

Progress of CEPC ref-TDR TDAQ

Fei Li, Jingzhou Zhao On behalf of CEPC TDAQ Group

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Dec. 17th, 2024, CEPC Detector Ref-TDR Meeting

Progress of TDAQ

TDR draft v0.4

- Update Simulation/L1/HLT/DAQ/DCS
- Add 5 to 32 pages now

TDAQ meeting

- Dec. 17th (Tue. afternoon)

International cooperation

- DRD 7.5a month meeting
- Wolfgang Kuehn, Justus-Liebig-Universitaet Giessen, Germany
 - PIFI application

Chapter	12 Trigger and Data Acquisition	1
12.1	Introduction	
12.2	Requirements	
	12.2.1 Experiment Requirements	
	12.2.2 Event rate & background rate estimation	2
12.3	Overall Design	3
	12.3.1 Design consideration	1
	12.3.2 TDAQ design structure	4
12.4	Trigger Simulation and Algorithms	(
	12.4.1 Physics Signatures and primitives with sub-detectors	(
	12.4.2 Sub-detectors trigger algorithms	1
	12.4.3 Global trigger algorithms	12
12.5	Hardware Trigger	12
	12.5.1 Introduction	12
	12.5.2 System architecture	13
	12.5.3 Common Trigger Board	14
	12.5.4 Trigger Control and Distribution	10
12.6	Software and High Level Trigger	10
	12.6.1 HLT software	1
	12.6.2 Study of GPU usage in the HLT	1
	12.6.3 Study of FPGA usage in the HLT	1
12.7	Data Acquisition System	19
	12.7.1 Overview of System Functionality	19
	12.7.2 Detector Readout	20
	12.7.3 Dataflow Software	23
	12.7.4 Online Software	24
12.8	Detector Control System	25
	12.8.1 Requirements	25
	12.8.2 Architecture design	20
	12.8.3 Software architecture design	2′
12.9	Experiment Control System	2′
	12.9.1 Requirements	2′
	12.9.2 Software framework design	23
	12.9.2.1 Intelligent operations and maintenance platform	23
12.10	Summary	32

TDAQ meeting on Dec. 17th(Tue. afternoon)

Simulation progress

- Cross section of Bhabha

用 babayaga ,去掉能量差的 cut ,要求加探测器覆盖范围 8 度到 172 度 要求出射正负电子及光子都在 8 度到 172 度得到: Higgs: 652 pb; Z: 4031pb , ~ 2kHz 只要求出射正负电子在 8 度到 172 度得到: Higgs: 1000 pb , ~ 100Hz; Z: 6593pb , ~ 3kHz

- Hcal endcap background
 - Energy cut 99% after software bug fixed
- Muon background
 - Significant reduction after digitization
 - Start tracking study
- FPGA DNN development at Belle-II
- TDR editing discussion
- R&D discussion

CEPC TD	AQ meeting cc 12, 2024, 2:00 PM → 5:00 PM Asia/Shanghai	4	2-
2:00 PM → 2:10 PM	Introduction Speakers: Mr Fei Li (EPC, IHEP, Beijing, China) , Jingzhou ZHAO (高能所) , Xiaolu Ji (Institute of High Energy Physics, CAS)	🕲 10m	₽-
2:10 PM → 2:30 PM	Simulation & HLT Speakers: Boping Chen, Junhao YIN (南开大学), dong Liu (中国科学院高能物理研究所), 启东/Qidong 周/Zhou (山东大学/Shandon university) 译 cepc触发1212.pdf	③ 20m g	<u>_</u> +
2:30 PM → 3:20 PM	Detector Survey		<i>Q</i> -
	2:30 PM Vertex Speakers: Hongyu ZHANG (EPC, IHEP, CAS, China), 畅 徐 (高能所)	🕲 10m	~
	2:40 PM Speakers: Sheng DONG (IHEP, CAS), Xiangyi Mu (高能物理研究所)	🕲 10m	₽-
	2:50 PM TPC&DC Speakers: Hongyu ZHANG (EPC, IHEP, CAS, China), 叙张 (高能所)	🕲 10m	2-
	3:00 PM ECal&HCal Speakers: Boping Chen, dong Liu (中国科学院高能物理研究所)	🕲 10m	2-
	3:10 PM Muon Speakers: Junhao YIN (南开大学), 划明 李 (中科院高能物理研究所)	🕲 10m	2-
3:20 PM → 3:30 PM	Trigger Hardware Speakers: Jingzhou ZHAO (高能所) , Sheng DONG (IHEP, CAS) , dong Liu (中国科学院高能物理研究所)	🕲 10m	2-
3:30 PM → 3:40 PM	Readout Protocol Speakers: Hongyu ZHANG (EPC, IHEP, CAS, China) , Sheng DONG (IHEP, CAS) , 畅 徐 (高能所)	🕲 10m	2-
3:40 PM → 3:50 PM	DAQ software Speakers: Hongyu ZHANG (EPC, IHEP, CAS, China), Xiangyi Mu (高能物理研究所), Xiaolu Ji (Institute of High Energy Physics, CAS), (DESV), 叙张 (高能所)	③ 10m , Yi L IU	<u>Q</u> -
3:50 PM → 4:00 PM	DCS&ECS Speakers: Sheng DONG (IHEP, CAS) , 斯马 (高能所)	🕲 10m	2-

Overall Design

Backup

Trigger strategy on High Lumi-Z

Trigger on High Lumi-Z

- Same hardware trigger structure on High Lumi-Z and low Lumi-Z
- Hardware resource may increasecommon trigger boards

Electronic system

- Trigger send to FEE from BEE if needed.
- If trigger latency can not meet the requirements, private trigger link may needed from FEE to BEE.

Physical Event Rate

Higgs 240GeV(30MW/50MW)

- BX rate:0.8(1.74)/1.34(2.9) MHz
- Physical event rate: 5Hz/8Hz (Higgs: 0.02Hz)

Z pole 91GeV(10MW/50MW)

- BX rate: 12(14.5)/39.4(43.3) MHz
- Physical event rate: 13.2kHz/66kHz

	Higgs	2	Z	W	tť
SR power per beam (MW)	30	30	10	30	30
Bunch number	268	11934	3978	1297	35
Bunch spacing (ns)	576.9 (×25)	23.1(×1)	69.2(×3) 253.8(×11)	4523.1(×196)
Train gap (%)	54	17	17	1	53
Luminosity per IP (10^{34} cm ⁻² s ⁻¹)	5.0	115	38	16	0.5
	Higgs			W	tt
SR power per beam (MW)			50		
Bunch number	446	1310)4	2162	58
Deniel marine (ne)	346.2	23.1	L I	138.5	2700.0
Bunch spacing (ns)	(×15)	(×1)		(×6)	(×117)
Train gap (%)	54	9		10	53
Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	8.3	192	2	26.7	0.8

									poss	,,	
过程	xsection(nb)	百分比	事例率kHz	E	Z	W	₩ -	ZH	t	t	
Bhabha	0.0586	0.001371951	0.068597543	107	q	ī					nts
muon	1.5361	0.035963374	1.798168703	10.							f eve
tau	1.5249	0.035701158	1.78505791	106							ber o
qq	30. 6522	0.717633315	35.88166573	105							Numl for 5
电子中微子	2.9607	0.069316296	3.465814777				W ⁺	- W-			-
muon中微子	2. 9896	0.069992906	3. 499645306	10 ⁴							5×10 ⁷
tau中微子	2.9909	0.070023342	3.501167095	ъ 10 ³	Sing		Z	Z			
中微子总	8.9411	0.209330202	10. 46651012	102	Single	w/		ZH	tī		5×10^{5}
总共	42.7129	1	50					W fusi	ion	\vdash	
		亮度		101	1			Z fus	ion		
30 m w		1.15E+36	4.91E+01	1							5×10 ³
50 MW		1.92E+36	8.20E+01	-	100			250	200 250	<u> </u>	0
		I		50	100	150	_200 √	s [GeV]	300 330	1 40	0

Z pole, ref: MC /cefs/data/stdhep/CEPC91/ 2fermions/wi_ISR_20220618_50M/2fermions/ nossihh

Beam Backgrounds

Ave. hit rate Higgs Vs Low Z

- Vertex: 0.49 -> 1.96, 5 times
- ITK: 0.0021 -> 0.08, 40 times
- ECal: 0.011 -> 0.35, 30 times

Higgs Vs Low Z

- BX rate 1.34 -> 12 MHz
- Raw data rate @Higgs
 - 400GB/s
- Raw data size per BX @Higgs

- 300KBytes

	50MW Higgs, 346ns/BX
Pair Production	~1.82GHz in IR
Beam Thermal Photon	~0.30MHz/beam in IR
Beam Gas Bremsstrahlung	~0.04MHz/beam in IR
Beam Gas Coulomb	~0.23MHz/beam in IR
Touschek Scattering	~0.06MHz/beam in IR
Radiative Bhabha	
SR	~630 PHz/beam generated at last bending magnet
	50MW Higgs, 23ns/BX
Pair Production	~25.5GHz in IR
Beam Thermal Photon	~0.26GHz/beam in IR
Beam Gas Bremsstrahlung	~0.01GHz/beam in IR
Beam Gas Coulomb	~2.36GHz/beam in IR
Touschek Scattering	~6.24GHz/beam in IR

10MW Z, 69ns/BX
~3.2GHz in IR
~63MHz/beam in IR
~2.5MHz/beam in IR
~272MHz/beam in IR
~62MHz/beam in IR

Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm ²)	Max. Occupancy/BX(%)
Vertex	0.49	0.61	0.0022
ІТК	0.0021	0.25	0.025(Strip)
TPC	2.7	6.0	0.0045
OTK – Endcap	0.0002	0.0006	0.35(Strip)
ECal – Endcap	0.011/bar	0.3/bar	0.0008
HCal – Endcap	0.002/GS	0.05/GS	0.0005
Muon – Endcap	0.0000001/cell	0.00002/cell	0.006
LumiCal – Crystal	3.37	7.82	9.1
Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm²)	Max. Occupancy/BX(%)
Vertex	15.64	18.34	3.73e-3
ІТК	0.61	57.61	0.0543
TPC	2	3.5	0.0026
OTK – Endcap			
Ecal – Barrel	1.54/bar	22.3/bar	7.03
ECal – Endcap	2.84/bar	43.5/bar	9.29
HCal – Endcap			
Muon – Endcap			1.5
Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm ²)	Max. Occupancy/BX(%)
Vertex	1.96	2.30	3.73e-3
ІТК	0.08	7.20	0.0543
ТРС	0.25	0.45	0.0026
OTK – Endcap			
ECal – Barrel	0.2	2.79/bar	7.03
ECal – Endcap	0.35	5.44/bar	9.29
HCal – Endcap			
Muon – Endcap			1.5
LumiCal – Crystal			

Raw Data Rate

Data rate before trigger

- <1 TB/s @ Higgs</p>
- Several TB/s @ Z
- L1 trigger rate
 - O(1k) Hz @ Higgs
 - O(100k) Hz @ Z
- Event size < 2 MB</p>
 - Related to occupancy and read out window
- Storage rate after HLT
 - <100 Hz(200 MB/s) @ Higgs
 - 100 kHz (200 GB/s)
 @ Z

	Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	ΟΤΚΕ	ТРС	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon
Channels per chip	512*102 4	512*128	1024	12	28	128	8~16				
Data Width /hit	32bit	42bit	32bit	48	bit	48bit	48bit				
Avg. data rate / chip	0.18Gbp s/chip, 1Gbps/c hip inner	3.53Mb ps/chip	21.5Mbp s/chip	2.9Mbp s/chip	38.8Mb ps/chip	~70Mb ps/mod ule Inmost	10kHz/ch	10kHz/ch	5kHz/chann el	5kHz/chann el	10kHz/c hannel
Detector Channel/modu le	1882 chips @Stch &Ladder	30,856 chips 2204 modules	23008 chips 1696 modules	83160 chips 3780 module s	11520 chips 720 module s	492 Module	0.96M chn ~60000 chips 480 modules	0.39 M chn	3.38M chn 5536 aggregation board	2.24M chn 1536 Aggregation board	43,176 chn, 288 modules
Avg Data Vol before trigger	474.2 Gbps	101.7 Gbps	298.8 Gbps	249.1 Gbps	27.9 Gbps	34.4 Gbps	460.8 Gbps	187 Gbps	811.2 Gbps	537.6 Gbps	24 Gbps
Occupancy(%)	0.022	0.025	(Strip)	0.35(Strip)	0.0028	0.5	58	0.002		0.038
Sum	3.2 Tbps = 400GB/s										

Collected from each detectors @Higgs

Trigger & Data Rate

	L1 trigger rate		Higgs	Z(10MW)	Z(50MW)	W	tt
– 13 Read – TI	 – 13 kHz@Higgs, 120 kHz@low. Z Read out window 	Luminosity(10E34/cm2/s)	8.3	38	192	26.7	0.8
	- TPC 34 us	Bunch space(ns)	346.2	69.3	23.1	253.8	4523.1
	 CLIC rec. time window 	Bunch cross rate(MHz)	1.34	12	39.4	6.5	0.18
	 ECAL & HCAL Endcaps & Silicon 10 ns HCAL Barrel 100 ns eadout event size 620KBytes @ Higgs 100 BX/events and 3.2 KBytes/BX for TPC 	Raw data rate before trigger (TBytes/s)	0.4	3.6	11.82	1.95	0.048
		Physical event rate(kHz)	0.008	13.2	66	0.1	0.002
		L1 trigger rate(kHz)	13	120	400	65	2
	 – 2 MBytes @Low lum. ∠ • 500 BX/event for TPC(full readout) 	DAQ readout rate(Gbyte/s)	26	240	800	130	4
	 2 BX for Hcal (75 KBytes/BX) 5.3 MBytes @High lum. Z 1472 BX/event for TPC(full readout) 	High level trigger rate(kHz)	1	25	100	6	1
		DAQ storage rate(Gbytes/s)	0.3	7.5	30	1.8	0.3
	• 5 BX for HCal			Event siz	e: readout 2	MB, <mark>stora</mark>	ige 300KB

- DAQ data rate
 - Read out: 8 GB/s @ Higgs, 83.4 GB/s @ Low lum. Z (120kHz*375KB + 12MHz*3.2KB)
 - 366 GB/s @ High lum. Z (400kHz*(300+75*4)KB + 39.4MHz*3.2KB)
 - Storage: 0.6 GB/s @Higgs, 50 GB/s @Low lum. Z (7.5GB/s after event size compression)
 - 1 year(3600h): 8 PB, 100 PB

Design of Hardware Trigger Structure

Trigger primitive(TP)

- Extracted by BEE
- Local detector trigger
 - Sub energy and tracking...
- Global trigger
 - E-sum and tracking
 - Fast trigger(FT) and L1A generation on demand

TCDS (Trigger Clock Distribution System)

- Distribute clock and fast control signals to BEE
- Which detectors participate in trigger needs to be studied

TCDS-Trigger Clock Distribution System

TCDS/TTC

- Clock, BC0, Trigger, orbit start signal distribution
- Full, ERR signal feed back to TCDS/TTC and mask or stop L1A

- TCDS-Trigger Clock Distribution System
- TTC- Trigger, Timing and Control
- DCTD-Data Concentrator and Timing Distribution
- BEE-Backend board Electronic

TDAQ are only responsible for system-level distribution, each system is then responsible for its own internal distribution.