

恭祝恩师生日快乐!愿您身体健康、福寿绵长!

Date of paper

30

24

19

17

17

Collaborators

Zongye Zhang
Kanzo Nakayama
Siegfried Krewald
Ai-Chao Wang(王爱超)
Peng Nian Shen

Date of citing paper 2003 2024 Papers Citations h-index 🕐 Citations/paper (avg) Papers - Citeable - Published 31 30 29 29

Fei HUANG 2001---2006: PhD student, IHEP 2006----2013: Postdoc at CCAST, FZ-Jülich, UGA UCAS 2013---: Citeable ? Published ⑦ 97 74 2,096 2,083 25 25 21.6 28.1

Outline

Selected PhD work under supervision of Prof. Zhang

Work collaborated with Prof. Zhang after PhD

Recent independent work

Part I

Selected PhD work under supervision of Prof. Z.Y. Zhang

分类号	密级		<u>168</u> 重子—介子相互作用和 Θ ⁺ 粒子结构的研究
UDC	编号	发表文章目录	[9] Coupled-channels study of ΛK and ΣK states in the chiral SU(3) quark
中国科学 博士	≱院研究生院 学位论文	 [1] A study of pentaquark Θ state in the chiral SU(3) quark model F. Huang, Z.Y. Zhang, Y.W. Yu, and B.S. Zou Phys. Lett. B 586, 69 (2004) [2] KN phase shifts in chiral SU(3) quark model F. Huang, Z.Y. Zhang, and Y.W. Yu Commun. Theor. Phys. 42, 577 (2004) [3] Besonating group method study of kaon-nucleon elastic scattering in the 	 model F. Huang, D. Zhang, Z.Y. Zhang, and Y.W. Yu Phys. Rev. C 71, 064001 (2005) [10] Low-energy Kπ phase shifts in chiral SU(3) quark model F. Huang, Z.Y. Zhang, and Y.W. Yu Commun. Theor. Phys. 44, 665 (2005) [11] Kaon-nucleon interaction in the extended chiral SU(3) quark model
重子—介子相互作	<u>用和 ⊖⁺ 粒子结构的研究</u> 黄 飞	 [6] Resonancing group intended study of ration interior classic scattering in the chiral SU(3) quark model F. Huang, Z.Y. Zhang, and Y.W. Yu Phys. Rev. C 70, 044004 (2004) [4] NK and ΔK states in the chiral SU(3) quark model F. Huang and Z.Y. Zhang Phys. Rev. C 70, 064004 (2004) [5] A study of pentaquark Θ state in chiral quark model Z.Y. Zhang, F. Huang, Y.W. Yu, and B.S. Zou 	 F. Huang and Z.Y. Zhang Phys. Rev. C 72, 024003 (2005) [12] ΔK, ΛK, and ΣK states in the extended chiral SU(3) quark model F. Huang and Z.Y. Zhang Phys. Rev. C 72, 068201 (2005) [13] Nφ states in a chiral quark model F. Huang, Z.Y. Zhang, and Y.W. Yu Phys. Rev. C 73, 025207 (2006)
指导教师 <u>张</u> ? 中 国 ? 申请学位级别 博 士 论文提交日期 <u>2006 年 5</u>	 京烨 (研究员 院士) 科学院高能物理研究所 学科专业名称 理论物理 月 论文答辩日期 2006 年 6 月 	 原子核物理评论 21, 77 (2004) [6] Further study on 5q configuration states in the chiral SU(3) quark model D. Zhang, <u>F. Huang</u>, Z.Y. Zhang, and Y.W. Yu Nucl. Phys. A 756, 215 (2005) [7] Chiral SU(3) quark model study of low energy Nπ scattering phase shifts <u>F. Huang</u>, Z.Y. Zhang, and Y.W. Yu High Energy Phys. Nucl. Phys. 29, 948 (2005) 	 [14] S, P, D, F wave KN phase shifts in the chiral SU(3) quark model¹ <u>F. Huang</u>, Z.Y. Zhang, and Y.W. Yu Int. J. Mod. Phys. A 20, 1884 (2005) [15] Baryon-meson interactions in chiral quark model² <u>F. Huang</u>, Z.Y. Zhang, and Y.W. Yu to be published
培养单位 中国 ; 学位授予单位 中	科学院高能物理研究所 国科学院研究生院 答辩委员会主席马中玉	[8] $NK\pi$ molecular state with $J^{\pi} = \frac{3}{2}^{-}$ and $I = 1$ F. Huang , Z.Y. Zhang, and Y.W. Yu Phys. Rev. C 72 , 065208 (2005) 167	¹ Talk given by F. Huang at 10th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2004), Beijing, China, 29 Aug - 4 Sep 2004 ² Talk given by F. Huang at 3rd Asia Pacific Conference on Few-Body Problems in Physics (APFB 2005), Korat, Nakhon Ratchasima, Thailand, 26-30 Jul 2005

Constituent quark model

NPQCD effect is important In light quark systems, but difficult to be exactly solved. QCD-inspired models are still needed; CQM is one of the most successful ones. Gell-Mann and Zweig model (1964): successful in hadron classification

Interactions introduced \implies magnetic)	OGE	Isgur–Karl model
moments, spectrum, scattering data \vec{r}			Lack of medium & long range <i>NN</i> attraction
$H = \sum \left(m_i + \frac{P_i^2}{D} \right) - T_{cm} + V^{conf} + V^{hyp}$	$V^{\mathrm{hyp}} = \langle$	π, K, η, η'	Glozman–Riska model
$\sum_{i} \left(\frac{m_i}{2m_i} \right)^{-1} \operatorname{cm}^{-1} \operatorname$			Lack of medium range NN attraction; tensor force too strong
		OGE , π , σ	Hybrid model
			OK for NN interaction & N* spectrum

SU(2) linear σ model

- Nucleon level: Gell-Mann & Lévy, Nuovo Cimento 16, 53 (1960) Quark level: Fernández, Valcarce, Straub, & Faessler, J. Phys. G 19, 2013 (1993)
- > Lagrangian of SU(2) linear σ model:

$$\mathcal{L} = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi + \mathcal{L}_{I} + \mathcal{L}_{\Sigma} \qquad \qquad \mathcal{L}_{I} = -g \overline{\psi}_{L} \Sigma \psi_{R} - g \overline{\psi}_{R} \Sigma^{\dagger} \psi_{L}$$
$$\Sigma = \sigma + i \tau \cdot \pi \qquad \qquad \qquad \mathcal{L}_{\Sigma} = \frac{1}{2} \Big[\left(\partial_{\mu} \pi \right)^{2} + \left(\partial_{\mu} \sigma \right)^{2} \Big] - \frac{\lambda}{4} \big[\pi^{2} + \sigma^{2} - v^{2} \big]^{2}$$

 \succ *L* is invariant under chiral SU(2) transformation:

$$\psi_L \rightarrow L \psi_L = e^{-iT_a \theta_L^a} \psi_L \qquad \psi_R \rightarrow R \psi_R = e^{-iT_a \theta_R^a} \psi_R \qquad \Sigma \rightarrow L \Sigma R^{\dagger} = e^{-iT_a \theta_L^a} \Sigma e^{iT_a \theta_R^a}$$

Spontaneous symmetry breaking:

$$\mathcal{L} = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi - g v \overline{\psi} \psi + \frac{1}{2} \Big[\big(\partial_{\mu} \pi \big)^{2} + \big(\partial_{\mu} \sigma' \big)^{2} \Big] - \lambda v^{2} (\sigma')^{2}$$
$$\sigma' = \sigma - v \qquad m_{\pi} = 0 \qquad m_{\sigma'} = \sqrt{2 \lambda v^{2}} \qquad m_{q} = g v$$

 \succ None-zero current quark mass \Rightarrow obvious symmetry breaking \Rightarrow physical m_{π}

Chiral SU(3) quark model

Extend the chiral quark model from SU(2) to SU(3): Zhang, Faessler, Straub, & Glozman, Nucl. Phys. A 578, 573 (1994) Zhang, Yu, Shen, Dai, Faessler, & Straub, Nucl. Phys. A 625, 59 (1997)

$$\mathcal{L}_{I} = -g\overline{\psi}_{L}\Sigma\psi_{R} - g\overline{\psi}_{R}\Sigma^{\dagger}\psi_{L}$$

$$\Sigma = \sigma + i\tau \cdot \pi \quad \Rightarrow \quad \Sigma = \sum_{a=0}^{8} \lambda_{a}\sigma_{a} + i\sum_{a=0}^{8} \lambda_{a}\pi_{a}$$

$$\sigma, \sigma', \kappa, \epsilon \quad \pi, K, \eta, \eta'$$

 \succ *L* is invariant under chiral SU(3) transformation:

$$\psi_L
ightarrow L\psi_L = e^{-iT_a heta_L^a} \psi_L \qquad \psi_R
ightarrow R\psi_R = e^{-iT_a heta_R^a} \psi_R \qquad \Sigma
ightarrow L\Sigma R^\dagger = e^{-iT_a heta_L^a} \Sigma e^{iT_a heta_R^a}$$

> Spontaneous symmetry breaking $\implies m_q, m_{\sigma_q}$

 \succ Obvious symmetry breaking $\implies m_{\pi_a}$

J

Framework of the model

Hamiltonian

$$H = \sum_{i} \left(m_{i} + \frac{\vec{P}_{i}^{2}}{2m_{i}} \right) - T_{cm} + V^{conf} + V^{OGE} + V^{\sigma,\sigma',\kappa,\epsilon} + V^{\pi,K,\eta,\eta'}$$
Chiral SU(3) QM
$$H = \sum_{i} \left(m_{i} + \frac{\vec{P}_{i}^{2}}{2m_{i}} \right) - T_{cm} + V^{conf} + V^{OGE} + V^{\sigma,\sigma',\kappa,\epsilon} + V^{\pi,K,\eta,\eta'} + V^{\rho,K^{*},\omega,\phi}$$
Ext. chiral SU(3) QM

Wave functions

$$\psi_{B} = \psi^{\text{int}}(\xi_{1},\xi_{2}) Z_{3q}(R_{\text{cm}}) \qquad \psi^{\text{int}}(\xi_{1},\xi_{2}) = \left(\frac{m_{\xi_{1}}\omega}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{m_{\xi_{1}}\omega}{2}\xi_{1}^{2}\right] \left(\frac{m_{\xi_{2}}\omega}{\pi}\right)^{\frac{3}{4}} \exp\left[-\frac{m_{\xi_{2}}\omega}{2}\xi_{2}^{2}\right]$$

 $\psi_{BB} = \psi^{int}(\xi_1, \xi_2)\psi^{int}(\xi_3, \xi_4)\chi(r)Z_{6q}(R_{cm})$ $b^2 = 1/(m\omega)$ $Z_{3q}(R_{cm}), Z_{6q}(R_{cm})$: irrelevant

- > Single baryon: $E_B = \langle \widehat{\psi}_B | H | \widehat{\psi}_B \rangle$
- > Baryon-Baryon system: $\langle \delta \widehat{\psi}_{BB} | H E | \widehat{\psi}_{BB} \rangle = 0$ (RGM equation)

Parameters

Input parameters:

 $m_u = 313$ MeV, $m_s = 470$ MeV, $b_u = 0.5$ fm [SU(3)] or 0.45 fm [Ex. SU(3)]

 \succ Adjustable parameter: m_{σ}

> Other parameters fixed by physical constraints:

> Chiral field coupling: $\frac{g_{ch}^2}{4\pi} = \frac{9}{25} \frac{m_u^2}{m_N^2} \frac{g_{NN\pi}^2}{4\pi}$

> OGE couplings: g_u fixed by $(m_\Delta - m_N)$ g_s fixed by $(m_\Sigma - m_\Lambda)$

> Confinement parameters: $V_{ij}^{conf} = -(\lambda_i^c \cdot \lambda_j^c)(a_{ij}r_{ij}^2 + a_{ij}^0)$

 a_{uu}, a_{us}, a_{ss} fixed by $\partial M_{N,\Lambda,\Xi}/\partial b = 0$ $a_{uu}^0, a_{us}^0, a_{ss}^0$ fixed by $M_N, M_\Sigma, M_\Xi + M_\Omega$ N

N

NN phase shifts

Zhang, Yu, Shen, Dai, Faessler, & Straub, Nucl. Phys. A 625, 59 (1997)

11

NY cross sections

$\Theta^{+}(1540)$

Theoretical prediction in chiral soliton model:

D. Diakonov et al., Z. Phys. A 359 (1997) 305

$$\Theta(1530)$$
 $J^{\pi} = \frac{1}{2}^{+}$ $S = 1$ $B = 1$

表 6.1:发现五夸克态 Θ⁺的实验。

Group	Reaction	$egin{array}{c} { m Mass} \ { m (MeV)} \end{array}$	$egin{array}{c} { m Width} \ { m (MeV)} \end{array}$	$\sigma's$	Ref.
LEPS	$\gamma C \to K^+ K^- X$	1540 ± 10	< 25	4.6	[110]
DIANA	$K^+ X e \to K^0 p X$	1539 ± 2	< 9	4.4	[111]
CLAS	$\gamma d \to K^{+} K^{-} p \left(n \right)$	1542 ± 5	< 21	5.2	[112]
SAPHIR	$\gamma d o K^+ K^0(n)$	1540 ± 6	< 25	4.8	[113]
ITEP	$\nuA \to K^0_spX$	1533 ± 5	< 20	6.7	[114]
CLAS	$\gammap\to\pi^+K^+K^-(n)$	1555 ± 10	< 26	7.8	[115]
HERMES	$e^+ d o K^0_s p X$	1528 ± 3	13 ± 9	~ 5	[116]
ZEUS	$e^+p \to e^+ K^0_s p X$	1522 ± 3	8 ± 4	~ 5	[117]
COSY-TOF	$p p o K^0 p \Sigma^+$	1530 ± 5	< 18	4-6	[118]
SVD	$pA \to K^0_spX$	1526 ± 5	< 24	5.6	[119]
LEPS	$\gammad \to K^+K^-X$	~ 1530			[120]
ITEP	$ u A o K^0_s p X$	1532 ± 2	< 12	7.1	[121]
NOMAD	$ u A o K^0_s p X$	1529 ± 3	< 9	4.3	[122]
JINR	$p\left(C_3H_8 ight) ightarrow K_s^0 p X$	1545 ± 12	16 ± 4	5.5	[123]
JINR	$CC o K^0_s p X$	1532 ± 6	< 26		[124]
LPI	$np ightarrow npK^+K^-$	1541 ± 5	< 11	4.5	[125]

Our work on $\Theta^+(1540)$

F. Huang, Z.Y. Zhang, Y.W. Yu, and B.S. Zou, Phys. Lett. B 586 (2004) 69

Table 1

 $[4]_{\text{orb}}[31]_{ts=01}^{\sigma f}\bar{s}, \quad LST = 0\frac{1}{2}0, \quad J^{\pi} = \frac{1}{2}^{-},$ $[4]_{\text{orb}}[31]_{ts=10}^{\sigma f}\bar{s}, \quad LST = 0\frac{1}{2}1, \quad J^{\pi} = \frac{1}{2}^{-},$ $[4]_{\text{orb}}[31]_{ts=11}^{\sigma f}\bar{s}, \quad LST = 0\frac{1}{2}1, \quad J^{\pi} = \frac{1}{2}^{-},$ $[4]_{\text{orb}}[31]_{ts=21}^{\sigma f}\bar{s}, \quad LST = 0\frac{1}{2}2, \quad J^{\pi} = \frac{1}{2}^{-}.$ $[31]_{\text{orb}}[4]_{ts=00}^{\sigma f}\bar{s}, \quad LST = 1\frac{1}{2}0, \quad J^{\pi} = \frac{1}{2}^{+},$ $[31]_{\text{orb}}[4]_{ts=11}^{\sigma f}\bar{s}, \quad LST = 1\frac{1}{2}1, \quad J^{\pi} = \frac{1}{2}^{+},$ $[31]_{\text{orb}}[4]_{ts=11}^{\sigma f}\bar{s}, \quad LST = 1\frac{3}{2}1, \quad J^{\pi} = \frac{1}{2}^{+},$ $[31]_{\text{orb}}[4]_{ts=22}^{\sigma f}\bar{s}, \quad LST = 1\frac{3}{2}2, \quad J^{\pi} = \frac{1}{2}^{+}.$

Energies (in MeV) of pentaquark states in various chiral quark models with b_u the size parameter. I and II for cases with and without annihilation interactions

Configuration	Chiral $SU(3)$ $b_u = 0$) quark model).50 fm	Ex. chiral $SU(3)$ quark mode $b_u = 0.45$ fm	
$J^{\pi} = \frac{1}{2}^{-}$	Ι	П	Ι	II
$[4]_{\text{orb}}[31]_{ts=01}^{\sigma f}\bar{s}$	1801	1957	1843	209
$[4]_{\text{orb}}[31]_{ts=10}^{\sigma f}\bar{s}$	2049	2128	2089	2170
$[4]_{\text{orb}}[31]_{ts=11}^{\sigma f}\bar{s}$	2117	2190	2115	219.
$[4]_{\rm orb}[31]_{ts=21}^{\sigma f}\bar{s}$	2323	2369	2314	2334
$J^{\pi} = \frac{1}{2}^+$	Ι	П	Ι	П
$[31]_{\text{orb}}[4]_{ts=00}^{\sigma f}\bar{s}$	2271	2185	2270	2253
$[31]_{\text{orb}}[4]_{ts=11}^{\sigma f}\bar{s} \ (S=\frac{1}{2})$	2308	2235	2296	2310
$[31]_{\text{orb}}[4]_{ts=11}^{\sigma f}\bar{s} \ (S=\frac{3}{2})$	2362	2282	2367	233
$[31]_{\text{orb}}[4]_{ts=22}^{\sigma f}\bar{s}$	2426	2367	2412	243:

T=0, $J^{P}=1/2^{-}$ is the lowest one; 250 MeV higher than M_{\odot} ; 1/4 KN component.

High mass & large width in our chiral quark model!

CLAS negative evidence of $\Theta^+(1540)$

B. McKinnon et al. (CLAS), Phys. Rev. Lett. 96 (2006) 212001

PRL 96, 212001 (2006)

PHYSICAL REVIEW LETTERS

week ending 2 JUNE 2006

Search for the Θ^+ Pentaquark in the Reaction $\gamma d \rightarrow p K^- K^+ n$

(CLAS Collaboration)

A search for the Θ^+ in the reaction $\gamma d \rightarrow pK^-K^+n$ was completed using the CLAS detector at Jefferson Lab. A study of the same reaction, published earlier, reported the observation of a narrow Θ^+ resonance. The present experiment, with more than 30 times the integrated luminosity of our earlier measurement, does not show any evidence for a narrow pentaquark resonance. The angle-integrated upper limit on Θ^+ production in the mass range of 1.52–1.56 GeV/ c^2 for the $\gamma d \rightarrow pK^-\Theta^+$ reaction is 0.3 nb (95% C.L.). This upper limit depends on assumptions made for the mass and angular distribution of Θ^+ production. Using $\Lambda(1520)$ production as an empirical measure of rescattering in the deuteron, the cross section upper limit for the elementary $\gamma n \rightarrow K^-\Theta^+$ reaction is estimated to be a factor of 10 higher, i.e., ~3 nb (95% C.L.).

DOI: 10.1103/PhysRevLett.96.212001

PACS numbers: 12.39.Mk, 13.60.Rj, 14.20.Jn, 14.80.-j

KN scattering

F. Huang, Z.Y. Zhang, and Y.W. Yu, Phys. Rev. C 70 (2004) 044004 F. Huang and Z.Y. Zhang, Phys. Rev. C 70 (2004) 064004

Motivations: Is there KN resonance state? Does our model work for KN? Results: No KN bound or resonance state; Overall description is satisfactory.

Part II

Work collaborated with Prof. Z.Y. Zhang after PhD

$\Sigma_{\rm c}\overline{\rm D} - \Lambda_c\overline{\rm D}$

W.L. Wang, F. Huang, Z.Y. Zhang, and B.S. Zou, Phys. Rev. C 84 (2011) 015203

PHYSICAL REVIEW C 71, 064001 (2005)

Coupled-channels study of ΛK and ΣK states in the chiral SU(3) quark model

F. Huang,^{1,2,3} D. Zhang,^{2,3} Z. Y. Zhang,² and Y. W. Yu² ¹CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, People's Republic of China ²Institute of High Energy Physics, P.O. Box 918-4, Beijing 100049, People's Republic of China* ³Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China (Received 12 January 2005; published 16 June 2005)

PHYSICAL REVIEW C 72, 068201 (2005)

ΔK , ΛK , and ΣK states in the extended chiral SU(3) quark model

F. Huang^{1,2,3} and Z. Y. Zhang² ¹CCAST (World Laboratory), Post office Box 8730, Beijing 100080, China ²Institute of High Energy Physics, Post office Box 918-4, Beijing 100049, China* ³Graduate School of the Chinese Academy of Sciences, Beijing, China (Received 11 October 2005; published 30 December 2005)

	TABLE III. Binding energy of ΣK .	
Model	$B_{\Sigma K}$ (MeV)	Attraction
I	18	$OGE + \sigma$
II	44	$\sigma + ho + \phi$
III	33	$\sigma + \rho + \phi$

PHYSICAL REVIEW C 84, 015203 (2011)

$\Sigma_c \bar{D}$ and $\Lambda_c \bar{D}$ states in a chiral quark model

W. L. Wang,^{1,2} F. Huang,³ Z. Y. Zhang,^{1,2} and B. S. Zou^{1,2} ¹Institute of High Energy Physics, CAS, P. O. Box 918-4, Beijing 100049, China ²Theoretical Physics Center for Science Facilities (TPCSF), CAS, Beijing 100049, China ³Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, USA (Received 2 January 2011; published 8 July 2011)

The S-wave $\Sigma_c \bar{D}$ and $\Lambda_c \bar{D}$ states with isospin I = 1/2 and spin S = 1/2 are dynamically investigated within the framework of a chiral constituent quark model by solving a resonating group method equation. The results show that the interaction between Σ_c and \bar{D} is attractive, which consequently results in a $\Sigma_c \bar{D}$ bound state with a binding energy of about 5–42 MeV, unlike the case of the $\Lambda_c D$ state, which has a repulsive interaction and thus is unbound. The channel-coupling effect of $\Sigma_c \bar{D}$ and $\Lambda_c \bar{D}$ is found to be negligible owing to the fact that the gap between the $\Sigma_c \bar{D}$ and $\Lambda_c \bar{D}$ thresholds is relatively large and the $\Sigma_c \bar{D}$ and $\Lambda_c \bar{D}$ transition interaction is weak.

DOI: 10.1103/PhysRevC.84.015203

PACS number(s): 12.39.-x, 11.30.Rd, 14.20.Gk, 24.85.+p

TA and III	BLE III. The bindi , respectively.	ng energy of $\Sigma_c ar{D}$ (in N	IeV) in models I, II,
	m_c (GeV)	r confinement	r^2 confinement
I	1.43	9.3	4.5
	1.55	10.9	6.4
	1.87	15.3	11.0
Π	1.43	28.3	9.3
	1.55	31.8	10.3
	1.87	41.6	10.0
III	1.43	19.7	7.3
	1.55	22.2	8.9
	1.87	28.6	11.3

LHCb results in 2019

PHYSICAL REVIEW LETTERS 122, 222001 (2019)

Observation of a Narrow Pentaguark State, $P_c(4312)^+$, and of the Two-Peak Structure of the $P_c(4450)^+$

Featured in Physics

Slide of Tomasz Skwarnicki, Moriond QCD, Mar 26, 2019

- Wu.Molina.Oset.Zou, PRL105, 232001 (2010).
- Wang,Huang,Zhang,Zou, PR C84, 015203 (2011)
- Yang,Sun,He,Liu,Zhu, Chin. Phys. C36, 6 (2012),
- Wu,Lee,Zou, PR C85 044002 (2012),
- Karliner, Rosner, PRL 115, 122001 (2015)

15

Example:

Nucleon resonances with hidden charm in coupled-channels models

Jia-Jun Wu, T.-S. H. Lee, and B. S. Zou Phys. Rev. C 85, 044002 - Published 17 April 2012 arXiv:1202.1036

TABLE III: The pole position $(M - i\Gamma/2)$ and "binding energy" ($\Delta E = E_{thr}$ cut-off parameter A and spin-parity J^P . The threshold E_{abs} is 4320.79 MeV of $\bar{D}\Sigma_{a}$ in PB system and 4462.18 MeV of $\bar{D}^*\Sigma_c$ in VB system. The unit for the listed numbers is MeV

 $P_c(4312)$: 9 MeV below $\Sigma_c \overline{D}$ threshold

 $d^{*}(2380)$ from COSY

Evidence from $\vec{n}p$ scattering

WASA-at-COSY & SAID DAC, PRL 112 (2014) 202301

Colored lines: new fits with inclusion of new data (red symbols)

Experiments @ ELPH, MAMI

Unusual narrow width of d*

 $M_{d*} \approx 2380 \text{ MeV}$ $\approx 2M_{\Delta} - 84 \text{ MeV}$ $> M_{\Delta N \pi}$ > Μ_{ΝΝππ} $> M_{NN}$ $\Gamma_{\Lambda} \approx 115 \text{ MeV}$ $\Gamma_{d^*} \approx 70 \text{ MeV}$

<br/

Overview of theoretical investigations

Prediction by Yuan et al. in 1999

X. Q. Yuan, Z. Y. Zhang, Y. W. Yu, & P. N. Shen, Phys. Rev. C 60, 045203 (1999).

		$\Delta\Delta(L=0)$	$\Delta\Delta \begin{pmatrix} L=0\\+2 \end{pmatrix}$	$ \begin{pmatrix} \Delta\Delta \\ CC \end{pmatrix} \begin{pmatrix} \Delta\Delta \\ CC \end{pmatrix} = 0 $	$\Delta\Delta (L=0)$
OGE	B (MeV) \overline{R} (fm)	29.8 0.92	29.9 0.92	41.0 0.87	42.0
$OGE + \pi.\sigma$	\overline{R} (MeV)	50.2	62.6	30-60 68.6 40-80	79.7
	\overline{R} (fm)	0.87	0.86	0.84	0.83
OGE+SU(3)	\overline{R} (MeV)	18.4	22.5	31.7	37.3
	\overline{R} (fm)	1.01	1.00	0.92	0.92

TABLE II. Binding energy B and rms \overline{R} of the deltaron $B = -(E_{\text{deltaron}} - 2M_{\Delta}), \overline{R} = \sqrt{\langle r^2 \rangle}$.

- Binding energy: 40 ~ 80 MeV
- CC: 10 ~ 20 MeV increase in binding energy

Results in chiral SU(3) QM, revisited

Structures & wave functions

- F. Huang, Z.Y. Zhang, P.N. Shen, W.L. Wang, Chin. Phys. C 39 (2015) 071001
- F. Huang, P.N. Shen, Y.B. Dong, Z.Y. Zhang, Sci. China-Phys. Mech. Astron. 59 (2016) 622002

Decay widths & charge distributions

- Y.B. Dong, P.N. Shen, F. Huang, Z.Y. Zhang, Phys. Rev. C 91 (2015) 064002
- Y.B. Dong, F. Huang, P.N. Shen, Z.Y. Zhang, Phys. Rev. C 94 (2015) 014003
- Y.B. Dong, F. Huang, P.N. Shen, Z.Y. Zhang, Phys. Lett. B 769 (2017) 223
- Y.B. Dong, F. Huang, P.N. Shen, Z.Y. Zhang, Phys. Rev. D 96 (2017) 094001
- Y.B. Dong, F. Huang, P.N. Shen, Z.Y. Zhang, Chin. Phys. C 41 (2017) 101001

Calculated d* mass and wave functions

Without CC: BE $\approx 29 - 62$ MeV

		$\Delta\Delta~(L=0,2)$	
	SU(3)	Ext. $SU(3)$	Ext. $SU(3)$
		(f/g=0)	(f/g=2/3)
B (MeV)	28.96	62.28	47.90
RMS (fm)	0.96	0.80	0.84

With CC: $BE \approx 47 - 84 \text{ MeV}$

		$\Delta\Delta - \mathrm{CC} \ (L =$	= 0, 2)
	SU(3)	Ext. $SU(3)$	Ext. SU(3)
		(f/g=0)	(f/g=2/3)
B (MeV)	47.27	83.95	70.25
RMS (fm)	0.88	0.76	0.78
$(\Delta\Delta)_{L=0}~(\%)$	33.11	31.22	32.51
$(\Delta\Delta)_{L=2}~(\%)$	0.62	0.45	0.51
$(CC)_{L=0}$ (%)	66.25	68.33	66.98
$(CC)_{L=2}$ (%)	0.02	0.00	0.00

Partial decay widths

Y.B. Dong, P.N. Shen, F. Huang, Z.Y. Zhang, PRC 91 (2015) 064002 Y.B. Dong, F. Huang, P.N. Shen, Z.Y. Zhang, PRC 94 (2015) 014003; PLB 769 (2017) 223

	Theor. (MeV)	Expt. (MeV)
$d^* ightarrow d\pi^+\pi^-$	16.8	16.7
$d^* ightarrow d\pi^0 \pi^0$	9.2	10.2
$d^* ightarrow pn \pi^+ \pi^-$	20.6	21.8
$d^* ightarrow pn \pi^0 \pi^0$	9.6	8.7
$d^* o pp \pi^0 \pi^-$	3.5	4.4
$d^* ightarrow nn \pi^0 \pi^+$	3.5	4.4
$d^* \rightarrow pn$	8.7	8.7
$d^* \rightarrow nn\pi^0\pi^+$	0.67	< 6.7
Total	72.6	74.9

Part III

Recent independent work

New developments in Chiral QM

Nucleon-nucleon interaction in a chiral SU(3) quark model revisited, F. Huang and W.L. Wang, Phys. Rev. D 98, 074018 (2018)

- > NN interaction: OGE is important for short-range repulsion \rightarrow A credible determination of $g_{\mu} \& g_{s}$ is essential
- Earlier studies: size parameter b predetermined

$$M_B = \langle T \rangle + \langle V^{\text{conf}} \rangle + \langle V^{\text{OGE}} \rangle + \langle V^{\text{ch}} \rangle$$

 $M_\Delta - M_N \implies g_u \qquad M_\Sigma - M_\Lambda \implies g_s$

- Problem: why different baryons have same sizes?
- Consequence: non-physical channels might be needed to change the internal wave functions of the single baryons
 - → Be careful in explaining the structure of bound BB states

Single baryon masses

F. Huang and W.L. Wang, Phys. Rev. D 98, 074018 (2018)

TABLE II. Resulted mass and size parameter of octet and decuplet baryon ground states.

	Ν	Λ	Σ	Ξ	Δ	Σ^*	Ξ^*	Ω
Expt. [MeV]	939	1116	1193	1318	1232	1385	1533	1672
Theo. [MeV]	939	1116	1193	1318	1232	1385	1533	1672
b_{μ} [fm] (r conf.)	0.474	0.478	0.507	0.487	0.642	0.632	0.615	0.593
$(r^2 \text{ conf.})$	0.472	0.473	0.495	0.476	0.588	0.578	0.561	0.540

TABLE III.	Binding energy of deuteron (in MeV).	
Model I (r conf.)	Model II $(r^2 \text{ conf.})$	Expt.
-2.215	-2.218	-2.224

- Sizes of octet baryons are close
- Sizes of decuplet baryons are close
- Sizes of decuplet baryons are distinct from those of octet baryons
- When same sizes are used, be careful if decuplet baryon is involved

NN interaction revisited

32

New RGM formula & N Δ interaction

$$Z_{6q}(\boldsymbol{R}, \boldsymbol{S}_{G}; \boldsymbol{r}, \boldsymbol{S}) = \left(\frac{1}{\pi b_{AB}^{\prime 2}}\right)^{\frac{3}{4}} \exp\left[-\frac{1}{2b_{AB}^{\prime 2}}\left((\boldsymbol{R} - \boldsymbol{S}_{G}) - \gamma \left(\boldsymbol{r} - \boldsymbol{S}\right)\right)^{2}\right]$$

$$\int dS_G Z_{6q}(\boldsymbol{R}, S_G; \boldsymbol{r}, \boldsymbol{S}) = (4\pi b_{AB}'^2)^{\frac{3}{4}}$$

 $O_{ij} \equiv \langle \varphi_A(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \omega_A) \varphi_B(\boldsymbol{\xi}_3, \boldsymbol{\xi}_4, \omega_B) \chi_i(\boldsymbol{r}) | \hat{O}$

$$\times |\mathcal{A}[\varphi_A(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \omega_A)\varphi_B(\boldsymbol{\xi}_3, \boldsymbol{\xi}_4, \omega_B)\chi_j(\boldsymbol{r})] \rangle$$

= $(4\pi b'^2_{AB})^{-\frac{3}{2}}$
 $\times \int d\boldsymbol{S}_G \langle \Phi_{6q}(\boldsymbol{S}_i, \boldsymbol{S}_G) | \hat{O} | \mathcal{A}[\Phi_{6q}(\boldsymbol{S}_j, 0)] \rangle.$

K***Y** & **KY*** production reactions

		Status as seen in										
Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	N ho	$N\omega$	Νηι
\overline{N}	$1/2^{+}$	****										
N(1440)	$1/2^{+}$	****	****	****	****	***						
N(1520)	$3/2^{-}$	****	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	****	****	***	*	****					
N(1650)	$1/2^-$	****	****	****	***	*	****	*				
N(1675)	$5/2^-$	****	****	****	****	***	*	*	*			
N(1680)	$5/2^{+}$	****	****	****	****	***	*	*	*			
N(1700)	$3/2^-$	***	**	***	***	*	*			*		
N(1710)	$1/2^{+}$	****	****	****	*		***	**	*	*	*	
N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	*	*	
N(1860)	$5/2^{+}$	**	*	**		*	*					
N(1875)	$3/2^-$	***	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^{+}$	***	**	*	**	*	*	**	**		**	
N(1895)	$1/2^-$	****	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^{+}$	****	****	**	**	*	*	**	**		*	**
N(1990)	$7/2^{+}$	**	**	**			*	*	*			
N(2000)	$5/2^{+}$	**	**	*	**	*	*				*	
N(2040)	$3/2^{+}$	*		*								
N(2060)	$5/2^-$	***	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**
N(2120)	$3/2^-$	***	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^{+}$	****	**	****			*	*	*			
N(2250)	$9/2^-$	****	**	****			*	*	*			
N(2300)	$1/2^{+}$	**		**								
N(2570)	$5/2^-$	**		**								
N(2600)	$11/2^{-}$	***		***				РГ)G	(2)	024	4)
N(2700)	$13/2^{+}$	**		**				_				-/

- Most $N^* \& \Delta^*$ come from $\gamma N, \pi N \rightarrow \pi N, \pi \Delta, N\eta, K\Lambda, K\Sigma$
- No N^* or Δ^* information on $K^*Y \otimes KY^*$
- $K^*Y \& KY^*$: suitable to study $N^* \& \Delta^*$ with higher masses

Research method

$$T_{fi} = V_{fi} + \sum \int V_{fm} G_m T_{mi}$$

Step 1: tree level

$$\boldsymbol{V}_{fi} = \boldsymbol{V}_{fi}$$

done

Step 2: *K*^{*}*Y* & *KY*^{*} intermediate channels

$$T_{fi} = V_{fi} + \sum_{KY^*, K^*Y} \int V_{fm} G_m T_{mi}$$

underway; meson-beam data needed

Step 3: all channels

$$T_{fi} = V_{fi} + \sum \int V_{fm} G_m T_{mi}$$

long future plan

Effective Lagrangian approach

 $M = M_t + M_u + M_s + M_{int}$

- *t* channel: κ , K, K^*
- *u* channel: Λ , Σ , Λ^* , Σ^*
- s channel: N, Δ , N^* , Δ^*

SU(3) relations & decay widths used to fix couplings.
Others left as fit parameters.
Resonance: Introduce N*'s & Δ*'s as few as possible.
Gauge invariance strictly reserved.

$K\Sigma(1385)$ production reactions

A.C. Wang et al., PRD 101 (2020) 074025; 105 (2022) 034017

- Combined analysis of $\gamma p \rightarrow K^+ \Sigma^0 (1385)$ $\gamma n \rightarrow K^+ \Sigma^- (1385)$ $\pi^+ p \rightarrow K^+ \Sigma^+ (1385)$
- All data are considered
- $\Delta(1930)5/2^-$ needed
- Photoproduction: Δ(1930)5/2⁻ (M & Γ from PDG), interaction current, and K dominate
- $\pi^+ p$ reaction: Λ dominates, $\Delta(1930)5/2^-$ considerable

$K\Sigma(1385)$ production reactions

$K\Lambda(1405)$ photoproduction

Y. Zhang and F. Huang, PRC 103 (2021) 025207

$K^*\Lambda$ photoproduction

A.C. Wang et al., PRC 96 (2017) 035206; N.C. Wei et al., PRC 101 (2020) 014003; N.C. Wei et al., CPC 46 (2022) 023106

- Combined analysis of all data for both $\gamma p \to K^{*+}\Lambda \And \gamma n \to K^{*0}\Lambda$
- $N(2060)5/2^- \& N(2000)5/2^+$ needed
- yn reaction: K dominates, resonances significant

$K^*\Lambda$ photoproduction

N.C. Wei et al., PRC 101 (2020) 014003. 0.8 $\gamma p \longrightarrow K^{+} \Lambda$ total Sum of N 0.6 N(2000)5/2 N(2060)5/2 σ [μb] K Born 0.4 0.2 0.0 2.2 2.4 2.6 2.82.0W [GeV]

A.C. Wang et al., PRC 96 (2017) 035206;

• γp reaction: K & resonances both are important

41

$K^*\Lambda$ photoproduction

 $\gamma p \to K^{*+} \Lambda$

42

$K^+\Lambda(1520)$ photoproduction

N.C. Wei, Y. Zhang, F. Huang, and D.M. Li, PRD 103 (2021) 034007

- All data are well described
- One of the N(2060)5/2⁻ and N(2120)3/2⁻ is needed
- Background: *M*_{int} & *K*
- Fit A: N(2060)5/2⁻ dominate
 Fit B: N(2120)3/2⁻ small

$K^*\Sigma$ photoproduction

$K^*\Sigma$ photoproduction

κ exchange in $\gamma p \to K^{*0} \Sigma^+$

For t-channel meson exchanges,

$$T^N$$
: natural parity $P = (-1)^J$
 T^U : unnatural parity $P = (-1)^{J+1}$

Spin-parity asymmetry:

$$P_{\sigma} = 2\rho_{1-1}^1 - \rho_{00}^1 = \frac{\sigma^N - \sigma^U}{\sigma^N + \sigma^U}$$

In the high energy limit at forward angles:

 $P_{\sigma} \rightarrow \begin{cases} -1: & K \text{ exchange} \\ 1: & \kappa \text{ exchange} \end{cases}$

LEPS, PRL 108 (2012) 092001

"The measured parity spin asymmetry shows that natural-parity exchange is dominant. This result clearly indicates the need for t-channel exchange of the $\chi(800)$ scalar meson"

κ exchange in $\gamma p \to K^{*0} \Sigma^+$

A.C. Wang et al., in preparation

Model I: no *k* Model II: significant *k*

- Either with or without dominant χ , LEPS P_{σ} data can be well reproduced
- $W \sim 2 2.5$ GeV: s-channel exchanges also contribute
 - $P_{\sigma} \sim 1$: not necessarily caused by χ
- At $E_{\gamma} \approx 8.5$ GeV, $W \sim 4$ GeV:

model with dominant κ : $P_{\sigma} \sim 1$ model without dominant κ : small P_{σ}

• Data on P_{σ} at high energies are needed to confirm the role of χ exchange

Summary

- Selected PhD work under supervision of Prof. Zhang
 - Negative results for $\Theta(1540)$ [CLAS confirmed 2 years later]
 - Successful description of KN data
- Work collaborated with Prof. Zhang after PhD
 - Prediction of $\Sigma_c \overline{D}$ bound state in 2011 [LHCb confirmed in 2019]
 - Understanding of the structure & decay of $d^*(2380)$
- Recent independent work
 - New developments in chiral SU(3) quark model Consistent description of single baryon & baryon-baryon interaction New formula for RGM equation with different sizes of two baryons
 - K^{*}Y & KY^{*} production reactions

Systematic investigation, resonance information extracted $\gamma p \rightarrow K^* \Sigma$: LEPS P_σ data not sufficient to claim dominant κ exchange