A novel method for the Tau decay and its possible applications

Lianrong Dai

2025 中高能核物理和强子物理前沿研讨会

January 18, 2025, IHEP, China

HUZHOU UNIVERSITY

像然历历在日高能所读博期间的点点滴滴, 师恩难忘 。。。

岁月暇看,祝祝宗烨老师九十华诞快乐。

Outline

2. Polarization amplitudes in $\tau \rightarrow \nu_{\tau} VP$ decay beyond the Standard Model (BSM) LRD, Oset, EPJA54(2018)219 arXiv:1809.02510

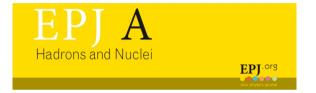
3. Triangle singularity in $\tau \rightarrow \nu_{\tau} \pi f_0(980)$ ($a_0(980)$) decays LRD, Yu, Oset, PRD99(2019)016021 arXiv:1809.11007

4. τ decay into a pseudoscalar and an axial-vector meson LRD, Roca, Oset, PRD99(2019)096003 arXiv:1811.06875

5. Tau decay into ν_{τ} and $a_1(1260)$, $b_1(1235)$, and two $K_1(1270)$ LRD, Roca, Oset, EPJC80(2020)673 arXiv: 2005.02653

> *G*-parity plays an important role in these reactions $G = (-1)^{L+S+I}$

1. $\tau \rightarrow \nu_{\tau} M_1 M_2$, with M_1, M_2 pseudoscalar or vector mesons arXiv:1805.04573 EPJA55(2019)20



meson		J
pseudoscalar	Р	1
vector	V	0

motivation

- Tau lepton decays have been instrumental to learn about weak interaction as well as strong interaction. (τ mass: 1776.93 ± 0.09 MeV)
- Several modes are well measured, $\tau \rightarrow \nu_{\tau} PP$ and $\tau \rightarrow \nu_{\tau} PV$.
- Surprisingly, there are no $\tau \rightarrow \nu_{\tau} VV$. (see pdg)

Naturely wondering whether there is some fundamental reason for this experimental fact?

meson $(q\bar{q})$ in the quark model

a) P and V mesons differ only by the spin arrangement of the quarks \Rightarrow possible to relate the rates of decay for $\tau^- \rightarrow \nu_{\tau} PP, PV, VV$ b) one important issue is charge symmetry [S. Weinberg, PR112(1958)1375] one interesting reaction $\tau \rightarrow \nu_{\tau} \pi \eta(\eta') \Leftarrow$ forbidden by *G*-parity [Leroy & Pestieau, PLB72(1978)398]

The G-parity plays an important role in these reactions. \Rightarrow we offer a new perspective into this issue.

what we did? establish a relationship [EPJA55(2019)20]

- by using the basic weak interaction and angular momentum algebra to relate the different processes.
- different interpretation of the role played by *G*-parity in these decays.

Algebra method

The derivation requires some patience, but we succeed using Racah Algebra.

no any free parameter relate the different processes

relevant form factors would be the same the structures can be very different for the produced P or V

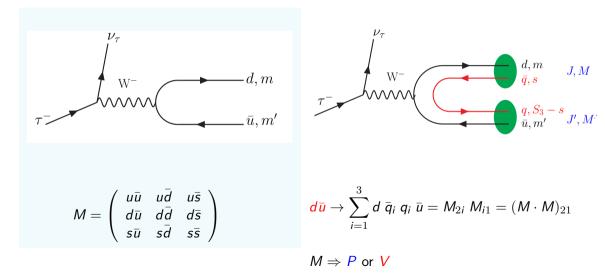
we obtained the analytical amplitudes for each reaction

- The evaluation of the invariant mass distributions and branching ratios of rates for *PP*, *PV*&*VV* cases
- good agreement with experimental data
- make some predictions

$[\mathsf{EPJA55(2019)20}] \qquad \qquad JJ' = 00, 01, 10, 11$

Appendix A. Evaluation of the matrix elements for the operators "1" and σ_i Appendix B. Evaluation of $\overline{\sum} \sum |t|^2$

The derivation - Cabibbo-favored $d\bar{u}$ production and Hadronization



$$P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}} + \frac{2\eta'}{\sqrt{6}} \end{pmatrix} ,$$

$$V_{\mu} = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}_{\mu}$$

For the hadronization, we use the ${}^{3}P_{0}$ model, which has been widely used in the literature and recently it has been found very instrumental to address different problems in hadron physics.

for ${}^{3}P_{0}$ model

- 1) L. Micu, NPB10(1969)521 cites 577
- 2) A. Le Yaouanc, et. al., PRD8(1973)2223 cites 737
- 3) F. E. Close, An Introduction to Quark and Partons, Academic Press, 1979

$$d\bar{u} \rightarrow \sum_{i=1}^{3} d\bar{q}_i q_i \bar{u} = M_{2i} M_{i1} = (M \cdot M)_{21}$$

$$(P \cdot P)_{21} = \frac{1}{\sqrt{2}} (\pi^{-} \pi^{0} - \pi^{0} \pi^{-}) + \frac{1}{\sqrt{3}} (\pi^{-} \eta + \eta \pi^{-}) + \frac{1}{\sqrt{6}} (\pi^{-} \eta' + \eta' \pi^{-}) + K^{0} K^{-},$$

$$(P \cdot V)_{21} = \frac{1}{\sqrt{2}} (\pi^{-} \rho^{0} + \pi^{-} \omega) - \frac{\pi^{0} \rho^{-}}{\sqrt{2}} + \frac{\eta \rho^{-}}{\sqrt{3}} + \frac{\eta' \rho^{-}}{\sqrt{6}} + K^{0} K^{*-},$$

$$(V \cdot P)_{21} = \frac{\rho^{-} \pi^{0}}{\sqrt{2}} + \frac{\rho^{-} \eta}{\sqrt{3}} + \frac{\rho^{-} \eta'}{\sqrt{6}} + \frac{1}{\sqrt{2}} (-\rho^{0} \pi^{-} + \omega \pi^{-}) + K^{*0} K^{-},$$

$$(V \cdot V)_{21} = \frac{1}{\sqrt{2}} (\rho^{-} \rho^{0} - \rho^{0} \rho^{-}) + \frac{1}{\sqrt{2}} (\rho^{-} \omega - \omega \rho^{-}) + K^{*0} K^{*-}.$$
 (1)

(2)

Similarly for Cabibbo-suppressed $s\bar{u}$ production and hadronization

$$s\bar{u} \rightarrow \sum_{i=1}^{3} s \bar{q}_i q_i \bar{u} = M_{3i} M_{i1} = (M \cdot M)_{31}$$

$$\begin{split} (P \cdot P)_{31} &= \mathcal{K}^{-} \frac{\pi^{0}}{\sqrt{2}} + \bar{\mathcal{K}}^{0} \pi^{-} + \left(\mathcal{K}^{-} \frac{\eta}{\sqrt{3}} - \frac{\eta}{\sqrt{3}} \mathcal{K}^{-}\right) + \left(\mathcal{K}^{-} \frac{\eta'}{\sqrt{6}} + \frac{2\eta'}{\sqrt{6}} \mathcal{K}^{-}\right) \,, \\ (P \cdot V)_{31} &= \mathcal{K}^{-} \left(\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}}\right) + \bar{\mathcal{K}}^{0} \rho^{-} + \left(-\frac{\eta}{\sqrt{3}} + \frac{2\eta'}{\sqrt{6}}\right) \mathcal{K}^{*-} \,, \\ (V \cdot P)_{31} &= \mathcal{K}^{*-} \left(\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}}\right) + \bar{\mathcal{K}}^{*0} \pi^{-} + \phi \mathcal{K}^{-} \,, \\ (V \cdot V)_{31} &= \mathcal{K}^{*-} \left(\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}}\right) + \bar{\mathcal{K}}^{*0} \rho^{-} + \phi \mathcal{K}^{*-} \,. \end{split}$$

Weak matrix elements in Standard Model (SM)

 $H = \mathcal{C} L^{\mu} \mathcal{Q}_{\mu}$

where C containing weak interaction constants and radial matrix elements. L^{μ} is the leptonic current

$$\mathbf{L}^{\mu} = \langle \bar{u}_{\nu} | \gamma^{\mu} - \gamma^{\mu} \gamma_5 | u_{\tau} \rangle$$

 Q^{μ} is the quark current

$$\mathbf{Q}^{\mu} = \langle \bar{u}_{d} | \gamma^{\mu} - \gamma^{\mu} \gamma_{5} | \mathbf{v}_{\bar{u}} \rangle$$

In the evaluation of Q_{μ} matrix element we assume that quark spinors are at rest in that frame

$$u_r = \left(\begin{array}{c} \chi_r \\ 0 \end{array}\right), v_r = \left(\begin{array}{c} 0 \\ \chi_r \end{array}\right)$$

The amplitudes

$$Q_0 = \langle \chi' | 1 | \chi \rangle \equiv M_0, \qquad Q_i = \langle \chi' | \sigma_i | \chi \rangle \equiv N_i$$

Denoting for simplicity: $\overline{L}^{\mu\nu} = \overline{\sum} \sum L^{\mu}L^{\nu\dagger}$

$$\overline{\sum} \sum |t|^2 = \overline{\sum} L^{00} \sum L^{\mu} L^{\nu \dagger} Q_{\mu} Q_{\nu}^* \\ = \overline{L}^{00} M_0 M_0^* + \overline{L}^{0i} M_0 N_i^* + \overline{L}^{i0} N_i M_0^* + \overline{L}^{ij} N_i N_j^*$$

where we sum over the final polarizations of the mesons produced.

$$\overline{L}^{\mu
u}$$
 can be easily evaluated in PRD92(2015)014031
 $\overline{\sum} \sum L^{\mu}L^{\nu\dagger} = \frac{1}{m_{\nu}m_{\tau}} \left(p^{\prime\mu}p^{\nu} + p^{\prime\nu}p^{\mu} - g^{\mu\nu}p^{\prime} \cdot p + i\epsilon^{lpha\mueta\nu}p^{\prime}_{lpha}p_{eta}\right)$

Matrix elements in p-wave for M_0

$$PP \quad J = 0, J' = 0 \quad M_0 = 0$$

$$PV \quad J = 0, J' = 1 \quad M_0 = (-1)^{-M-M'} \frac{1}{\sqrt{6}} q \, Y_{1,-(M+M')}(\hat{q}) \, \delta_{M0}$$

$$VP \quad J = 1, J' = 0 \quad M_0 = (-1)^{-M-M'} \frac{1}{\sqrt{6}} q \, Y_{1,-(M+M')}(\hat{q}) \, \delta_{M'0}$$

$$VV \quad J = 1, J' = 1 \quad M_0 = (-1)^{-M-M'} \frac{1}{\sqrt{3}} \mathcal{C}(111; M, M', M + M')$$

$$\times q \, Y_{1,-(M+M')}(\hat{q})$$

By inspecting the change when we permute particle 1 and 2, taking into account that in this permutation $Y_{1,\nu}(\hat{\boldsymbol{q}}) = Y_{1,\nu}(\widehat{\boldsymbol{p_1}} - \widehat{\boldsymbol{p_2}})$ goes to $Y_{1,\nu}(\widehat{\boldsymbol{p_2}} - \widehat{\boldsymbol{p_1}}) = (-)^1 Y_{1,\nu}(\widehat{\boldsymbol{p_1}} - \widehat{\boldsymbol{p_2}})$

Signs change of M_0 amplitude by permuting the order of mesons

	PP	PV	VP	VV
M_0	0	—	_	+

Matrix elements in p-wave for N_{μ}

$$PP \quad J = 0, J' = 0 \quad N_{\mu} = \frac{1}{\sqrt{6}} q \, Y_{1,\mu}(\hat{q}) \, \delta_{M0} \, \delta_{M'0}$$

$$PV \quad J = 0, J' = 1 \qquad N_{\mu} = (-1)^{1-M'} \frac{1}{\sqrt{3}} q \, Y_{1,\mu-M'}(\hat{q}) \mathcal{C}(111; M', -\mu, M' - \mu) \, \delta_{M0}$$

$$VP \quad J = 1, J' = 0 \qquad N_{\mu} = (-1)^{-M} \frac{1}{\sqrt{3}} q \, Y_{1,\mu-M}(\hat{q}) \mathcal{C}(111; M, -\mu, M - \mu) \, \delta_{M'0}$$

$$VV \quad J = 1, J' = 1 \qquad N_{\mu} = \frac{1}{\sqrt{6}} q \, Y_{1,\mu-M-M'}(\hat{q}) \{(-1)^{-M'} \delta_{\mu M} + 2 \, (-1)^{-M} +$$

Signs change of N_{μ} amplitude by permuting the order of mesons

	PP	PV	VP	VV
N_{μ}	_	+	+	_

from a different perspective that $\pi^-\eta$ and $\pi^-\eta'$ are forbidden by G-parity in coincidence with results obtained through different methods [C. Leroy, J. Pestieau, PLB72(1978)398

1) for the $\pi^-\pi^0$ channel

It comes with the combination $\pi^-\pi^0 - \pi^0\pi^-$. As a consequence N_μ adds for the two terms and we have a weight $2\frac{1}{\sqrt{2}}$ for the $\pi^-\pi^0$ channel

2) for $\pi^-\eta$ channel

It comes with the combinations $\pi^-\eta + \eta\pi^-$, and then the combination of the two terms cancels \Rightarrow do not have $\pi^-\eta$ production

Weigh	nts for the differe	ent channels and	d Contril	outions
Channels	h_i (for M_0)	\overline{h}_i (for N_μ)	M_0	N_{μ}
$\pi^0\pi^-$	0	$\sqrt{2}$	0	×
$\pi^-\eta$	0	0	0	0
$\pi^-\eta'$	0	0	0	0

 M_0 and N_μ carry negative and positive G-parity, respectively.

A novel method for the Tau decay and its possible applications

EPJA55(2019)20 in p-wave

Table	5.	Branching	ratios	for	PP	case	$_{\mathrm{in}}$	<i>p</i> -wave	normalize	
by τ^{-}	\rightarrow	$\nu_{\tau}K^{-}K^{0}.$								

е	Table 6. The same as table 5 but for PV and VV cases. The
~	results here in <i>p</i> -wave are only to support that they are in clear
	contradiction with experiment. Our real predictions for these
-	cases are in table 7 and 8.

Decay process	BR (Theo.)	BR (Exp.)
$^{1}\tau^{-} \rightarrow \nu_{\tau}\pi^{0}\pi^{-a}$	2.48×10^{-2}	$(3.0 \pm 3.2) \times 10^{-3}$
$^{1}\tau^{-} \rightarrow \nu_{\tau}\eta\pi^{-}$	0	$< 9.9 \times 10^{-5}$
$^{1} au^{-} ightarrow u_{ au} \eta' \pi^{-}$	0	$< 4.0 \times 10^{-6}$
$^{2}\tau^{-} \rightarrow \nu_{\tau}\eta K^{-b}$	8.17×10^{-5}	$(1.55 \pm 0.08) \times 10^{-4}$
$^{2}\tau^{-} \rightarrow \nu_{\tau}\eta' K^{-}$	3.26×10^{-7}	$< 2.4 \times 10^{-6}$
$^{2}\tau^{-} \rightarrow \nu_{\tau}\pi^{0}K^{-}$	1.29×10^{-4}	$(2.7 \pm 1.1) \times 10^{-4}$
$^{1} au^{-} ightarrow u_{ au} K^{-} K^{0}$	fit to the Exp.	$(1.48 \pm 0.05) \times 10^{-3}$
$^{2}\tau^{-} \rightarrow \nu_{\tau}\pi^{-}\bar{K}^{0}$	2.52×10^{-4}	$(5.4 \pm 2.1) \times 10^{-4}$

^a Means Cabibbo-allowed.

^b Means Cabibbo-suppressed.

$V\!V$ case not shown on the right table, due to no experimental data

Decay process	BR (Theo.)	BR (Exp.)
$^{1}\tau^{-} \rightarrow \nu_{\tau}\pi^{-}\rho^{0}$	3.90×10^{-3}	
$^{1}\tau^{-} \rightarrow \nu_{\tau}\pi^{-}\omega$	5.31×10^{-3}	$(1.95 \pm 0.06)\%$
$^{1}\tau^{-} \rightarrow \nu_{\tau}\pi^{0}\rho^{-}$	3.95×10^{-3}	
$^{1}\tau^{-} \rightarrow \nu_{\tau}\eta\rho^{-}$	4.32×10^{-4}	
$^{1}\tau^{-} \rightarrow \nu_{\tau}\eta'\rho^{-}$	8.25×10^{-9}	
${}^1\tau^- \to \nu_\tau K^0 K^{*-}$	2.51×10^{-4}	
${}^1\tau^- \to \nu_\tau K^{*0}K^-$	2.49×10^{-4}	$(2.1 \pm 0.4) \times 10^{-3}$
$^{2}\tau^{-} \rightarrow \nu_{\tau}K^{-}\rho^{0}$	2.18×10^{-5}	$(1.4 \pm 0.5) \times 10^{-3}$
$^{2}\tau^{-} \rightarrow \nu_{\tau}K^{-}\omega$	2.04×10^{-5}	$(4.1 \pm 0.9) \times 10^{-4}$
$^{2}\tau^{-} \rightarrow \nu_{\tau} \bar{K}^{0} \rho^{-}$	4.22×10^{-5}	$(2.2 \pm 0.5) \times 10^{-3}$
$^{2}\tau^{-} \rightarrow \nu_{\tau}\eta K^{*-}$	3.70×10^{-6}	$(1.38 \pm 0.15) \times 10^{-4}$
$^{2}\tau^{-} \rightarrow \nu_{\tau}\eta' K^{*-}$	0	
$^{2}\tau^{-}\rightarrow\nu_{\tau}\pi^{0}K^{*-}$	6.37×10^{-5}	
$^{2}\tau^{-}\rightarrow\nu_{\tau}\bar{K}^{*0}\pi^{-}$	1.22×10^{-4}	$(2.2 \pm 0.5) \times 10^{-3}$
$^{2}\tau^{-} \rightarrow \nu_{\tau}\phi K^{-}$	2.40×10^{-6}	$(4.4 \pm 1.6) \times 10^{-5}$
a .		

We develop formalism for s-wave production for VP and VV case

The matrix elements in s-wave production

$$\begin{array}{lll} PP & J=0, J'=0 & M_0=0 \\ PV & J=0, J'=1 & M_0=\frac{1}{\sqrt{6}}\frac{1}{4\pi} \\ VP & J=1, J'=0 & M_0=\frac{1}{\sqrt{6}}\frac{1}{4\pi} \\ VV & J=1, J'=1 & M_0=\frac{1}{\sqrt{3}}\frac{1}{4\pi} \mathcal{C}(111; M, M', M+M') \end{array}$$

$$\begin{array}{ll} PP & J = 0, J' = 0 & N_{\mu} = \frac{1}{\sqrt{6}} \frac{1}{4\pi} \, \delta_{M0} \, \delta_{M'0} \, (-1)^{-\mu} \\ PV & J = 0, J' = 1 & N_{\mu} = -(-1)^{-\mu} \frac{1}{\sqrt{3}} \frac{1}{4\pi} \mathcal{C}(111; M', -\mu, M' - \mu) \, \delta_{M0} \\ VP & J = 1, J' = 0 & N_{\mu} = (-1)^{-\mu} \frac{1}{\sqrt{3}} \frac{1}{4\pi} \mathcal{C}(111; M, -\mu, M - \mu) \, \delta_{M'0} \\ VV & J = 1, J' = 1 & N_{\mu} = \frac{1}{\sqrt{6}} \frac{1}{4\pi} \left\{ \delta_{M\mu} + 2 \, (-1)^{-\mu} - M' \mathcal{C}(111; M, -\mu, M - \mu) \right. \\ & \left. \times \mathcal{C}(111; M', -M - M' + \mu, -M + \mu) \right\} \end{array}$$

Signs by permuting the order of the mesons in s-wave production

	PP	PV	VP	VV
M_0	0	+	+	—
N_{μ}	+	—	—	+

We obtain the analytical amplitudes in s-wave production EPJA55(2019)20

1) PP(J = 0, J' = 0) $\overline{\sum} \sum |t|^2 = \frac{1}{m_{\tau}m_{\nu}} \left(\frac{1}{4\pi}\right)^2 \left(E_{\tau}E_{\nu} - \frac{p^2}{3}\right) \frac{1}{2}\overline{h_i^2}$ (2-a) 2) PV(J = 0, J' = 1): VP(J = 1, J' = 0) $\sum_{\nu} \sum_{\nu} |t|^2 = \frac{1}{m_{\nu} m_{\nu}} \left(\frac{1}{4\pi}\right)^2 \left[\left(E_{\tau} E_{\nu} + \boldsymbol{p}^2 \right) \frac{1}{2} \frac{h_i^2}{h_i^2} + \left(E_{\tau} E_{\nu} - \frac{\boldsymbol{p}^2}{3} \right) \overline{h}_i^2 \right]$ (2-b) 3) VV(J = 1, J' = 1) $\overline{\sum} \sum |t|^2 = \frac{1}{m m} \left(\frac{1}{4\pi}\right)^2 \left[\left(E_{\tau} E_{\nu} + \boldsymbol{p}^2 \right) \frac{\boldsymbol{h}_i^2}{\boldsymbol{h}_i^2} + \frac{7}{2} \left(E_{\tau} E_{\nu} - \frac{\boldsymbol{p}^2}{3} \right) \overline{\boldsymbol{h}_i^2} \right]$ (2-c) p is the momentum of the τ or ν given by $p = \frac{\lambda^{1/2}(m_{\tau}^2, m_{\nu}^2, M_{inv}^2(M_1M_2))}{2M_{\tau}(M_1M_2)}$

h_i and \overline{h}_i coefficients in s-wave production

channels	<mark>h</mark> i (for <mark>Μ</mark> 0)	\overline{h}_i (for N_μ)	
$\pi^- ho^0 \ \pi^-\omega$	0	$\sqrt{2}$	
$\pi^-\omega$	$\sqrt{2}$	0	
$\pi^0 ho^-$	0	$-\sqrt{2}$	
ηho^-	$\frac{2}{\sqrt{3}}$	0	
$\eta' ho^- \ K^{*0}K^- \ K^0K^{*-}$	$\frac{\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{6}}}$	0	
$K^{*0}K^-$	1	1	Scalar resonances
$\mathcal{K}^0\mathcal{K}^{*-}$	1	1	
$ ho^-\omega$	0	$\sqrt{2}$	
$ ho^-\omega$ K *0 K $^{*-}$	1	1	Axial-vector resonances
$ ho^- ho^0$	$\sqrt{2}$	0	
ηK^{*-}	0	$-\frac{2}{\sqrt{3}}$ tan θ_c	
$\rho^{-}\rho^{0}$ ηK^{*-} $\eta' K^{*-}$	$rac{3}{\sqrt{6}}$ tan $ heta_{m{c}}$	$-rac{2}{\sqrt{3}} an heta_{c}$ $rac{1}{\sqrt{6}} an heta_{c}$	

The final differential mass distribution and width

$$\frac{d\Gamma}{dM_{\rm inv}(M_1M_2)} = \frac{2 \, m_\tau 2 \, m_\nu}{(2\pi)^3} \frac{1}{4m_\tau^2} \, p_\nu \tilde{\rho}_1 \, \overline{\sum} \, \sum |t|^2 \tag{3}$$

where p_{ν} is the neutrino momentum in the tau rest frame, and \tilde{p}_1 the momentum of M_1 in the M_1, M_2 rest frame.

$$\mathbf{p}_{\nu} = \frac{\lambda^{1/2}(m_{\tau}^2, m_{\nu}^2, M_{\text{inv}}^2(M_1M_2))}{2M_{\tau}}, \qquad \widetilde{\mathbf{p}}_1 = \frac{\lambda^{1/2}(M_{\text{inv}}^2(M_1M_2), m_{M_1}^2, m_{M_2}^2)}{2M_{\text{inv}}(M_1M_2)}$$

Then by integrating Eq. (3) over the M_1M_2 invariant mass, we obtain the width.

EPJA55(2019)20 in s-wave

Table 8. The same as table 7 but with convolution.	able 8.	The same	as table	7 but with	convolution.
--	---------	----------	----------	------------	--------------

Decay process	BR (Theo.)	BR (Exp.)
$\tau^- \to \nu_\tau \pi^- \rho^0$	7.81×10^{-2}	
$\tau^- \to \nu_\tau \pi^- \omega$	5.56×10^{-2}	$(1.95 \pm 0.06)\%$
$\tau^- \to \nu_\tau \pi^0 \rho^-$	7.91×10^{-2}	
$\tau^- \to \nu_\tau \eta \rho^-$	5.34×10^{-3}	
$\tau^- \to \nu_\tau \eta' \rho^-$	2.96×10^{-5}	
$\tau^- \to \nu_\tau K^0 K^{*-}$	4.91×10^{-3}	
$\tau^- \to \nu_\tau K^{*0} K^-$	4.87×10^{-3}	$(2.1 \pm 0.4) \times 10^{-3}$
$\tau^- \to \nu_\tau K^- \rho^0$	3.82×10^{-4}	$(1.4 \pm 0.5) \times 10^{-3}$
$\tau^- \to \nu_\tau K^- \omega$	3.10×10^{-4}	$(4.1 \pm 0.9) \times 10^{-4}$
$\tau^- \to \nu_\tau \bar{K}^0 \rho^-$	7.44×10^{-4}	$(2.2 \pm 0.5) \times 10^{-3}$
$\tau^- \to \eta K^{*-} \nu_\tau$	fit to the Exp.	$(1.38 \pm 0.15) \times 10^{-4}$
$\tau^- \to \nu_\tau \eta' K^{*-}$	1.21×10^{-10}	
$\tau^- \to \nu_\tau \pi^0 K^{*-}$	1.03×10^{-3}	
$\tau^- \to \nu_\tau \bar{K}^{*0} \pi^-$	1.99×10^{-3}	$(2.2 \pm 0.5) \times 10^{-3}$
$\tau^- \to \nu_\tau \phi K^-$	6.54×10^{-5}	$(4.4 \pm 1.6) \times 10^{-5}$

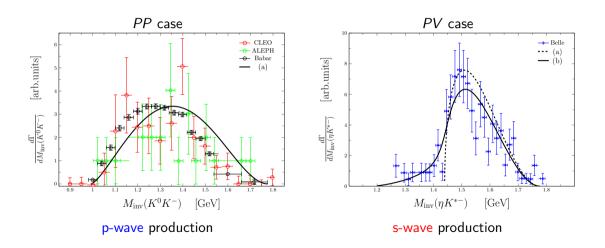
predictions	for	VV	case
•			

$\tau^- \to \nu_\tau \rho^- \rho^0$	3.31×10^{-3}
$\tau^- \to \nu_\tau \rho^- \omega$	5.82×10^{-3}
$\tau^- \to \nu_\tau K^{*0} K^{*-}$	$8.18 imes 10^{-6}$
$\tau^- \to \nu_\tau K^{*-} \rho^0$	2.96×10^{-5}
$\tau^- \to \nu_\tau K^{*-} \omega$	6.0×10^{-6}
$\tau^- \to \nu_\tau \bar{K}^{*0} \rho^-$	5.46×10^{-5}
$\tau^- \to \nu_\tau K^{*-} \phi$	0

by comparisons with experiments for rates, we find that

- a) *PP* case, p-wave production
- b) PV and VV cases, s-wave production

Comparisons with experiments for invariant mass distributions



we find that our predictions are in line with the results of other theoretical approaches

for examples:

Kühn, Santamaria, ZPC48(1990)445; Barish, troynowski, Phys Rep 157(1988) 1 ; Li, PRD52(1995)5165; Li, PRD52(1995)5184 (vector meson dominance) Volkov, Kostunin, Phys Part Nucl Lett 10 (2013)7

discussions in section 7 (comparison with other approaches): EPJA55(2019)20

2. Polarization amplitudes in $\tau \rightarrow \nu_{\tau} VP$ decay beyond the Standard Model (BSM) arXiv:1809.02510 EPJA54,219

• $\tau \rightarrow \nu_{\tau} VP$

- project over spin components
- M, M' are the third components of the K^{*0} and K^- , respectively,

 $\begin{array}{c|c|c} K^{*0} & J = 1 & M = 0, \pm 1 \\ \hline K^{-} & J' = 0 & M' = 0 \end{array}$

• The quantization axis is taken along the direction of the neutrino in the τ rest frame.

we obtain:

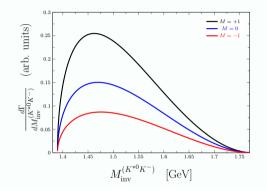
1) first The τ decay amplitude for different spin *M* components

2) then obtain the final differential width for each M component and ratios divided by the total differential width

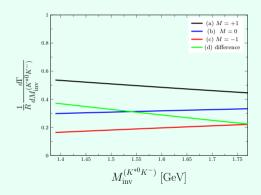
$$d\Gamma/d\mathcal{M}_{\rm inv}^{(K^{*0}K^{-})} = \frac{2 \, m_{\tau} 2 \, m_{\nu}}{(2\pi)^3} \frac{1}{4m_{\tau}^2} \, p_{\nu} \widetilde{p}_1 \, \overline{\sum} \sum |t|^2$$

where p_{ν} is the momentum of neutrino in τ rest frame and \tilde{p}_1 of K^{*0} in the $K^{*0}K^-$ rest frame.

The differential width for each different M



difference of $M = \pm 1$



a big sensitivity of magnitude we propose to measure the difference

Extension to the consideration of right-handed quark currents The new differential widths (BSM)

$${f a}(\gamma^\mu-\gamma^\mu\gamma_5)+{f b}(\gamma^\mu+\gamma^\mu\gamma_5)=\gamma^\mu-lpha\gamma^\mu\gamma_5\,.$$

we will study the distributions for different M' as a function of α .

1) M = 0

$$\overline{\sum} \sum |t|^2 = \frac{1}{m_{\tau} m_{\nu}} \frac{1}{6} \frac{1}{(4\pi)^2} \left\{ \left(E_{\tau} E_{\nu} + p^2 \right) + 2\alpha^2 \left(E_{\tau} E_{\nu} - p^2 \right) \right\}$$

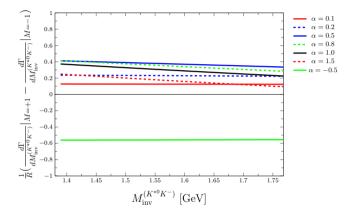
2) M = 1

$$\overline{\sum} \sum |t|^2 = \frac{1}{m_\tau m_\nu} \frac{1}{6} \frac{1}{(4\pi)^2} \left\{ (E_\tau E_\nu + p^2) + 2\alpha (E_\nu + E_\tau) p + [2E_\tau E_\nu + (E_\nu - E_\tau) p] \alpha^2 \right\}$$

3)
$$M = -1$$

 $\overline{\sum} \sum |t|^2 = \frac{1}{m_\tau m_\nu} \frac{1}{6} \frac{1}{(4\pi)^2} \left\{ (E_\tau E_\nu + p^2) - 2\alpha (E_\nu + E_\tau) p + [2E_\tau E_\nu - (E_\nu - E_\tau) p] \alpha^2 \right\}$

suggest to measure the difference experimentally



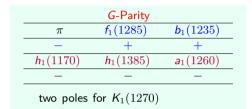
It is seen that the difference of M=+1 and M=-1 contributions depend strongly on different α \Rightarrow a big sensitivity of magnitude

this magnitude should be easy to differentiate experimentally.

Test on the nature of scalar and axial-vector resonances in the tau decay

Scalar and axial-vector resonances in the chiral unitary approach

G-Parity		
π	$f_0(980)$	$a_0(980)$
—	+	—



 scalar resonances as dynamically generated from the pseudoscalar-pseudoscalar interaction Oller, Oset, NPA620,438; NPA652, 407 (Erratum)
 Oller, Oset, Pelaez, PRD59, 074001;PRD60,099906 (Erratum);PRD75,099903 (Erratum)
 Kaiser, EPJA 3,307; Locher, Markushin, Zheng, EPJC4,317
 Nieves, Arriola, NPA 679,57; Pelaez, Rios, PRL97,242002

 axial-vector resonances as dynamically generated from the vector-pseudoscalar interaction Lutz, Kolomeitsev, NPA 730, 392 Roca, Oset, Singh, PRD 72, 014002 Geng, Oset, Roca, Oller, PRD 75, 014017 Zhou, Ren, Chen, Geng, PRD 90, 014020

3. Triangle singularity in $\tau \to \nu_{\tau} \pi f_0(980)$ ($a_0(980)$) decays arXiv:1809.11007 PRD99,016021

$$\label{eq:constraint} \begin{split} \tau \to \nu_\tau {\cal K}^{*0} {\cal K}^- & \mbox{for } J=1, J'=0 \mbox{ case} \\ \mbox{the experimental branching ratio } {\cal B}(\tau \to \nu_\tau {\cal K}^{*0} {\cal K}^-) = (2.1\pm0.4)\times 10^{-3} \end{split}$$

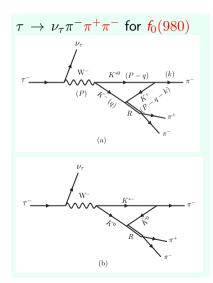
Signs resulting in the	M_0 and N_μ	amplitudes	by per-
muting the order of th	e mesons in	s-wave pro	duction
	D1/	1/0	101

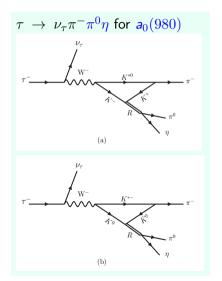
	PP	PV	VP	VV
M_0	—	+	+	_
N_{μ}	+	—	_	+

	G-Parity	,
π	$f_0(980)$	$a_0(980)$
_	+	—

- while M_0 is the same for VP and PV productions, N_i changes sign which is essential for the conservation of *G*-parity in the reaction.
- there is no simultaneous contribution of the two terms in these reactions $\pi^- f_0(980)$ will proceed with the N_i amplitude while $\pi^- a_0(980)$ proceeds with the M_0 term

Diagram for the $au o u_{ au} K^{*0} K^-$ decay





Explicit filter of G-parity states

For the production of $\pi^- f_0(980) \implies \text{negative } G\text{-parity}$

$$\overline{\sum} \sum |t|^2 = \overline{L}^{ij} \widetilde{N}_i \, \widetilde{N}_j^* \, g^2 \, | \, 2 \, t_{K^+ K^-, \pi^+ \pi^-} |^2 \\
= \frac{\mathcal{C}^2}{m_\tau m_\nu} \left(\mathcal{E}_\tau \mathcal{E}_\nu - \frac{1}{3} \rho^2 \right) \frac{1}{3} \frac{1}{(4\pi)^2} \, k^2 |t_L|^2 \, g^2 \, | \, 2 \, t_{K^+ K^-, \pi^+ \pi^-} |^2$$

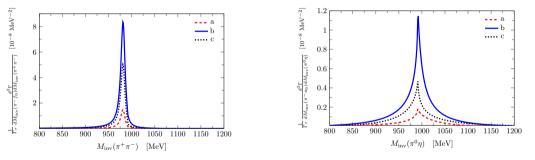
For the production of $\pi^- a_0(980) \implies \text{positive } G\text{-parity}$

$$\begin{split} \sum \sum |t|^2 &= \bar{L}^{00} \widetilde{M}_0 \ \widetilde{M}_0^* \ g^2 \ | \ 2 \ t_{K^+ K^-, \pi^0 \eta} |^2 \\ &= \frac{\mathcal{C}^2}{m_\tau m_\nu} \left(\mathcal{E}_\tau \mathcal{E}_\nu + \mathcal{p}^2 \right) \frac{1}{6} \frac{1}{(4\pi)^2} \ k^2 |t_L|^2 \ g^2 \ | \ 2 \ t_{K^+ K^-, \pi^0 \eta} |^2 \end{split}$$

The double differential mass distribution as a function of $M_{inv}(R)$

Chiral Unitary Approach + Triangle Singularity

 $\tau \to \nu_{\tau} \pi^{-} \pi^{+} \pi^{-}$ for $f_0(980)$



 $M_{inv}(\pi^- R)$ at 1317 MeV (Line a), 1417 MeV (Line b), and 1517 MeV (Line c)

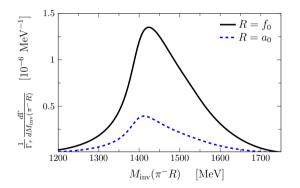
- The distribution with largest strength is near $M_{inv}(\pi^- R)$ =1417 MeV
- A strong peak in the $\pi^+\pi^-$ mass distribution around 980 MeV corresponding to the $f_0(980)$
- The distinctive cusp in the $\pi^0\eta$ mass distribution around 990 MeV corresponding to the $a_0(980)$

 $\tau \rightarrow \nu_{\tau} \pi^{-} \pi^{0} \eta$ for $a_0(980)$

A novel method for the Tau decay and its possible applications

Integrating $\frac{d\Gamma}{dM_{inv}(\pi^-R)}$ over $M_{inv}(\pi^-R)$ we obtain the branching fractions

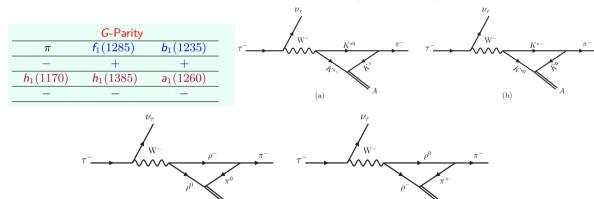
It is found that these numbers are within measurable range!



 $\mathcal{B}(\tau^- \to \nu_\tau \pi^- f_0(980); f_0(980) \to \pi^+ \pi^-) = (2.6 \pm 0.5) \times 10^{-4}$ $\mathcal{B}(\tau^- \to \nu_\tau \pi^- a_0(980); a_0(980) \to \pi^0 \eta) = (7.1 \pm 1.4) \times 10^{-5}$

4. τ decay into a pseudoscalar and an axial-vector meson arXiv:1811.06875 PRD99, 096003

Diagrams for the decay of $\tau^- \rightarrow \nu_\tau \pi^- A$ (A axial vectors)



(b)

(a)

A

Explicit filter of G-parity states

G-Parity	
$f_1(1285)$	$b_1(1235)$
+	+
$h_1(1385)$	$a_1(1260)$
_	_
	$f_1(1285) +$

there is no simultaneous contribution in these reactions.

 $\pi^- f_1(1285)$ and $\pi^- b_1(1235)$ will proceed with the $\mathit{N_i}$ amplitude.

 $\pi^{-}h_1(1170), \ \pi^{-}h_1(1380) \ \text{and} \ \pi^{-}a_1(1260) \ \text{proceed}$ with the M_0 term.

• for G-parity negative axial states

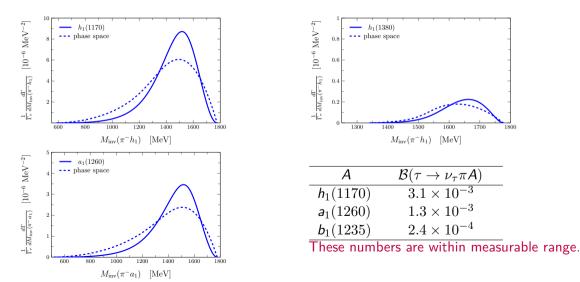
 $\overline{\sum} \sum |t|^2 = \frac{c^2}{m_{\tau}m_{\nu}} \frac{1}{(4\pi)^2} \frac{1}{3} \left(E_{\tau} E_{\nu} + p^2 \right) g^2 k^2 \left| (-1) g_{A,K^*\bar{K}} t_L(K^*\bar{K}^*) - 2 D(-1) g_{A,\rho\pi} t_L(\rho\rho) \right|^2$

• for G-parity positive axial states $\overline{\sum} \sum |t|^2 = \frac{c^2}{m_{\tau} m_{\nu}} \frac{1}{(4\pi)^2} \frac{7}{6} (E_{\tau} E_{\nu} - \frac{1}{3} p^2) g^2 k^2 |g_{A,K^*\bar{K}}|^2 |t_L(K^*\bar{K}^*)|^2$

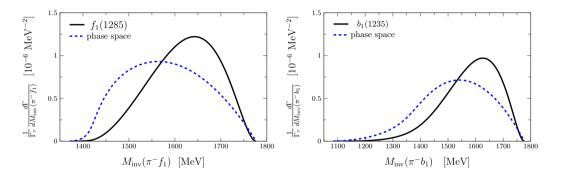
• (only input) from the experimental branching ratio to obtain $\frac{\mathcal{C}^2}{\Gamma_{\tau}}$ $\mathcal{B}(\tau \to \nu_{\tau} K^{*0} K^{*-}) = \frac{1}{\Gamma_{\tau}} \Gamma(\tau \to \nu_{\tau} K^{*0} K^{*-}) = (2.1 \pm 0.5) \times 10^{-3} \Rightarrow \frac{\mathcal{C}^2}{\Gamma_{\tau}} = (5.0) \times 10^{-4} \,\mathrm{MeV^{-1}}.$

1800

invariant mass distributions and branching ratios for G-parity positive states



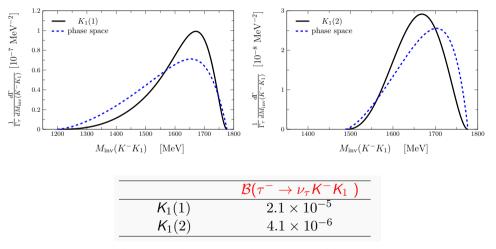
invariant mass distributions and branching ratios for G-parity negative states



A	$\mathcal{B}(\tau \to \nu_{\tau} \pi A)$
$f_1(1285)$	2.4×10^{-4}
$h_1(1380)$	$3.8 imes 10^{-5}$

These numbers are within measurable range.

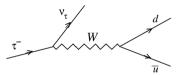
invariant mass distributions and branching ratios for two $K_1(1270)$ states



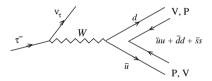
These numbers are within measurable range.

5. Tau decay into ν_{τ} and $a_1(1260)$, $b_1(1235)$, and two $K_1(1270)$ arXiv:2005.02653 EPJC80,673

Cabibbo-favored τ decay to quark-antiquark



Hadronization of the primary $q\bar{q}$ pair (with the quantum numbers of the vacuum) to produce a vector and pseudoscalar meson.



$$d\bar{u} \rightarrow \sum_{i=1}^{3} d\bar{q}_i q_i \bar{u} = \sum_{i=1}^{3} M_{2i} M_{i1} = (M^2)_{21}$$

$$(\mathbf{P} \cdot \mathbf{V})_{21} = \pi^{-} \left(\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} \right) + \left(-\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} \right) \rho^{-} + K^{0} K^{*-},$$

$$(\mathbf{V} \cdot \mathbf{P})_{21} = \rho^{-} \left(\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} \right) + \left(-\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} \right) \pi^{-} + K^{*0} K^{-}.$$

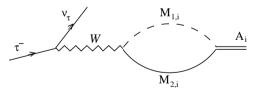
A novel method for the Tau decay and its possible applications

Cabibbo-suppressed: proceed analogously but the hadronization of $s\bar{u}$ gives rise to the matrix element $(M^2)_{31}$ two $K_1(1270)$ with $I = \frac{1}{2}$

$$(\mathbf{P} \cdot \mathbf{V})_{31} = \mathbf{K}^{-} \left(\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} \right) + \bar{\mathbf{K}}^{0} \rho^{-} + \left(-\frac{\eta}{\sqrt{3}} + \frac{2\eta'}{\sqrt{6}} \right) \mathbf{K}^{*-} ,$$

$$(\mathbf{V} \cdot \mathbf{P})_{31} = \mathbf{K}^{*-} \left(\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} \right) + \bar{\mathbf{K}}^{*0} \pi^{-} + \phi \mathbf{K}^{-} .$$

final state interaction



Mechanism for the production of the dynamically generated

axial-vector resonance A_i through the coupled channels $M_{1,i}$, $M_{2,i}$, of pseudoscalar and vector mesons

axial-vector resonance A_i in *s*-wave in the chiral unitary approach Roca, Oset, Singh, PRD 72(2005)014002; Geng, Oset, Roca, Oller, PRD75(2007)014017

an example: $\tau \rightarrow \nu_{\tau} a_1(1260)$

Table: Weights $h'_i(\bar{h}'_i)$ of the different I = 1, G = -1, VP components for the $M_0(N_i)$ amplitudes.

	$\rho^0\pi^-$	$ ho^{-}\pi^{0}$	$K^{*0}K^-$	$K^{*-}K^0$
h'_i	0	0	1	1
\bar{h}'_i	$\sqrt{2}$	$-\sqrt{2}$	-1	1

Table: Couplings of the I = 1, G = -1, axial-vector resonance $a_1(1260)$ to the different VP channels

	$ ho^0\pi^-$	$ ho^{-}\pi^{0}$	$K^{*0}K^-$	$K^{*-}K^0$
gi	$rac{1}{\sqrt{2}} g_{{\sf a}_1, ho\pi}$	$-rac{1}{\sqrt{2}} g_{a_1, ho\pi}$	$rac{1}{\sqrt{2}} {m{g}}_{{m{a}}_1,{m{K}}^*ar{m{K}}}$	$-rac{1}{\sqrt{2}} {oldsymbol{g}}_{{oldsymbol{a}}_1,{oldsymbol{K}}^*ar{oldsymbol{K}}}$

The amplitude EPJA55(2019)20 for the (final state interaction) mechanism is readily obtained simply by substituting

$$\begin{array}{lll} h_j' \rightarrow h_j'' = & \sum_i h_i' G_i(M_{A_j}) g_{A_j,i} \\ \bar{h}_j' \rightarrow \bar{h}_j'' = & \sum_i \bar{h}_i' G_i(M_{A_j}) g_{A_j,i} \end{array}$$

here A_j and G_i (loop function) for $a_1(1260)$.

Results $\Gamma(\tau \rightarrow \nu A)$

$$\Gamma(au o
u A) = rac{2 \, m_{ au} 2 \, m_{
u}}{8 \pi} rac{1}{m_{ au}^2} \, p_
u \, \overline{\sum} \sum |t|^2$$

Table: Branching ratios (in %) for creation of the different axial-vector resonances.

mode	Decay channel	B (%)
Cabibbo-favored	$\tau^- \rightarrow \nu_\tau a_1(1260)$	$18 \pm 7 \;$ (exp)
	$\tau^- \rightarrow \nu_\tau b_1(1235)$	10 ± 4
Cabibbo-suppressed	$ au^- o u_ au K_1(A)$	0.63 ± 0.25
	$ au^- o u_ au$ $K_1(B$	0.65 ± 0.26

for Cabibbo-favored mode, we find that the unmeasured rates for $b_1(1235)$ production are similar to those of the $a_1(1260)$.

for Cabibbo-suppressed mode, two $K_1(1270)$ states are produced with smaller rates, since they are Cabibbo suppressed by a factor about $\tan \theta_c^2 \simeq 1/20$, but they have very distinct decay modes, which we propose to differentiate.

Suggestions for looking for the two K_1 states

So far experiments look at the $\bar{K}\pi\pi$ invariant mass distribution, which contains both $K^*\pi$ and ρK .

$$\Gamma(\tau \to \nu_{\tau} A \to \nu_{\tau} V P) = \Gamma(\tau \to \nu_{\tau} A) \frac{\Gamma(A \to V P)}{\Gamma_{A}}, \qquad \Gamma(A \to V P) = \frac{|g_{A, V P}|^{2}}{8\pi M_{A}^{2}} q$$

Table: Branching ratios (in %) for the $\Gamma(\tau \rightarrow \nu_{\tau} A \rightarrow \nu_{\tau} VP)$ process for the I = 1/2 intermediate axial-vector resonances. The results have an uncertainty of 40%.

Decay channel	$K^{*-}\pi^0$	$ar{K}^{*0}\pi^-$	$ ho^0 K^-$	$ ho^-ar{K}^0$	ωK^{-}	ϕK^-	$K^{*-}\eta$
$\tau^- \rightarrow \nu_\tau K_1(1) \rightarrow \nu_\tau VP$	0.12	0.23	0.005	0.010	0.007	0	0
$ au^- o u_ au K_1(2) o u_ au VP$	0.019	0.037	0.085	0.17	0.012	0	0.007

we suggest to measure: (the channels to which this resonance couple most strongly)

- the $K^*\pi$ decay mode to see the $K_1(1)$ state
- the ρK decay mode to see the $K_1(2)$ state

These measurements should shed light on the existence of these two K_1 states.

further comparison with experiments of EPJC81(2021)226 for branching ratios for three pseudoscalar decay modes (or pseudoscalar plus ω or ϕ)

Decay channel	Experimental BR (%)	This work, BR (%)
$K^-\pi^0\pi^0\nu_{\tau}$	0.0585 ± 0.0027	0.046
$\pi^- \bar{K}^0 \pi^0 \nu_\tau$	0.3807 ± 0.0124	0.36
$K^-\pi^0 K^0 v_\tau$	0.1494 ± 0.0070	0.17
$\pi^- K^0 \bar{K}^0 v_\tau$	0.1516 ± 0.0247	0.17
$K^-\pi^+\pi^-\nu_\tau$	0.2923 ± 0.0067	0.27
$\pi^- K^- K^+ \nu_\tau$	0.1431 ± 0.0027	0.17
$K^{-}\pi^{0}\eta v_{\tau}$	0.00483 ± 0.00116	0.0023
$\pi^{-}\bar{K}^{0}\eta v_{ au}$	0.00936 ± 0.00149	0.0047
$K^-\omega v_{\tau}$	0.0410 ± 0.0092	0.019
$K^-\phi v_{\tau}$	0.0044 ± 0.0016	0
$\pi^-\omega v_{\tau}$	1.955 ± 0.063	2.3

we find a very good overall agreement with data. This gives further strength to our predictions and should be an extra stimulus to find the resonant contributions that we have evaluated.

Summary

proposed an algebra method to study the tau decay

arXiv:1805.04573 EPJA55(2019)20

 \Rightarrow analytical amplitudes \Rightarrow relate

only one input parameter decided by experiment data

from a different perspective to show that $\pi^-\eta(\eta')$ are forbidden by G-parity. we find that

- a) *PP* case, p-wave production
- b) PV and VV cases, s-wave production
- Polarization amplitudes and test BSM in the tau decay

arXiv:1809.02510 EPJA54,219

finding that the difference of M = +1 and M = -1 contributions depend strongly on different α ($\alpha = 1$ for SM)

this magnitude should be easy to differentiate experimentally.

• Test on the nature of scalar resonances in the tau decay arXiv:1809.11007 PRD99.016021

G-parity plays an important role in these reactions

explicit filter of different G-parity states

 $\begin{cases} f_0(980) & I = 0 & G = + \\ a_0(980) & I = 1 & G = - \end{cases}$

$$\mathcal{B}(\tau^- \to \nu_\tau \pi^- f_0(980); f_0(980) \to \pi^+ \pi^-) = (2.6 \pm 0.5) \times 10^{-4}$$
$$\mathcal{B}(\tau^- \to \nu_\tau \pi^- \mathbf{a}_0(980); \mathbf{a}_0(980) \to \pi^0 \eta) = (7.1 \pm 1.4) \times 10^{-5}$$

These numbers are within measurable range.

• Test on the nature of axial-vector resonances in the tau decay

arXiv:1811.06875 PRD99, 096003

G-parity plays an important role in these reactions.

	G-Parity	
π	$f_1(1285)$	$b_1(1235)$
-	+	+
$h_1(1170)$	$h_1(1385)$	$a_1(1260)$
_	_	_

Table: The branching ratios for $\tau \to \pi^- A$, $K^- K_1$ decays. An error of the order of 40% to the values is expected (PLB782,332 for $f_1(1285)$)

	B
$h_1(1170)$	3.1×10^{-3}
$a_1(1260)$	1.3×10^{-3}
$b_1(1235)$	2.4×10^{-4}
$f_1(1285)$	2.4×10^{-4}
$h_1(1380)$	3.8×10^{-5}
$K_1(1)$	2.1×10^{-5}
$K_1(2)$	4.1×10^{-6}

only this $\tau^- \rightarrow \nu_\tau \pi^- f_1(1285)$ has been experimentally measured giving $(3.8 \pm 1.4) \times 10^{-4}$ \Rightarrow which compares well with the value we obtain for $\tau^- \rightarrow \nu_\tau \pi^- f_1(1285)$ within uncertainties.

- further test on the nature of axial-vector resonances in the $\Gamma(\tau\to\nu A)$ $_{\rm arXiv:2005.02653}$ $_{\rm EPJC80,673}$

mode	Decay channel	\mathcal{B} (%)
Cabibbo-favored	$\tau^- o u_{ au} \mathbf{a}_1(1260)$	18 ± 7 (exp)
	$\tau^- ightarrow u_{ au} b_1(1235)$	10 ± 4
Cabibbo-suppressed	$ au^- o u_ au K_1(1)$	0.63 ± 0.25
	$\tau^- o u_{ au} K_1(2)$	0.65 ± 0.26

Table: Branching ratios $\Gamma(\tau \rightarrow \nu A)$

for Cabibbo-favored mode, we find that the unmeasured rates for $b_1(1235)$ production are similar to those of the $a_1(1260)$.

for Cabibbo-suppressed mode, two $K_1(1270)$ states which we propose to differentiate.

- the $K^*\pi$ decay mode to see the $K_1(1)$ state
- the ρK decay mode to see the $K_1(2)$ state

further comparison with experiments of EPJC81(2021)226 for branching ratios for three pseudoscalar decay modes (or pseudoscalar plus ω or ϕ) we find a very good overall agreement with data.

祝张宗烨老师九十华诞生日快乐