Workshop on Multi-front Exotic phenomena in Particle and Astrophysics (MEPA 2025)

MeV dark bridge

between electromagnetic and neutrino sectors

储晓勇 (ICTP-AP, UCAS)

with Josef Pradler [Phys.Rev.D 109 (2024)]

Centre Under the auspices of UNESCO

ICTP-AP International Centre for Theoretical Physics Asia-Pacific 国际理论物理中心-亚太地区

I. Motivations

Two leading early-Universe observable processes:

1. Big Bang Nucleosynthesis (BBN)

with T_{γ} from 1 MeV to keV

 $Y_p = 0.247 \pm 0.0020$ D/H = $(2.527 \pm 0.030) \times 10^{-5}$

Two leading early-Universe observable processes:

2. Cosmic Microwave Background (CMB)

with $T_{\gamma} \sim 0.3 \,\mathrm{eV}$

Universe becomes neutral, so photons start to travel freely.

$$N_{\text{eff}}^{\nu} = 3 \left(\frac{T_{\nu}/T_{\gamma}}{(4/11)^{1/3}} \right)^4 \sim 3 \left(\frac{T_{\nu}/T_{\gamma}}{0.7162} \right)^4$$

 $2.66 \le N_{\rm eff} \le 3.33$ (Planck 2018)

 $T_{\gamma} \simeq T_{\nu}/0.7162$ at $T_{\gamma} \sim 0.3 \,\mathrm{eV}$

1. Big Bang Nucleosynthesis (BBN) $T_{\gamma} = T_{\nu} \text{ at } T_{\gamma} \sim 3 \text{ MeV}$

2. Cosmic Microwave Background (CMB) $T_{\gamma} \simeq T_{\nu}/0.7162$ at $T_{\gamma} \sim 0.3 \,\mathrm{eV}$

SM contribution to this ratio is very simple: $N_{\text{eff}}^{\text{SM}} = 3.043 - 3.045$ i.e. **clear background observation**!

Around T~MeV, visible sector decouples from neutrinos via weak interaction:

$$\sigma v_{\bar{e}e \to \bar{\nu}\nu} \sim \alpha^2 \frac{\text{MeV}^2}{m_Z^4} \sim 10^{-46} \text{cm}^2.$$

1. Big Bang Nucleosynthesis (BBN) $T_{\gamma} = T_{\nu} \text{ at } T_{\gamma} \sim 3 \text{ MeV}$

2. Cosmic Microwave Background (CMB) $T_{\gamma} \simeq T_{\nu}/0.7162$ at $T_{\gamma} \sim 0.3 \,\mathrm{eV}$

SM contribution to this ratio is very simple: $N_{\text{eff}}^{\text{SM}} = 3.043 - 3.045$ i.e. **clear background observation**!

Around T~MeV, visible sector decouples from neutrinos via $\sigma v_{\bar{e}e \rightarrow \bar{\nu}\nu} \sim \alpha^2 \frac{\text{MeV}^2}{m_Z^4} \sim 10^{-46} \text{cm}^2$. weak interaction:

MeV dark state annihilation:

$$\sigma v_{\phi\phi^*} \ge 10^{-35} \mathrm{cm}^2$$

MeV dark state scattering:

MeV particle decay:

$$\sigma_{\rm MeV \ DM-e} \leq 10^{-40} \rm cm^2$$
$$\sigma_{\rm MeV \ DM-\nu} \leq 10^{-31} \rm cm^2$$

$$\Gamma_{\phi \to \rm SM+SM} \sim \rm sec^{-1}$$

up to Boltzmann suppression exp[-m/T]

1. Big Bang Nucleosynthesis (BBN) $T_{\gamma} = T_{\nu} \text{ at } T_{\gamma} \sim 3 \text{ MeV}$

2. Cosmic Microwave Background (CMB) $T_{\gamma} \simeq T_{\nu}/0.7162$ at $T_{\gamma} \sim 0.3 \,\mathrm{eV}$

SM contribution to this ratio is very simple: $N_{\text{eff}}^{\text{SM}} = 3.043 - 3.045$ i.e. **clear background observation**!

As an extension of the two decoupled sector cases [e.g. Escudero 2001.04466, Giovanetti, Lisanti, Liu & Ruderman 2109.03246]

Strong bounds can be obtained on MeV dark bridge with future BBN/CMB measurements!

II. To describe a three-sector system

To reach **a (nearly) full** description of three sectors:

[naive treatments: M.Escudero 1812.05605, Depta, Hufnagel, Schmidt-Hoberg & Wild 1901.06944]

Self-kinetic equilibrium assumption:

$$f_i(E_i, \mu_i) = \frac{1}{e^{(E_i - \mu_i)/T_i} \mp 1} \equiv \frac{1}{e^{\tilde{E}_i - \tilde{\mu}_i} \mp 1}$$

A) the **EM sector**

Satisfied, with **null chemical potentials** (up to B/L-asymmetry).

EM sector

e, γ

dark bridge

 ϕ, ϕ^*

Neutrinos

V

 $\tilde{\mu}_i = \mu_i / T_i$

B) the **neutrino sector**

C) the MeV **dark bridge**

To reach a (nearly) full EM sector Neutrinos e, γ description of three sectors: [naive treatments: M.Escudero 1812.05605, Depta, Hufnagel, Schmidt-Hoberg & Wild 1901.06944] Self-kinetic equilibrium assumption: dark bridge ϕ, ϕ^* $\tilde{\mu}_i = \mu_i / T_i$ $f_i(E_i, \mu_i) = \frac{1}{e^{(E_i - \mu_i)/T_i} \mp 1} \equiv \frac{1}{e^{\tilde{E}_i - \tilde{\mu}_i} \mp 1}$ 1.07 B) the **neutrino sector** w/ osc. 1.06 w/ osc. w/ osc.

To reach a (nearly) full description of three sectors: Inaive treatments: M.Escudero 1812.05605, Depta, Hufmagel, Schmidt-Hoberg & Wild 1901.06944] Self-kinetic equilibrium assumption: $f_i(E_i, \mu_i) = \frac{1}{e^{(E_i - \mu_i)/T_i} \mp 1} \equiv \frac{1}{e^{\tilde{E}_i - \tilde{\mu}_i} \mp 1}$

C) the MeV **dark bridge**

- Before decoupled, scattering with EM/ν makes it **thermally coupled**;
- After, it becomes non-relativistic quickly, so at most mild effect after decoupling *[exceptions are non-trivial velocity-dependence in annihilation, e.g. Binder, Bringmann, Gustafsson &Hryczuk, 2103.01944].*
- Even easier with **DM self-interaction (SIDM**).

Tabulation of Rates:

1. For the relativistic particles, **neutrino**:

$$f_{\nu}(\tilde{E}_{\nu},\tilde{\mu}_{\nu}) \simeq \frac{1}{e^{\tilde{E}_{\nu}}+1} + \tilde{\mu}_{\nu} \frac{1}{e^{\tilde{E}_{\nu}}+e^{-\tilde{E}_{\nu}}+2}$$
$$= f^{(0)}(E_{\nu}) + \tilde{\mu}_{\nu} f^{(1)}(E_{\nu}).$$

2. For non-relativistic particles, **DM**:

Neutrinos

ν

EM sector

e, γ

3. EM sector has negligible chemical potential.

Rates between two sectors (a and b) as **functions of (T_a, T_b)**:

Leading **number-changing**:

 $\gamma \propto \int dE_1 dE_2 ds dt f_1^{0,1} f_2^{0,1} \frac{d\sigma_{12 \to 34}(s)}{dt} v_M$ $\zeta \propto \int dE_1 dE_2 ds dt f_1^{0,1} f_2^{0,1} \frac{d\sigma_{12 \to 34}(s)}{dt} v_M \delta E$

Leading **energy-transferring**:

For each two-body process $1 + 2 \leftrightarrow 3 + 4$, the detailed-balance factor:

$$J = f_1 f_2 (1 \pm f_3) (1 \pm f_4) (1 - e^{-\tilde{\mu}_1 - \tilde{\mu}_2 + \tilde{\mu}_3 + \tilde{\mu}_4} e^{\tilde{E}_1 + \tilde{E}_2 - \tilde{E}_3 - \tilde{E}_4})$$

III. Precision Freeze-out

Bounds on DM mass from

 $2.66 \le N_{\rm eff} \le 3.33$ (Planck 2018)

EM-only channel: $m_{\phi} \ge 6.9 \,\mathrm{MeV}$

Neutrino-only channel: $m_{\phi} \geq 8.7 \,\mathrm{MeV}$

For $Br_{EM}Br_{\nu} = 0$

 Bounds are insensitive to s- or p-wave, or to exact annihilation cross sections, as evolution is the same until very late.

Bounds on DM mass from

 $2.66 \le N_{\rm eff} \le 3.33$ (Planck 2018)

$\mathrm{Br}_{\mathrm{EM}}:\mathrm{Br}_{\nu}$	1:0	10^4	1	10-4	4 0:1
Complex scalar (s-wave)	6.9	2.0	4.8	3.8	8.7
Complex scalar (p-wave)	6.9	2.9	5.2	3.9	8.7
Dirac fermion (s-wave)	9.5	2.5	5.0	4.1	11.2
Dirac fermion (p-wave)	9.5	3.0	5.7	4.3	11.2

For $Br_{EM}Br_{\nu} \neq 0$

• Lighter DM maintains $T_{\gamma} = T_{\nu_{\gamma}}$ even after e+e- annihilation

tend to increase N_{eff}.

• heavy DM maintains $T\gamma = Tv$ before e+e-

annihilation, same as only SM.

weaker bounds from CMB!

IV. For entertaining Neff bound may disappear

If dark matter dominantly annihilates into the EM sector.

At this moment, MeV DM annihilation should be below:

• 10⁻³ - 10⁻⁴ pico-barn for e/γ-line case [s-wave]:

CMB/X-ray experiments/..., e.g. Liu&Slatyer 1803.09739, Cirelli et al, 2303.08857

- **10-100 pico-barn for** ν **-only case [s-wave]:** Super-K/..., e.g. Argüelles et al. 1912.09486
- Only p-wave freeze-out allowed by indirect search;

BBN N_{eff} bounds for the black line:

At this moment, MeV DM annihilation should be below:

• 10⁻³ - 10⁻⁴ pico-barn for e/γ-line case [s-wave]:

CMB/X-ray experiments/..., e.g. Liu&Slatyer 1803.09739, Cirelli et al, 2303.08857

- **10-100 pico-barn for** ν **-only case [s-wave]:** Super-K/..., e.g. Argüelles et al. 1912.09486
- Only p-wave freeze-out allowed by indirect search;
- * BBN N_{eff} bounds along the black line: $m_{\phi} \gtrsim 3 \,\mathrm{MeV}$

BUT:

Photodisintegration excludes thermal dark
 states that decay into EM particles
[P.F.Depta, M.Hufnagel, K.Schmidt-Hoberg 2011.06519].

Such fine-tuning is mostly for entertaining.

V. Conclusions

Conclusions

- With better BBN/CMB measurements, we should improve the precision of theoretical calculations in MeV physics too.
- A numerically-fast treatment of MeV dark bridge (into both EM/ neutrino) can be fairly precise, without solving the exact momentum distribution functions.
- We obtain the full history of MeV dark state decoupling, and can apply it to various dark sector models:
 - Decaying dark particles,
 - Elastic scattering of asymmetric DM
 - Delicate BBN constraints, ...

Thanks!

To reach a (nearly) full description of three sectors, taking dark matter (DM) freeze-out

In earlier work [M.Escudero 1812.05605]:

 Actual DM annihilation cross section was never obtained (by assuming ~ pico-barn value);

EM sector

θ. γ

dark matter

 ϕ, ϕ^*

Neutrinos

V

- Simplified interaction rates (e.g. massless limit, constant $|\mathcal{M}|$);
- Only include DM pair-annihilation processes;
- Only with **Maxwell-Boltzmann** statistics,

[Or sudden decoupling: Depta, Hufnagel, Schmidt-Hoberg & Wild 1901.06944]

To reach a (nearly) full description of three sectors, taking dark matter (DM) freeze-out

 $|\mathcal{M}|$

We develop a **parametrization to include all the effects above**

[up to solving the exact momentum distribution functions (MDF) of each sector].

Solving the momentum distribution of each particle species is very time-consuming, and only leads to tiny corrections.

Previous CMB/BBN results on s-wave DM freeze-out

EM energy ejection [Depta, Hufnagel,

Schmidt-Hoberg 2011.06519]

 m_{ϕ} (MeV)

[Depta, Hufnagel, Schmidt-Hoberg & Wild 1901.06944] sudden decoupling induced by DM annihilation into e/v

 10^{1} ${\rm DM}\,{\rm DM}\to e^+e^-/\gamma\gamma$ $DM DM \rightarrow e^+ e^- / \gamma \gamma$ and $\nu \bar{\nu}$ 10^{0} 10^{-1} $m_{\phi} \ll \zeta_{\rm cd} T_{\rm cd}, \ \zeta_{\rm cd} = 10^0$ - D/¹H low D/¹H high BBN $D/^{1}H$ low BBN 10^{-2} BBN BBN \mathcal{Y}_{p} high $\mathcal{Y}_{\rm p}$ low $\mathcal{Y}_{\mathbf{D}}$ low Real scalar $\left. \left. n_{\phi}/n_{\gamma}
ight)
ight|_{T=T_{
m cd}=10\,{
m GeV}}$ N_{eff} Planck $N_{\text{eff}} + \mathcal{Y}_{p}$ Planck $N_{\rm eff}$ Planck 10^{-3} $N_{\rm eff} + \mathcal{Y}_{\rm p}$ Planck 10^{-} $\zeta_{\rm cd} = 10^{-1}$ 10^{-5} Complex scalar $g_{\phi} = 1$ 10^{-6} $\phi \leftrightarrow e^+e^ 10^{-1}$ $\zeta_{\rm cd} = 10^{-2}$ = 100 MeV 10^{-3} Majorana fermion = 50 MeV= 30 MeV 10^{-9} same = 20 MeV 10^{-10} $\zeta_{\rm cd} = 10^{-3}$ = 10 MeVbranch 10^{-11} Dirac fermion 10^{-12} 10^{10} 10^{-2} 10^{12} 10^{0} 10^{2} 10^{4} 10^{6} 10^{8} τ_{ϕ} [s] 10^{-1} 10^{0} 10^{1} 10 10^{-1} 10^{0} 10^{1} 10^{2} $m_{\chi}\,[{
m MeV}]$ $m_{\chi} \, [{\rm MeV}]$ Scalar Dark Matter Planck+BAO+H 3.6 Thermalised and non-mu neutrinos + MB 3.4 Planck+BAO statistics in collision rates + zero-mass electron [with DM: 1812.05605, 1910.01649] 3.2 $N_{\rm eff}$ Stage-IV 3.0 - 1 : 10² • 1 : 10⁴ 1:10⁶ 2.8 **e**: v ---- 10⁴ : 1 ----· 10⁶:1 _._. 10² · 1 2.6^L 10 15 20 25 5

Previous Non-Neff results on s/p-wave DM freeze-out

