

Status of CEPC ref-TDR Chapter06

Huirong Qi and Linghui Wu On behalf of the gaseous tracker group 17 December, 2024

- Update design of TPC
- BG source and estimation
- Status of Chapter6

OTK (300kg)

b

Schematic diagram of the detector

Update design of TPC with ECAL

Schematic diagram of the detector

The connection design between ECAL and TPC (Confirmed)

Update design of TPC with ITK

The connection design between ITK and TPC (Confirmed)

Update design of TPC with OTK

The connection design between OTK and TPC (Confirmed)

Background Sources at Higgs/ Low luminosity Z @3T

- Higgs/Z background sources
 - I. Pair production (Luminosity related)
 - II. Single Beam (BGB, BGH, Touschek Scatter...)
 - III. Synchrotron Radiation
 - IV. Injection background

Low-momentum particles circling within a magnetic field

Bkg type	Space charge density(steady)	Remark	Optimization strategy
Pair + Single Beam	$\rho_{sc0} \sim 0.04 nC/m^3$ (R=60cm) 8um, 2.75m Drift Length @ inner radius	Without low $P_T e^{-}/e^+$ (<10MeV) in TPC caused by ~MeV γ	Acceptable
Pair + Single Beam	$\rho_{sc1} \sim 60 \times \rho_{sc0}$	With low $P_T e^{-}/e^+$ (<10MeV) in TPC caused by ~MeV γ	Analysis initial position distribution of \sim MeV γ (Main contributions) and Add shielding

IBF×Gain=1, same primary ion level

Distribution of the different Pt of BG

- Low momentum accounts for more than 90% of the total BG
- $1 \text{MeV} \rightarrow 1.14 \text{mm}$ (circling)
 - Only cover several pixel readout
- It's necessary to **optimize the MDI to shield** gamma rays of approximately MeV level.

```
1. 能量转换:

1 MeV = 1 × 10<sup>6</sup> eV = 1 × 10<sup>6</sup> × 1.602 × 10<sup>-19</sup> J = 1.602 × 10<sup>-13</sup> J

2. 电子质量:

m = 9.109 \times 10^{-31} kg

3. 电子电荷:

q = 1.602 \times 10^{-19} C

4. 磁场强度:

B = 3 T

5. 计算电子速度:

E = \frac{1}{2}mv^2
```

$$E = \frac{1}{2}mv$$

 $v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2 \times 1.602 \times 10^{-13} \text{ J}}{9.109 \times 10^{-31} \text{ kg}}} \approx 5.93 \times 10^8 \text{ m/s}$

6. 计算偏转半径:

 $r = rac{mv}{qB} = rac{9.109 imes 10^{-31} ext{ kg} imes 5.93 imes 10^8 ext{ m/s}}{1.602 imes 10^{-19} ext{ C} imes 3 ext{ T}} pprox 0.00114 ext{ m}$

因此, 1 MeV电子在3 Tesla磁场中的偏转半径大约是0.00114米, 或者1.14毫米。

Distribution of the different Pt (e) of BG

Optimization of the shielding low Pt@3T Low luminosity Z run

IBF×Gain≤1, less than primary ion level

Status of Chapter6

- 6.1 Physics requirements
- 6.2 Gaseous tracker system overview
 - 6.2.1 Technology comparison
 - 6.2.2 Baseline gaseous tracker
 - 6.2.3 R&D efforts and results
- 6.3 Pixelated readout Time Projection Chamber
 - 6.3.1 Time Projection Chamber detector
 - 6.3.2 Pixelated readout electronics
 - 6.3.3 Design of mechanical and cooling
 - 6.3.4 Commissioning and validation of prototype
 - 6.3.5 Challenges and critical R&D
 - 6.3.6 Costs

6.4 Performance

- 6.4.1 Overview of the simulation framework
- 6.4.2 Physical process in the framework
- 6.4.3 Tracking performance
- 6.4.4 Particle identification
- 6.4.5 Improvement using the machine learning algorithm
- 6.4.6 Beam background source and estimation
- 6.4.7 Alternative the drift chamber
- 6.5 Prospects and outlook

- 整体文档40页(上周)
- 已整合入IHEP Overleaf文本内
- 计划到50页(Draft version)

- 整体文档46页(本周)
- 已整合入IHEP Overleaf文本内
- 下周计划(Draft version)

Details of the few subsections

6.3.3 Design of mechanical and cooling6.3.4 Commissioning and validation of prototype6.3.5 Challenges and critical R&D6.3.6 Costs

- Shared with 6 members of ILD and LCTPC collaboration
- Cooling for the electronics
 - Baseline technology : Water cooling (to room temperature)
 - Alternative technology: CO₂ cooling (to room temperature)
 - Consistent with the overall cooling design of the mechanical design
- Costs
 - Detailed sub-item inquiries starting based on the baseline design

Many thanks!