

# Identify the two-pole structures from an SU(3) flavor filter

#### 刘晓海

#### 天津大学理学院物理系&量子交叉研究中心

Based on: Y.B. He, XHL, L.S. Geng, F.K. Guo, J.J. Xie,

arXiv:2407.13486

中高能核物理和强子物理前沿研讨会,北京,2025.01.18

## Outline

- **>** Review of  $\Lambda(1405)$
- **> Two-pole structure**
- > An SU(3) flavor filter



## **Λ(1405): Puzzles in the quark model** PDG 2022 $I(J^P) = 0(1/2^-)$ $M = 1405.1^{+1.3}_{-1.0}$ MeV, $\Gamma = 50.5 \pm 2.0$ MeV

Quark model classification: a *uds* P-wave excitation, a few hundred MeV above the ground state  $\Lambda(1116)$ 

- Much lower than its nucleon-counterpart N(1535) ( $J^P = 1/2^-$ )
- Mass gap between  $\Lambda(1405)$  and  $\Lambda(1520)$  (J<sup>P</sup> = 3/2<sup>-</sup>) is much larger, compared with N(1535) and N(1520)

## **Λ(1405):** Dynamically generated state

• Dynamically generated from the  $\pi\Sigma - \overline{K}N$  coupled channel interaction in UChPT. (Hadronic molecule)

**Bethe-Salpeter equation** 





T = V + VGT

- Kaiser, Wass, Weise, NPA612, 297(1997)
- Oset & Ramos, NPA635, 99(1998)
- Oller, Oset, Ramos, PPNP45, 157(2000)
- Oller & Meissner, PLB500, 263(2001)
- ••••• "first exotic hadron"



### **Λ(1405):** Two-pole structure

|          | Z.R             | 1390 + 66i     |         | 1426 + 16i    |         |  |
|----------|-----------------|----------------|---------|---------------|---------|--|
| -        | (I = 0)         | $g_i$          | $ g_i $ | $g_i$         | $ g_i $ |  |
| Four     | $\pi \Sigma$    | -2.5 - 1.5 i   | 2.9     | 0.42 - 1.4 i  | 1.5     |  |
| coupled- | $\overline{K}N$ | 1.2 + 1.7 i    | 2.1     | -2.5 + 0.94 i | 2.7     |  |
| channels | $\eta \Lambda$  | 0.010 + 0.77 i | 0.77    | -1.4 + 0.21 i | 1.4     |  |
|          | $K\Xi$          | -0.45 - 0.41 i | 0.61    | 0.11 - 0.33 i | 0.35    |  |



Oset, Ramos, Bennhold, PLB527, 99(2002); Jido, Oller, Oset, Ramos, Meissner, NPA725, 181(2003)

- Oller & Meissner, PLB500, 263(2001)
- Jido, Hosaka, Nacher, Oset, Ramos, PRC66, 025203(2002)
- Garcia-Recio, Nieves, Arriola, Vacas, PRD67, 076009(2003)
- Jido, Oller, Oset, Ramos, Meissner, NPA725, 181(2003)

#### Hyodo & Jido, PPNP67, 55(2012)

#### **Two-pole Structure**

#### > Understanding with group theory

Weinberg-Tomozawa (WT) term dominates the interaction

$$V_{ij}^{
m WT}ig(\sqrt{s}ig) = - rac{C_{ij}}{4f^2}ig(2\sqrt{s}-M_i-M_jig)\mathcal{N}_i\mathcal{N}_j$$

Decomposed into group irreducible representations

GB Octet  $8 \otimes 8 = 1 \oplus 8_{s} \oplus 8_{a} \oplus 10 \oplus \overline{10} \oplus 27$ Baryon Octet In the SU(3) basis  $C_{\alpha\beta}^{SU(3)} = \sum_{i,j} \mathcal{D}_{\alpha i} C_{ij} \mathcal{D}_{\beta j}$   $= \operatorname{diag}(6, 3, 3, 0, 0, -2)$ attractive

## ➤ Understanding with group theory

| $z_R$           | 1390 + 66i     |         | 1426 + 16     | bi      | 1680 + 20i      |         |
|-----------------|----------------|---------|---------------|---------|-----------------|---------|
| (I = 0)         | <i>g</i> i     | $ g_i $ | $g_i$         | $ g_i $ | gi              | $ g_i $ |
| $\pi \Sigma$    | -2.5 - 1.5 i   | 2.9     | 0.42 - 1.4 i  | 1.5     | -0.003 - 0.27 i | 0.27    |
| $\overline{K}N$ | 1.2 + 1.7 i    | 2.1     | -2.5 + 0.94 i | 2.7     | 0.30 + 0.71 i   | 0.77    |
| $\eta \Lambda$  | 0.010 + 0.77 i | 0.77    | -1.4 + 0.21 i | 1.4     | -1.1 - 0.12i    | 1.1     |
| $K\Xi$          | -0.45 - 0.41 i | 0.61    | 0.11 - 0.33 i | 0.35    | 3.4 + 0.14i     | 3.5     |



### **Λ(1405):** Two-pole structure

| $\Lambda$ BARYONS ( $S = -1$ , $I = 0$ )<br>$\Lambda^0 = u \ d \ s$ |         |      |
|---------------------------------------------------------------------|---------|------|
| arLambda and $arLambda$ Resonances                                  |         | PDF  |
| Pole Structure of the $arLambda(1405)$ Regi                         | on      | PDF  |
| Λ                                                                   | $1/2^+$ | **** |
| A(1380)                                                             | $1/2^-$ | ••   |
| $\Lambda(1405)$                                                     | $1/2^-$ |      |
| $\Lambda(1520)$                                                     | $3/2^-$ | **** |
| $\Lambda(1600)$                                                     | $1/2^+$ | **** |
| $\Lambda(1670)$                                                     | $1/2^-$ | **** |

**Table 83.1:** Comparison of the pole positions of  $\Lambda(1405)$  in the complex energy plane from next-to-leading order chiral unitary coupled-channel approaches including the SIDDHARTA constraint. The lower two results also include the CLAS photoproduction data.

| approach                 | pole 1 [MeV]                                    | pole 2 [MeV]                            |
|--------------------------|-------------------------------------------------|-----------------------------------------|
| Refs. [14, 15], NLO      | $1424_{-23}^{+7} - i\ 26_{-14}^{+3}$            | $1381^{+18}_{-6} - i\ 81^{+19}_{-8}$    |
| Ref. [17], Fit II        | $1421^{+3}_{-2} - i \ 19^{+8}_{-5}$             | $1388^{+9}_{-9} - i \ 114^{+24}_{-25}$  |
| Ref. [18], solution $#2$ | $1434_{-2}^{+\bar{2}} - i \ 10_{-1}^{+\bar{2}}$ | $1330_{-5}^{+4} - i \ 56_{-11}^{+17}$   |
| Ref. [18], solution $#4$ | $1429_{-7}^{+\bar{8}} - i \ 12_{-3}^{+\bar{2}}$ | $1325_{-15}^{+15} - i \ 90_{-18}^{+12}$ |

### **PDG 2022**

#### Λ(1380) Λ(1405)

#### Pole positions up to NNLO



#### $D_0(J^P = 0^+)$ : Analog in the heavy flavor sector

**PDG 2022**  $D_0^*(2300)$ : M = 2343 ± 10 MeV;  $\Gamma$  = 229 ± 16 MeV

| Masses   | <i>M</i> (MeV)                        | $\Gamma/2$ (MeV)                   | RS             | $ g_{D\pi} $                             | $ g_{D\eta} $                                                         | $ g_{D_s\bar{K}} $                                                     |
|----------|---------------------------------------|------------------------------------|----------------|------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| lattice  | $2264^{+\ 8}_{-14}\\2468^{+32}_{-25}$ | $0\\113^{+18}_{-16}$               | (000)<br>(110) | $7.7^{+1.2}_{-1.1} \\ 5.2^{+0.6}_{-0.4}$ | $\begin{array}{c} 0.3^{+0.5}_{-0.3} \\ 6.7^{+0.6}_{-0.4} \end{array}$ | $\begin{array}{r} 4.2^{+1.1}_{-1.0} \\ 13.2^{+0.6}_{-0.5} \end{array}$ |
| physical | $2105^{+6}_{-8} \\ 2451^{+36}_{-26}$  | $102^{+10}_{-12} \\ 134^{+7}_{-8}$ | (100)<br>(110) | $9.4^{+0.2}_{-0.2}\\5.0^{+0.7}_{-0.4}$   | $1.8^{+0.7}_{-0.7}\\6.3^{+0.8}_{-0.5}$                                | $4.4^{+0.5}_{-0.5}\\12.8^{+0.8}_{-0.6}$                                |

## Moir *et al.,* JHEP1610, 011(2016)

Albaladejo, Fernandes-Soler, Guo, Nieves, PLB767, 465(2017)



#### Analog in the heavy flavor sector

|         | lower pole                                     | higher pole                                    | RPP                                            |
|---------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| $D_0^*$ | $\left(2105^{+6}_{-8}, 102^{+10}_{-11}\right)$ | $\left(2451^{+35}_{-26}, 134^{+7}_{-8}\right)$ | $(2300\pm 19, 137\pm 20)$                      |
| $D_1$   | $\left(2247^{+5}_{-6}, 107^{+11}_{-10}\right)$ | $\left(2555^{+47}_{-30}, 203^{+8}_{-9}\right)$ | $(2427 \pm 26 \pm 25, 192^{+54}_{-38} \pm 37)$ |
| $B_0^*$ | $(5535^{+9}_{-11}, 113^{+15}_{-17})$           | $\left(5852^{+16}_{-19}, 36\pm5\right)$        | -                                              |
| $B_1$   | $(5584^{+9}_{-11}, 119^{+14}_{-17})$           | $(5912_{-18}^{+15}, 42_{-4}^{+5})$             | -                                              |

#### Guo, Shen, Chiang, PLB647, 133(2007) Cleven, Guo, Hanhart, Meissner, EPJA47, 465(2011)





#### Article **Two-Pole Structures in QCD: Facts, Not Fantasy!**

Ulf-G. Meißner <sup>1,2,3</sup>

The two-pole structure refers to the fact that particular single states in the spectrum as listed in the PDG tables are often two states.

A comprehensive review by Ulf-G. Meissner Symmetry 2020, 12(6), 981

#### **Identify the two-pole structures**

 Due to different couplings, the shape of the Λ(1380/1405) spectrum can be different depending on the initial and final channels



Jido et al., NPA725, 181(2003); NPA835, 59(2010)

| $z_R$           | 1390 + 66i     |         | 1426 + 16     | i       |
|-----------------|----------------|---------|---------------|---------|
| (I = 0)         | <i>g</i> i     | $ g_i $ |               | $ g_i $ |
| $\pi \Sigma$    | -2.5 - 1.5 i   | 2.9     | 0.42 - 1.4 i  | 1.5     |
| $\overline{K}N$ | 1.2 + 1.7 i    | 2.1     | -2.5 + 0.94 i | 2.7     |
| $\eta \Lambda$  | 0.010 + 0.77 i | 0.77    | -1.4 + 0.21 i | 1.4     |
| $K\Xi$          | -0.45 - 0.41 i | 0.61    | 0.11 - 0.33 i | 0.35    |

#### Identify the two-pole structures

#### Mai & Meissner, EPJA51, 30(2015) $\gamma p ightarrow \pi \Sigma K^+$



Result of the fits to the CLAS photoproduction data in three channels A chiral unitary model adopted

| Solution | Pole 1                           | Pole 2                               |
|----------|----------------------------------|--------------------------------------|
| #2       | $1434^{+2}_{-2} - i10^{+2}_{-1}$ | $1330^{+4}_{-5} - i56^{+17}_{-11}$   |
| #4       | $1429^{+8}_{-7} - i12^{+2}_{-3}$ | $1325^{+15}_{-15} - i90^{+12}_{-18}$ |

The two-pole puzzle has still not been satisfactorily experimentally solved.

#### An SU(3) flavor filter







Y: A heavy quarkonium state  $J/\psi$ ,  $\psi(3686)$ ,  $\chi_{cJ}$ ,  $\Upsilon(ns)$ ...

- SU(3) singlet
- Huge data samples, more than <u>10 billion  $J/\psi$ </u> events and <u>3 billion  $\psi(3686)$ </u> events in BESIII

 $\Lambda(1520)$ : SU(3) singlet with  $J^P = 3/2^-$  generally supposed to be

#### Formalism



$$\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix} B = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & n \\ \Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}}\Lambda \end{pmatrix}$$

#### Formalism



Unitary model 
$$t_i = \tilde{V}_i + \sum_j \tilde{V}_j G_j T_{ji}$$
  $T_{ij} = V_{ij} + V_{ik} G_k T_{kj}$ 

$$G_{l} = i2M_{l} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{(P-q)^{2} - M_{l}^{2} + i\epsilon} \frac{1}{q^{2} - m_{l}^{2} + i\epsilon}$$

$$= \frac{2M_{l}}{16\pi^{2}} \left\{ a_{l}(\mu) + \ln \frac{M_{l}^{2}}{\mu^{2}} + \frac{m_{l}^{2} - M_{l}^{2} + s}{2s} \ln \frac{m_{l}^{2}}{M_{l}^{2}} + \frac{q_{l}}{\sqrt{s}} \left[ \ln \left( s - \left(M_{l}^{2} - m_{l}^{2}\right) + 2q_{l}\sqrt{s}\right) + \ln \left( s + \left(M_{l}^{2} - m_{l}^{2}\right) + 2q_{l}\sqrt{s}\right) - \ln \left( -s + \left(M_{l}^{2} - m_{l}^{2}\right) + 2q_{l}\sqrt{s}\right) - \ln \left( -s - \left(M_{l}^{2} - m_{l}^{2}\right) + 2q_{l}\sqrt{s}\right) \right]$$

$$a_{\overline{K}N} = -1.84, \qquad a_{\pi \Sigma} = -2.00, \qquad a_{\pi \Lambda} = -1.83, \\ a_{\eta \Lambda} = -2.25, \qquad a_{\eta \Sigma} = -2.38, \qquad a_{K\Sigma} = -2.67$$

Adopt the same subtraction constants as those in [Jido *et al.,* NPA725, 181(2003)]

#### Formalism



Unitary model  $t_i = \tilde{V}_i + \sum_j \tilde{V}_j G_j T_{ji}$   $T_{ij} = V_{ij} + V_{ik} G_k T_{kj}$ Coefficient in  $\tilde{V}_i$   $h_{\pi\Sigma} = -\sqrt{2}\tilde{D}$ ,  $h_{\bar{K}N} = -\sqrt{\frac{1}{3}}\tilde{D} - \sqrt{3}\tilde{F}$ ,  $h_{\eta\Lambda} = -\sqrt{\frac{2}{3}}\tilde{D}$ ,  $h_{K\Xi} = \sqrt{\frac{1}{3}}\tilde{D} - \sqrt{3}\tilde{F}$ .  $h_{\pi\Sigma} = -\sqrt{3}g_0$ ,  $h_{\bar{K}N} = \sqrt{2}g_0$ ,  $h_{\eta\Lambda} = g_0$ ,  $h_{K\Xi} = -\sqrt{2}g_0$ .

16

#### **Parameters of the model**

$$\mathcal{L}_{\psi} = \tilde{D} \left\langle \bar{B} \gamma_{\mu} \gamma_{5} \{\Phi, B\} \right\rangle \psi^{\mu} + \tilde{F} \left\langle \bar{B} \gamma_{\mu} \gamma_{5} [\Phi, B] \right\rangle \psi^{\mu}$$

| $\Gamma_{210}$ | $A\overline{\Lambda}\pi^0$                     |     | $(3.8\pm 0.4)\times 10^{-5}$       |
|----------------|------------------------------------------------|-----|------------------------------------|
| $\Gamma_{211}$ | $\Lambda\overline{\Lambda}\pi^+\pi^-$          |     | $(4.3 \pm 1.0) \times 10^{-3}$     |
| $\Gamma_{212}$ | $\Lambda\overline{\Lambda}\eta$                |     | $(1.62\pm0.17)	imes10^{-4}$        |
| $\Gamma_{213}$ | $\Lambda\overline{\varSigma}^-\pi^+$ (or c.c.) | [2] | $(8.3\pm 0.7) 	imes 10^{-4}$       |
| $\Gamma_{214}$ | $pK^{-}\overline{\Lambda}$ +c.c.               |     | $(8.6 \pm 1.1) 	imes 10^{-4}$      |
| $\Gamma_{215}$ | $pK^-\overline{\Sigma}^0$                      |     | $({\bf 2.9}\pm 0.8)\times 10^{-4}$ |
| $\Gamma_{216}$ | $\overline{\Lambda}nK_{S}^{0}$ + c.c.          |     | $(6.5 \pm 1.1) 	imes 10^{-4}$      |
| $\Gamma_{217}$ | $\Lambda \overline{\Sigma}$ + c.c.             |     | $(2.83\pm 0.23)\times 10^{-5}$     |
| $\Gamma_{218}$ | $\Sigma^+\overline{\Sigma}^-$                  |     | $(1.07\pm0.04)	imes 10^{-3}$       |
| $\Gamma_{219}$ | $\Sigma^0 \overline{\Sigma}^0$                 |     | $(1.172\pm 0.032)\times 10^{-3}$   |
| $\Gamma_{220}$ | $\Sigma^+\overline{\Sigma}^-\eta$              |     | $(6.3\pm 0.4)	imes 10^{-5}$        |
| $\Gamma_{221}$ | $\Xi^-\overline{\Xi}^+$                        |     | $(9.7\pm 0.8) \times 10^{-4}$      |

• For  $J/\psi$  decays, branching fractions of four channels  $\overline{\Lambda}\Sigma\pi$ ,  $\overline{\Lambda}N\overline{K}$ ,  $\overline{\Lambda}\Lambda\eta$  and  $\overline{\Sigma}N\overline{K}$ are used for the fitting

$${\cal R}_{\scriptscriptstyle F\!/\!D}\!\equiv\!rac{\widetilde{F}}{\widetilde{D}}\!=\!0.18\pm\!0.03$$

• For  $\psi(3686)$  decays

$${\cal R}_{\scriptscriptstyle F/D}\!\equiv\!rac{\widetilde{F}}{\widetilde{D}}\!=\!0.50\pm\!0.06$$

Braching fractions of  $J/\psi$  decay modes PDG 2022

#### An SU(3) flavor filter



#### Background

#### Dalitz plots of $J/\psi \rightarrow \overline{\Lambda}\Sigma\pi$ , $\overline{\Sigma}\Lambda\pi$





- Contributions from intermediate
   Σ<sup>\*\*</sup> resonances are ignored
- Eliminate the influence by proper cutting

BESIII, arXiv:2306.10319

#### An SU(3) flavor filter



Invariant mass distribution of  $\Sigma \pi$  by cutting

Interference with the background is not taken into account

No available data of  $J/\psi \rightarrow \overline{\Lambda}(1520)\Sigma\pi$ 

#### An SU(3) flavor filter



#### **NLO Contributions**

Pseudoscalar meson octet scattering off light baryon octet



$$\begin{aligned} \mathcal{L}_{MB}^{(1)} &= \operatorname{Tr} \big( \bar{\mathcal{B}} \big( i\gamma_{\mu} \mathcal{D}^{\mu} - M_0 \big) \mathcal{B} - D \bar{\mathcal{B}} \gamma_{\mu} \gamma_5 \big\{ a^{\mu}, \mathcal{B} \big\} - F \bar{\mathcal{B}} \gamma_{\mu} \gamma_5 \big[ a^{\mu}, \mathcal{B} \big] \big) \\ \mathcal{L}_{MB}^{(2)} &= b_0 \operatorname{Tr} (\bar{\mathcal{B}} \mathcal{B}) \operatorname{Tr} (\chi_+) + b_D \operatorname{Tr} \big( \bar{\mathcal{B}} \big\{ \chi_+, \mathcal{B} \big\} \big) + b_F \operatorname{Tr} \big( \bar{\mathcal{B}} \big[ \chi_+, \mathcal{B} \big] \big) \\ &+ d_1 \operatorname{Tr} \big( \bar{\mathcal{B}} \big\{ u_{\mu}, \big[ u^{\mu}, \mathcal{B} \big] \big\} \big) + d_2 \operatorname{Tr} \big( \bar{\mathcal{B}} \big[ u_{\mu}, \big[ u^{\mu}, \mathcal{B} \big] \big] \big) \\ &+ d_3 \operatorname{Tr} (\bar{\mathcal{B}} u_{\mu}) \operatorname{Tr} \big( \mathcal{B} u^{\mu} \big) + d_4 \operatorname{Tr} (\bar{\mathcal{B}} \mathcal{B}) \operatorname{Tr} \big( u_{\mu} u^{\mu} \big), \end{aligned}$$

Ikeda, Hyodo, Weise,

Scheme 1: Born terms + NLO contact terms (NLO1) Scheme 2: NLO contact terms (NLO2)

NPA881, 98(2012)

Guo, Kamiya, Mai, Meissner, PLB846,138264(2023)

#### **NLO Contributions**

| (MeV)                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |                   |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------|
| WT                                                                | 1390-i66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1426-i16                                                                                                   | Ikada Huada Maisa |
| NLO1                                                              | 1381-i81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1424-i26                                                                                                   | NPA881, 98(2012)  |
| NLO2                                                              | 1415-i165.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1417.9-i15.9                                                                                               | Guo, Kamiya, Mai, |
| $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $ | $J/\psi \rightarrow \overline{\Lambda}\Sigma\pi$ $WT$ $-WT$ $-NL01$ $-NL02$ $J/\psi \rightarrow \overline{\Lambda}(1520)\Sigma\pi$ $WT$ | $\begin{bmatrix} 0.4 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.2 \\ 0.1 \\ 0.0 \\ 1.35 \\ 1.40 \\ 1.40 \\ M \end{bmatrix}$ | 138264(2023)<br>  |

#### **Data & Model**



#### **NLO Contributions**



#### **Summary**

- An SU(3) flavor filter is proposed to identify the two-pole structure of Λ(1405/1380)
- The two poles are dynamically generated from different irreducible representations.
- Huge data samples of heavy quarkonia accumulated in current experiments.
- The spectator in the three-body decays is a good singlet/octet candidate.

>Other flavor filter

•  $Y \to \overline{D}^* D\pi$  decays, single out the triplet  $D_0^*$ 

## Thanks!



愿慈九核弱京 祈心秩力冠华 期倾春场负杏 颐灌秋中笈坛 贺 身桃功研逐诞 张 犹李绩奥物贤 宗 健盛著秘理良豆烨 包老 续德松量青杭产师 写馨鹤子衿城 九 传万为域矢灵 秩 奇里邻内志秀 寿 韵美岁著探育 流名月华微慧 芳扬长章芒光