trigger rate at the Z mode for 10 MWneed to update with the latest low lumi Z luminosity, now using 1/5 high lumi Z.

12.3 Overall Design

TDR:本底率

- 本底率这个表格数据太多(下图 table 12.3)
 - 超过页宽,有一个警告(不是 error, 不影响编译)
 - 另外一种方法,旋转 90 度,如右图

Processes	Event rate (Hz)	After L1 (Hz)	After HLT (Hz)
qq	11,648	11,648	11,648
Bhabha	2,505	2,505	2,505
$\mu\mu$	584	584	584
ττ	579	579	579
Beam background	$> 10^{7}$	~120,000	~12,000
Total	$> 10^{7}$	~120.000	~25.000

Table 12.2: Expected trigger rate at the Z mode for 10 MWneed to update with the latest low lumi Z luminosity, now using 1/5 high lumi Z

	Vertex	Pix(ITKB)	Strip (ITKE)	OTKB	OTKE	TPC	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon
Channels per chip	512*1024	512*128	1024	128		128	8-16				
Data Width /hit	32bit	42bit	32bit	48bit		48bit	48bit				
Avg. data rate / chip	0.18Gbps/chip, 1Gbps/chip inner	3.53Mbps /chip	21.5Mbps /chip	2.9Mbps /chip	38.8Mbps /chip	^{-70Mbps} /module Inmost	10kHz /ch	10kHz /ch	5kHz /channel	5kHz /channel	10kHz /channel
Detector Channel /module	1882 chips @Stch &Ladder	30,856 chips 2204 modules	23008 chips 1696 modules	83160 chips 3780 modules	11520 chips 720 modules	492 Module	0.96M chn [°] 60000 chips 480 modules	0.39M chn	3.38M chn 5536 aggregation board	2.24M chn 1536 Aggregation board	43,176 chn, 288 modules
Avg Data Vol before trigger	474.2 Gbps	101.7 Gbps	298.8 Gbps	249.1 Gbps	27.9 Gbps	34.4 Gbps	460.8 Gbps	187 Gbps	811.2 Gbps	537.6 Gbps	24 Gbps
Occupancy(%)	0.022	0.025(Strip)		0.35(Strip)		0.0028	0.58		0.002		0.038
Sum	3.2 Thrs = 400GB	ls					and a statistical stat				

12.3 Overall Design

	Teter	N-01650	100111-0144	115.1	01160	111	10.01.02	10,000	16.41.6	1.11/10	Also -
Chenter par day	412-201	ALPHIN.	823	110		ō	10.4				
Day N. da	1914	ittee	ł	1			1010				
Are des	Eleptricity and	C (Maples	11 May	1 418ye	10 Models	"TABLE	- News	ante.	Thread .	ALL.	there is a construction of the second
Channel of Contract	1647 April 1044	SUBMICTOR STREET	710 million With modules	Titologe	II USA and	100 100	O NOT AN THEORY AND THE MARK	The state	1100 Ale 2016 april plane	7.2001.clu 1176 Aggregation 1996	RUNAL DESIGN
Any Plant Vol	1112 Chile	-Address	264.03m	1440 T MIT	T solar	TAL Days	101107	action	ALL LUNG	ACC ADD	11 Chy
More and All	14/00	11423-24-40		10.000		11004	0.09		1000		6718
Ass	ALT THEY & ADD ADD										
				These	0.124.18	- barrenter					

00