Precision Measurements of Diffractive Dissociation and Lepton Flavor Universality

- 周启东(ZHOU Qi-Dong)
- Institute of Frontier and Interdisciplinary Science, Shandong Univ. (Qingdao)

- 20 Dec. 2024
- **Experimental Physics Division Seminar (IHEP)**

What is the origin of matter and the universe

What is the origin of matter and the universe

P5 report

Back to the beginning of the universe

Contents

- Diffractive Dissociation

 - Introduction of ultrahigh-energy cosmic-rays (UHECRs) The LHCf experiment and ATLAS-LHCf common experiment Measurements of forward photon production, and low-mass diffractive photon
 - production
 - Discussion about the impact of ATLAS-LHCf joint analysis result to the
 ATLAS-LHCf joint analysis result
 ATLAS-LHCf joint analysis result
 ATLAS-LHCf joint analysis
 ATLAS-LHCf joint analysis
 ATLAS-LHCf joint analysis
 ATLAS-LHCf joint
 ATLAS-LHCf joint determination of mass composition of UHECRs
- Lepton Flavor Universality (LFU)
 - New physics search with testing LFU
 - The Belle II experiment
 - Measurements of LFU with semileptonic B decays
 - Impact of LFUV to the new physics search

What is the origin of UHECR Source candidates: **Objective : explore the origin of Ultrahigh Energy** Active Galactic Nuclei (AGNs) Cosmic-Ray (E>10¹⁸ eV) +Gamma Ray Burst (GRBs)

PDG, Chin.Phys. C38 (2014) 090001

Galactic field is too weak to contain UHECRs —> extra-galactic

What is the origin of UHECR

Source candidates: +Active Galactic Nuclei (AGNs) +Gamma Ray Burst (GRBs)

Nuclear composition of UHECRs is one of the KEY

Cosmic-ray

Atmosphere

Fluorescence telescope

Surface detector

10 km

Altitude(km

4.3 km $(600 g/cm^2)$

1.4 km $(875g/cm^2)$. Sea level (1100g/cm²)

max

How to interpret the observable

The issue to interpret the air shower data: Energy of cosmic ray log (E/eV)
Largely unknown model uncertainties
Limitations in modeling of hadronic interactions in air shower (soft processes)

How to interpret the observable

 $10^{18} E[eV]$ 10^{17} 10¹⁹ 10^{20} compas 850 data $\pm \sigma_{\rm stat}$ \pm syst. 800 nuclear 750 iron of for interpret. 700 650 **EPOS-LHC** Sibyll2.3 600 Para. QGSJetII-04 20.018.0 18. 19.

arXiv: 1708.06592

Hadronic interaction models

10

What to be calibrated by accelerators

- Hard interactions can be predicted by using perturbative QCD.
- Soft interactions dominate by non-perturbative QCD,
 Phenomenological models base on Regge theory proposed.

Key parameters

- Inelastic cross section (interaction mean free path) TOTEM, ATLAS, CMS, etc.
- Multiplicity
 Central detector
- Inelasticity ($\kappa_{inela} = 1 P_{lead}/P_{beam}$) LHCf, etc.

arXiv:1307.7131v1

Property Increased	Change in X _{max}
Cross section	Decreased
Inelasticity	Decreased
Multiplicity	Decreased

11

The LHCf experiment

36mm

140m

- Measuring hadronic production cross section of <u>neutral particles</u> emitted in the very forward region of LHC.
- LHCf and ATLAS are observing the particles from the same collisions, but different position.

LHCf Arm1

Radiation-hard calorimeter performance

- Two imaging sampling shower calorimeters
- 44r.I. tungsten, 16 layers of GSO scintillators and 4 position sensitive layers
- The η coverage of the calorimeter: $|\eta| > 8.4$

Performance

Energy resolution:(>100GeV)

- <5% for photons
- 40% for neutrons

eters illators and 4 position sensitive layers >8.4

25mm

32mm

Position resolution: <200µm for photons <1mm for neutrons

Forward photon spectra from low-mass diff.

• Forward photon production at $\sqrt{s} = 13$ TeV in p-p collisions has been measured by LHCf.

- $\sqrt{s} = 13$ TeV collisions.
- The excess of PYTHIA8 at E>3TeV was assumed due to over contribution from lowmass diff. processes.

Large descripency between data and PYTHIA8

14

Diffraction vs. air-shower developments

- LHCf has verified the hadronic interactions inclusively.
- This research measured diffractive processes exclusively, which are less constraint in the model and have big impact to the air-shower development.

Large discrepancy exists among models, especially, at low mass.

ATLAS-LHCf common experiment

ATLAS detecor

Hadronic interaction model

LHCf detector

17

Diffraction identification by central-veto

 Rapidity gap measured by ATLAS to distinguish the events triggered by LHCf to diff.-like and non-diff.-like
 First <u>direct measurement</u> of low-mass diffraction at high energies.

111PRAR

Results: Photon spectra

Comparison between data w/ $N_{ch} = 0$ and model predictions • EPOS-LHC show a good agreement with data at $\eta > 10.94$. • PYTHIA8212DL show a good agreement at the region of 8.81 < η < 8.99.

19

- energy up to 4TeV.
 - PYTHIA8212DL predicts higher fraction at higher energies.
 - SIBYLL2.3 show small fraction compare with data.

+ At 8.81 < η < 8.99, the ratio of data keep almost constant as 0.17.

+ At η >10.94, the ratio of data increased from 0.15 to 0.4 with increasing of the photon

• EPOS-LHC and PYTHIA8212DL show good agreement with data at 8.81 < η < 8.99. ₂₁

Tuning of pomeron flux

SIBYLL2.3c with the tuning of pomeron flux modified by Felix Reihn who is one of

SIBYLL2.3c-Diff improved a lot compare to joint analysis results

Impact to determination of X_{max}

- section leads to the change of weighted average of $\log_{10}(\xi_X)$ from -4.53 to -6.92.
- X_{max} shifted up 5.16 g/cm² according to a rough calculation.

Interpretation of nuclear composition

- Auger reproduced the observed X_{max} with the fractions fit of MC predictions.
- Considering X_{max} will shift to heavier direction with prediction of tuned SIBYLL2.3, it would prefer Helium and Nitrogen sources.

Short summary

- origin of UHECRs.
- time.
- It was confirmed that the low-mass diffraction measurement are very useful for SIBYLL2.3 model.
- Tuning of diffractive mass distribution has a strong correction with inelasticity, and shifted up X_{max} by 5.16 g/cm².
 - nuclear.

• An adequate understanding of hadronic interactions is the key to solving the puzzling

• LHCf is an experiment dedicated to measuring the neutral particle production at the very forward region, especially, the ATLAS-LHCf common experiment can explore the potential of both experiments for directly measuring the low-mass diffraction for the first

constraining the implementation of diffractive dissociation, according to the tuning of

• Interpretation of Auger X_{max} data based on tuned SIBYLL2.3 model shifted to heavier

Back to the beginning of the universe

What is the origin of matter and the universe Standard model of particle physics New physics

Dark matter

26.8%

Dark energy

68.3%

Matter-antimatter asymmetry ?

 \bullet \bullet \bullet

10-10秋

Electron 10⁻¹⁶ cm

4.9% Matter Molecule 10-7 cm Atom 10-8 cm

Nucleus 10⁻¹² cm

Proton10⁻³ cm

Higgs boson

Neutron

Earth

10⁶ cm

Quarks

 V_{τ} V_{μ} Ve Leptons Now day

Time: 13.8 billon years

New physics search based on collider

 Indirect search for New Physics (NP) in quantum effect arXiv:1309.2293 Sensitivity of NP detection up to 200 TeV for loop diagram (depending on the NP coupling constant)

Direct search at energy frontier

Indirect search at luminosity frontier : (Reactions produced pre second)

Lepton Flavor Universality

- Lepton Flavor Universality (LFU): A fundamental axiom of standard model is W boson couples, g_w, to three generations of leptons with equal strength
 Description by matrix elements for leptonic and hadronic currents as a four Fermi
 - Description by matrix elements for le interaction
 - Experiments confirmed LFU using W/Z boson decays, light meson decays, or lepton decays
- Difference in kinematics and Higgs coupling due to different lepton masses
 Charged lepton mass changes kinematics and modifies form factors in the
 - Charged lepton mass changes kinem hadronization
 - QED corrections depend on lepton velocity (τ vs. l (e, μ))

$$\begin{split} \mathcal{L}_{\rm eff} &= -\frac{4G_F}{\sqrt{2}} V_{cb} \left(\overline{c}\gamma_{\mu}P_L b\right) \left(\overline{l}\gamma_{\mu}P_L \nu_l\right) + \\ \frac{G_F}{\sqrt{2}} &= \frac{g_W}{8M_W^2} , \qquad g_W: SU(2) \text{ weak coupling} \end{split}$$

- + h. c. , ($l = e, \mu, \tau$)
- constant

Motivation for studying LFUV

- SM fields do mix:
 - Quarks sector -> CKM matrix
 - Neutrinos sector -> PMNS matrix
- Charged leptons -> the matrix diagonal-like?(neutrino mass)
- LFUV: diagonal terms not all equal

Lepton Flavor Violation (LFV): off diagonal term

LFU test with semileptonic B decays

- Ratios of $b \rightarrow q\tau v/q\mu v/qev$ branch fractions cancel out most of the uncertainties on $|V_{cb}|$, form factors and the experimental systematics
- $B \rightarrow D^{(*)}\tau v$ sensitive to New Physics (NP) because the massive 3rd generation b quark and τ lepton are involved
- Sensitivities to high energy scale; ~10 TeV [<u>Belle II phys. book</u>]

World
average
 $(\ell = e \text{ or } \mu)$ $\overline{B} \to X_c \ell^- \overline{\nu}_\ell$ $\overline{B} \to D^* \ell^- \overline{\nu}_\ell$ SM $\overline{B} \to D^* \tau^- \overline{\nu}_\tau$

Branching fraction [%]		
$\mathcal{B}(B^0)$	$\mathcal{B}(B^+)$	
10.1 ± 0.4	10.8 ± 0.4	
5.41 ± 0.11	5.03 ± 0.11	
~1.37	~1.28	

"B anomaly" in semileptonic decays

New physics scenarios for the R(D^(*)) anomaly

In general, there are three typical candidate scenarios to explain the anomaly observed in $R(D^{(*)})$

- Heavy vector bosons
 - Constrained from $W' \rightarrow \tau v$ and $Z' \rightarrow \tau \tau$ search
- Charged Higgs
 - Constrained from $B_c \rightarrow \tau v$ and $H^{\pm} \rightarrow \tau v$, still allowed
 - Previously, it was rejected by $B_c \rightarrow \tau v$ measurement, however, recovered by recalculating the B_c lifetime. PRD 105 095011(2022)
- Leptoquark
 - $gg \rightarrow LQ LQ^*$, still broad parameter regions are allowed

 \bar{R}^0

 v_{τ} LQ

LFU test program at Belle and Belle II

- The analyses presented in this talk
 - $R_{\tau/l}(D^*)$ at Belle II (189 fb⁻¹), <u>PRD 110 072020</u> (2024)
 - $R_{\tau/l}(X)$ at Belle II (189 fb⁻¹), PRL132, 211804 (2024)
 - $R_{e/\mu}(X)$ from Belle II (189 fb⁻¹), PRL 131, 051804 (2023)
 - $R_{e/u}(D^*)$ from Belle (711 fb⁻¹), PRD 108, 012002 (2023)
 - Test of LFU in angular asymmetries of $B \rightarrow D^* | v$ at Belle II (189 fb⁻¹),

PRL 131, 181801 (2023)

Luminosity frontier: SuperKEKB

- Asymmetric e+e- collider
 - $e^+e^- \rightarrow \gamma(4S) \rightarrow B\overline{B}$
 - very clean and well-known initial state

Beam current: KEKB x ~1.5

Belle II detector and dataset

Vertex detector (VXD)

Inner 2 layers: pixel detector (PXD) Outer 4 layers: strip sensor (SVD)

Central Drift Chamber (CDC)

He (50%), C_2H_6 (50%), small cells, long lever arm

Particle Identification

Barrel: Time-Of-Propagation counters (TOP) Forward: Aerogel RICH (ARICH)

ElectroMagnetic Calorimeter (ECL)

CsI(TI) + waveform sampling

Features:

- Near-hermetic detector

Gev

• Good at measuring neutrals, π^0 , γ , $K_{L...}$ $\sigma(E)/E \sim 2-4\%$

• Vertexing and tracking: σ vertex ~ 15µm, CDC spatial res. 100µm $\sigma(P_T)/P_T$ ~ 0.4%

Hadronic tagging methods

- The BB pairs are produced near threshold
- B tagging is necessary to measure $B \rightarrow X/D^*\tau v$, $B \rightarrow X/D^*lv$ ($\nu \ge 2$) simultaneously
- Hadronic tag
 - Fully reconstruct $B \rightarrow D^{(*)}(J/\psi/\Lambda)X$
 - Tagging efficiency 0.2~0.4%
 - less background

- Fully reconstruct one of the B mesons (B tag), possible to measure momentum of other B meson (B signal)
- Indirectly measure missing momentum of neutrinos in signal B decays
- $M^2_{miss} = (p_{beam} p_{Btag} p_{D(*)} p_{i})^2$
- E_{ECL} unassigned neutral energy in the a

other particles than a lepton as X on signal side

calorimeter
$$E_{\text{ECL}} = \sum_{i} E_{i}^{\gamma}$$

Hadronic tag reconstruction at Belle II

- Hadronic tagging reconstruction: Full Event Interpretation (FEI) trained 200 Boost Decision Tree (BDT) to reconstruct ~100 decay channels, ~10,000 B decay chains

 - • ε =0.23% for B^0

Signal B reconstruction

- Reconstruct $B \rightarrow D^* \tau v$ and $B \rightarrow D^* l v$ with same selections
- τ lepton reconstruct with $l(e, \mu)\nu\nu$
- D/D^* meson reconstruct with K^{\pm} , π^{\pm} , K_s , π^0
- Both neutral and charged B^{\pm}/B^{0} mesons reconstruct with D^{*+}/D^{*0} and $\tau/\ell = (e, \mu)$

$D^{*+} \rightarrow D^0 \pi^+ / D^+ \pi^0$	<i>B~</i> 98%
$D^{*0} \rightarrow D^0 \pi^0$	<i>B</i> ~65%
Eight D ⁰ modes	B~36%
Three D ⁺ modes	<i>B</i> ∼12%

• Fraction of survived B candidates in each category after event selections are estimated based on Belle II MC simulation

B condidates	$B \rightarrow D^* \tau \nu$	$B \rightarrow D * l v$	Background Truth $D^{(*)}$ $B \rightarrow D^{**} l\nu, B \rightarrow D^{(*)} X, B^0 < -> B^{\pm}, \dots$	Background Fake D ^(*)
B 0	2.7%	65.5%	12.5%	19.2%
B±	1.7%	34.7%	5.9%	57.8%

Dominant backgrounds

44

Fitting methodology and variables • Extracting $B \rightarrow D^* \tau v$, $B \rightarrow D^* l v$ yields by a two-dimensional simultaneously fit

- - $M^2_{\text{miss}} = (p_{\text{beam}} p_B_{\text{tag}} p_D(*) p_i)^2$

 $q^2 < 3.5$ GeV sideband: validate E_{ECL} modeling

 $m(D\pi)$ - $m(D^*)$ sideband: validate fake *D** modeling

Reconstruct $D^*\pi^0/v$ validate *D*** modeling

100

80

- Similarly sensitivity as Belle 15' result @ with only 189 fb⁻¹
- Belle II first result for R(D*)

 $R(D^*_{\tau/l}) = 0.262 + 0.041 - 0.039$ (stat) + 0.035

- Consistent with SM: 0.254 ± 0.005 , HFLAV24: 0.287 ± 0.012
- SM vs. experimental average deviation: $3.2\sigma \rightarrow 3.3\sigma$

$R_{\tau/l}(D^*)$ results

@ 711 fb ⁻¹	Source	Uncertain
0.032 (syst)	Statistical uncertainty	+15.4% -14.6%
	EECL PDF shape	+9.1% -8.3%
	MC statistics	±7.5%
	$B \rightarrow D^{**lv}$ modeling	+4.8%

"B anomaly" in semileptonic decays

 $R(D^*)$

New Physics scenarios with Effective Field Theory

• New physics contribution to $R(D^{(*)})$ are tested with Wilson operators

$$\mathcal{H}_{\rm eff} = \frac{4G_F}{\sqrt{2}} V_{cb} [(1 + C_{V_L})\mathcal{O}_{V_L} +$$

 \mathcal{O}_{V_L} , \mathcal{O}_{V_R} : Left-, right-handed vector operators \mathcal{O}_{S_L} , \mathcal{O}_{S_R} : Left-, right-handed scalar operators $\mathcal{O}_{\mathcal{T}}$: Tensor vector operators

 C_X : Willson coefficient for a X operator

$$\frac{R_{D^*}}{R_{D^*}^{SM}} = |1 + C_{V_L}|^2 + |C_{V_R}|^2 + 0.04$$
$$- 1.83 \operatorname{Re}[(1 + C_{V_L})C_{V_R}^*] - 5.17 \operatorname{Re}[(1 + C_{V_L})C_{V_R}^*] + 0.04$$

• Exp. average to constrain Wilson coefficients

	R(D)	R(D*)
Exp. average	0.356 ± 0.029	0.284 ± 0.013
SM	0.298 ± 0.004	0.254 ± 0.005

- $+C_{V_R}O_{V_R}+C_{S_L}O_{S_L}+C_{S_R}O_{S_R}+C_TO_T]$
- Refer to: PRD 110, 075005 (2024)
- $4|C_{S_T} C_{S_P}|^2 + 16.0|C_T|^2$
- $-0.11 \operatorname{Re}[(1 + C_{V_{I}} C_{V_{R}})(C_{S_{I}}^{*} C_{S_{R}}^{*})]$ $5.17 \text{Re}[(1 + C_{V_L})C_T^*] + 6.60 \text{Re}[C_{V_P}C_T^*],$

Constraint on charged Higgs scenario

- Charged Higgs in 2HDM (type II) is disfavored
- General 2HDM still survives

Constraint on leptoquark scenario

Madal	Co
woder	$\Lambda_{LQ} = M_{LQ}$
$SU(2)_L$ -singlet vector U_1^{μ}	C_{V_L}, C_{S_R}
$SU(2)_L$ -singlet scalar S ₁	$C_{V_L}, C_{S_L} = -4C_T$
$SU(2)_L$ -doublet vector R_2	$C_{V_R}, C_{S_L} = +4C_T$

- R(D^(*)) can be explained with three leptoquark models of 2 TeV

• All three models have favored regions within $1\sigma R(D^{(*)})$ exp. average

LFU test by $R_{\tau/l}(X)$ measurement

- Breakdown of $B \rightarrow X/v$ branching fractions
 - ~ 2/3 overlap with *D* and *D**
 - ~ 3/4 D decay to $v, K_L^0, n\pi$...
 - ~ 1/3 contribution from D^{**} and nonresonant X_c
- Multiple LEP experiments measured $Br(B \rightarrow X\tau v)$
 - Br($B \rightarrow X \tau v$) are completely saturated by D/D^* BFs \Rightarrow An update measurement is needed
- R(X) is critical cross-check of R(D^(*)), largest contribution from R(D^(*)), a partially complementary test of LFU

$$R(X_{\tau/\ell}) = \frac{Br(\bar{B} \to X\tau^- \bar{\nu}_{\tau})}{Br(\bar{B} \to X\ell^- \bar{\nu}_{\ell})}$$

• R(X) has never been measured

Results of $R_{\tau/l}(X)$ for LFU test

- Main systematics
 - Adjustment to MC (form factor, D and B branching factions)
 - Sample size in sideband for reweighting
- First Belle II preliminary $R_{\tau/\ell}(X)$ result

 $R_{\tau/l}(X) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$

 $R_{\tau/e}(X) = 0.232 \pm 0.020 \text{ (stat)} \pm 0.037 \text{ (syst)}$ $R_{\tau/\mu}(X) = 0.222 \pm 0.027 \text{ (stat)} \pm 0.050 \text{ (syst)}$

• Consistent with rough SM expectation $R_{\tau/I}(X)_{SM} \approx 0.222$

Expected sensitivity of LFU test at Belle II

The Belle II Physics Book, PTEP 2019, 123C01

arXiv:2207.06307

Summary and prospects

- $R(D^{(*)})$ shows 3.3 σ deviation between experimental average value and standard model prediction
 - Hint of Lepton Flavor Universality Violation
- Belle II performed new tests of LFU based on 189 fb⁻¹ data $R_{\tau/l}(D^*) = 0.267 + 0.041 - 0.039$ (stat) + 0.028 - 0.033 (syst)

 $R_{\tau/\ell}(X) = 0.228 \pm 0.016$ (stat) ± 0.036 (syst)

- SuperKEKB/Belle II resumed operation at the beginning of 2024 after LS1

Peak L

