Study of lepton ID

Changhua Hao, Ligang Xia

Nanjing University

Update on MC samples

- Latest mater (yesterday) + Chenguang's TofRecAlg package and the CyberPFA algorithm
- particles: electron, muon and pion
- momentum: 1~ 10 GeV and 1000 events for each momentum (7GeV job is not done yet!)
- angle: 45 degrees
- Is most recent update from Fangyi merged in the master?

Update in CyberPFA

- A new MR !153 in CEPCSW: harmonize with standalone analysis.
 - ECAL and HCAL digitization: add some effects from electroncs.
 - Energy resolution may go worse.
 - Tracking: improve the precision in G4 simulation [MR !159 by Zhihao Li and Chengdong Fu]
 - Track momentum bias is fixed.
 - PFA:
 - Add a BDT-based track cleaning.
 - Add separate scale constant for charged/neutral ECAL and HCAL constant.
 - rackIDFile = "/cvmfs/cepcsw.ihep.ac.cn/prototype/releases/data/latest/CEPCSWData/offline-data/Reconstruction/CvberPFA_trackID/TrkID_BDT_BDT6.weights.xml" + CyberPFAlg.TrackIDMethod = "BDTG" + CyberPFAlg.EcalChargedCalib = 1.26 + CyberPFAlg.HcalChargedCalib = 4.0 + CyberPFAlg.EcalNeutralCalib = 1.0
 - + CyberPFAlg.HcalNeutralCalib = 4.0

BDT weight file might not in /cvmfs/ yet, can be found in /afs/ihep.ac.cn/users/g/guofy/TrkID_BDT_BDTG.weights.xml

- Jet clustering in GenMatch:
 - add a branch: barrelRatio = $N_{MC}^{|\cos \theta| < 0.85} / N_{MC}^{all}$.
- A set of scripts in Reconstruction/RecPFACyber/script/
- Detailed performance will be updated this week.

Issue1: No track momentum for 1 GeV particles

root	[3] R	lec	Clusters	-;	>	Scan("Ecal	LC1	lus_Escale:	EcalClus_pt			
****	*****	**	*******	**	**	*********	***	*******	**			
*	Row	*	Instance		*	EcalClus_	*	EcalClus_	*			

*	Ø) *	e)	*	0.0337420	*	-99	*			
*	Q) *	1		*	0.1244335	*	-99	*			
*	1	*	Q)	*	0.0018956	*	-99	*			
*	2	*	e)	*	0.7157256	*	-99	*			
*	3	*	e)	*		*		*			
*	4	*	e)	*		*		*			
*	5	*	e)	*		*		*			
*	6	*	l)	*	0.2401485	*	-99	*			
*	7	*	l)	*	0.9447402	*	-99	*			
*	8	*	l)	*		*		*			
*	9	*	l)	*		*		*			
*	10) *	l)	*		*		*			
*	11	*	l)	*	0.0054692	*	-99	*			
*	11	*	1	-	*	0.0045299	*	-99	*			
*	12	*	l)	*		*		*			
*	13	*	l)	*		*		*			
*	14	*	l)	*		*		*			
*	15	*	l)	*		*		*			
*	16	*	Q)	*		*		*			
*	17	' *	l)	*		*		*			
*	18	*	l)	*	0.1946679	*	-99	*			
*	18	*	1	-	*	0.0680412	*	-99	*			
*	19) *	6)	*	0.5789478	*	-99	*			
*	20) *	6)	*		*		*			
*	21	*	6)	*		*		*			

- We find "EcalClus_ptrk" is -99 in all 1000 events.
- There are two possibilities.
 - No associated track for the cluster at all
 - More than 1 associated tracks
- where are the codes about track association?

if(m_EcalClusterCol[icl]->getAssociatedTracks().size()==1){
 const Track* trk = m_EcalClusterCol[icl]->getAssociatedTracks()[0];
 m_EcalClus_pTrk.push_back(trk->getMomentum());

std::vector<TrackState> AllTrackStates = trk->getAllTrackStates(); for(int istate=0; istate<AllTrackStates.size(); istate++){ m_EcalClus_trk_tag.push_back(icl); m_EcalClus_trk_d0.push_back(AllTrackStates[istate].D0); m_EcalClus_trk_z0.push_back(AllTrackStates[istate].Z0); m_EcalClus_trk_phi.push_back(AllTrackStates[istate].Phi0); m_EcalClus_trk_tanL.push_back(AllTrackStates[istate].phi0); m_EcalClus_trk_tanL.push_back(AllTrackStates[istate].tanLambda); m_EcalClus_trk_kappa.push_back(AllTrackStates[istate].tanLambda); m_EcalClus_trk_location.push_back(AllTrackStates[istate].Omega); m_EcalClus_trk_location.push_back(AllTrackStates[istate].location); }

else

m_EcalClus_pTrk.push_back(-99);

m_EcalClus_trk_a0.push_back(AllTrackStates[istate].b0); m_EcalClus_trk_phi.push_back(AllTrackStates[istate].Z0); m_EcalClus_trk_phi.push_back(AllTrackStates[istate].phi0); m_EcalClus_trk_tanL.push_back(AllTrackStates[istate].tanLambda); m_EcalClus_trk_kappa.push_back(AllTrackStates[istate].Kappa); m_EcalClus_trk_omega.push_back(AllTrackStates[istate].Omega); m_EcalClus_trk_location.push_back(AllTrackStates[istate].location);

s
else
m_EcalClus_pTrk.push_back(-99);

Issue:

 some electrons have very small energy deposit in Ecal

- some pions lose all energy in Ecal.
- wrong truth matching???
- Propose to save reconstructed track px/py/pz for truth matching

if(m_EcalClusterCol[icl]->getAssociatedTracks().size()==1){
 const Track* trk = m_EcalClusterCol[icl]->getAssociatedTracks()[0];
 m_EcalClus_pTrk.push_back(trk->getMomentum());
 m_EcalClus_Trk_px.push_back(trk->getP3()[0]);
 m_EcalClus_Trk_py.push_back(trk->getP3()[1]);
 m_EcalClus_Trk_pz.push_back(trk->getP3()[2]),

std::vector<TrackState> AllTrackStates = trk->getAllTrackStates();
for(int istate=0; istate<AllTrackStates.size(); istate++){
 m_EcalClus_trk_tag.push_back(icl);
 m_EcalClus_trk_d0.push_back(AllTrackStates[istate].D0);
 m_EcalClus_trk_z0.push_back(AllTrackStates[istate].Z0);
 m_EcalClus_trk_phi.push_back(AllTrackStates[istate].phi0);
 m_EcalClus_trk_tanL.push_back(AllTrackStates[istate].tanLambda);
 m_EcalClus_trk_kappa.push_back(AllTrackStates[istate].Kappa);
 m_EcalClus_trk_omega.push_back(AllTrackStates[istate].0mega);
 m_EcalClus_trk_location.push_back(AllTrackStates[istate].location);
</pre>

Issue2: Truth Matching

- truth matching: min(reco direction, truth direction)

- with truth matching, the issue is fixed.

Issue:

- some electrons have very small energy deposit in Ecal

- some pions lose all energy in Ecal.
- wrong truth matching???
- Propose to save reconstructed track px/py/pz for truth matching

Muon Identification

For a single-momentum muon:

- deposit a single-amount of energy in Ecal and Hcal

For pions, the energy distribution in Ecal and Hcal is much more broad.

Muon Identification

Events

9

Muon Identification

Summary

• Preliminary lepton ID working point.

Proposed Electron ID working point:

- definition: E(ecal)/p(trk) > 0.9

- efficiency: 81.8% at 2GeV and 82.7% at 10 GeV

Proposed muon ID working point:

- definition: chi2_Ecal <3 and chi2_Hcal < 3 (~3sigma region)
- efficiency (2GeV): 74% (81% and 91% respectively)
- efficiency (10GeV): 57% (73% and 79% respectively)

Work to do:

- improve the fits
- implement the leptonID into the CEPCSW
- study high-energy lepton ID (Z \rightarrow ee/mumu)
- Machine Learning for lepton ID
- Muon counter (when available)

• BACK UP

Example: 2 GeV

Features:

- electrons have high E/p in ECAL and won't reach HCAL.
- muons have gaussian-like energy deposit in ECAL and HCAL for a single momentum
- pions' energy deposits in ECAL/HCAL: hard to describe and clearly different from muon/electron (the best place to use ML!!).

E_{Hcal} [GeV]

Example: 10 GeV

Events

600

400

200

CEPC internal

p=10GeV, angle=45°

Features:

- electrons have high E/p in ECAL and won't reach HCAL.
- muons have gaussian-like energy deposit in ECAL and HCAL for a single momentum
- pions' energy deposits in ECAL/HCAL: hard to describe and clearly different from muon/electron (the best place to use ML!!).

e, mean=6.85, std=3.82

μ, mean=1.58, std=2.66

π, mean=3.90, std=3.24

Comparison: 2 GeV v.s. 10 GeV

Features:

- the bigger momentum, the more energy deposit in ECAL.
- Similar Ecal energy increasement rate: 0.59 \rightarrow 1.58 for muon, 0.96 \rightarrow 3.90 for pion

Comparison: 2 GeV v.s. 10 GeV

Features:

- the bigger momentum, the more energy deposit in ECAL.
- Very different Hcal energy increasement rate: 0.35 \rightarrow 0.56 for muon, 0.13 \rightarrow 1.31 for pion

Truth Matching

root [8] MCParticle -> Scan("mcPx:mcPy:mcPz")

Issue:

- some electrons have very small energy deposit in Ecal

- some pions lose all energy in Ecal.
- wrong truth matching???
- Propose to save reconstructed track px/py/pz for truth matching

* * * * * * * * * *	****	* * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	
Row ********	* Instance *	* mcPx *	* mcPy *********	* mcPz * *****	
0	* 0 *	* 1.4141644 '	* 0.0117841	* 1.4142135 *	
0	* 1 *	* -1.139660 *	* -0.837361	* 1.4142135 *	root [9] RecClusters -> Scan("EcalClus_truthMC_pid:EcalClus_Escale:EcalClus_ptrk:EcalClus_truthMC_weight:EcalClus_truthMC_px:EcalClus_truthMC_p
0	* 2 *	* 0.3934340 '	* 1.3583849	* 1.4142135 *	y:ecalclus_trutnmc_pz_) ************************************
1	* 0 *	* 1.3731187 '	* -0.338444	* 1.4142135 *	* Row * Instance * EcalClus_ * EcalClus_ * EcalClus_ * EcalClus_ * EcalClus_ * EcalClus_ *
1	* 1 *	* 1.1648671 '	* 0.8019254 *	* 1.4142135 *	***************************************
1	* 2 *	* 0.1600361 *	* -1.405129	* 1.4142135 *	* 0 * 0 * -211 * 1.4472522 * 2.0014236 * 1 * 0.3934340 * 1.3583849 * 1.4142135 *
2	* 0 *	* 0.0461763 '	* 1.4134595	* 1.4142135 *	* 0 * 1 * 13 * 0.7885690 * 2.0063059 * 0.99999999 * -1.139660 * -0.837361 * 1.4142135 * * 0 * 2 * 11 * 1 7394524 * 1 8885551 * 1 0000001 * 1 4141644 * 0 0117841 * 1 4142135 *
2	* 1 *	* -0.338782 *	* -1.373035	* 1.4142135 *	* 1 * 0 * 13 * 0.0246001 * -99 * 1 * 1.1648671 * 0.8019254 * 1.4142135 *
2	* 2 *	* 0.8967785 '	* 1.093521	* 1.4142135 *	* 1 * 1 * 13 * 0.4542815 * 1.9947865 * 0.99999999 * 1.1648671 * 0.8019254 * 1.4142135 *
3	* 0 *	* 0.9950917 *	* 1.0048842	* 1.4142135 *	* 1 * 2 * 11 * 2.0022621 * 2.0035669 * 1.0000001 * 1.3731187 * -0.338444 * 1.4142135 *
3	* 1 *	* 0.7206547 '	* -1.216822	* 1.4142135 *	* 1 * 3 * -211 * 1.4630663 * 1.9876115 * 0.999 * 1 * 4 * 12 * 0.1024284 * 2.0422650 * 5555 * 5555 * 5555 * 5555 * 5555 * 5555 * 5555 * 5555 * 5555 * 5555 * 555
3	* 2 *	* -1.128017 [*]	* 0.8529807	* 1.4142135 *	$m_{tote} = calcluster(o)[[cc]] ->getlong[c();$ $m_{tote} = m_{tote} = calcluster(o)[[cc]] ->getlong[c();$
4	* 0 *	* 0.8517094 '	* -1.128977	* 1.4142135 *	* $2 * 1 * 11 * 2.0535900 * 2.0026135 * 0.999$
4	* 1 *	* -1.344648 *	* 0.4380868	* 1.4142135 *	* $2 * 2 * 13 * 0.4954095 * 1.9859817 * 0.999$ * $Callows + ruthMC + a a push back(icl):$
4	* 2 *	* -1.388419 [;]	* -0.268870	* 1.4142135 *	* $3 * 0 * 13 * 0.4955662 * 2.0048124 * m_ccuccus_cuccus_cucs_back(iter, first aetPDG()):$
5	* 0 *	* -1.220502 [*]	* 0.7144048	* 1.4142135 *	* $3 *$ $1 *$ $11 * 2.0085377 * 1.9962967 * 1.000 m_ccutcus_crutime_pru.push_back(tter first aetMomentum() x):$
5	* 1 *	* -0.471672 [;]	* -1.333238	* 1.4142135 *	* 4 * 0 * 11 * 2.0282018 * 1.9962714 * m Ecal(lus truthMC pv push back(iter first aetMomentum() v);
5	* 2 *	* 0.6957339 [;]	* -1.231240	* 1.4142135 *	* $4 * 1 * -211 * 0.3638647 * 2.0013227 *$ m EcalClus truthMC pz.push back(iter.first.aetMomentum().z);
6	* 0 *	* 1.2633993 [;]	* 0.6354698	* 1.4142135 *	* 4 * 2 * 13 * <u>0.4583229</u> * 2.0000076 * m EcalClus truthMC E.push back(iter.first.aetEnerav()):
6	* 1 *	* 0.1717654 *	* 1.4037437	* 1.4142135 *	* 5 * 0 * 11 * 1.8551514 * -99 * m_EcalClus_truthMC_EPx.push_back(iter.first.getEndpoint().x);
6	* 2*	* -0.798826 *	* -1.166994	* 1.4142135 *	* 5 * 2 * 13 * 0.2550188 * 2.0047075 * m_EcalClus_truthMC_EPy.push_back(iter.first.getEndpoint().y);
7	* 0 *	* 1.336604 *	* -0.462049	* 1.4142135 *	* 6 * 0 * 13 * 0.5617442 * 1.9993442 * m_EcalClus_truthMC_EPz.push_back(iter.first.getEndpoint().z);
7	* 1 *	* 0.6832138 *	* 1.2382321	* 1.4142135 *	* 6 * 1 * 11 * 1.9143279 * 1.9908685 * 0.999 m_EcalClus_truthMC_weight.push_back(iter.second);
7	* 2 *	* -0.738398 *	* -1.206137	* 1 4142135 *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8	* 0 *	* 1 3998915	* 0.2007579	* 1 4142135 *	* 7 * 0 * -211 * 0.6981110 * 1.9944497 * }
0	0	T:000010	0.2001313		

Truth Matching

If you think it is OK, I can prepare a MR to add more variables.

Issue:

- some electrons have very small energy deposit in Ecal

- some pions lose all energy in Ecal.

- wrong truth matching???

 Propose to save reconstructed track px/py/pz for truth matching

if(m_EcalClusterCol[icl]->getAssociatedTracks().size()==1){
 const Track* trk = m_EcalClusterCol[icl]->getAssociatedTracks()[0];
 m_EcalClus_pTrk.push_back(trk->getMomentum());

std::vector<TrackState> AllTrackStates = trk->getAllTrackStates(); int istate=0; istate<AllTrackStates.size(); istate++){ m_EcalClus_trk_tag.push_back(icl); m_EcalClus_trk_d0.push_back(AllTrackStates[istate].D0); m_EcalClus_trk_z0.push_back(AllTrackStates[istate].Z0); m_EcalClus_trk_phi.push_back(AllTrackStates[istate].Phi0); m_EcalClus_trk_tanL.push_back(AllTrackStates[istate].tanLambda); m_EcalClus_trk_kappa.push_back(AllTrackStates[istate].tanLambda); m_EcalClus_trk_location.push_back(AllTrackStates[istate].comega); m_EcalClus_trk_location.push_back(AllTrackStates[istate].location);

else

m_EcalClus_pTrk.push_back(-99);

m_totE_Ecal += m_EcalClusterCol[icl]->getLongiE(); auto truthMap = m_EcalClusterCol[icl]->getLinkedMCP(); for(auto iter: truthMap){

- m_EcalClus_truthMC_tag.push_back(icl);
- m_EcalClus_truthMC_pid.push_back(iter.first.getPDG());
- m_EcalClus_truthMC_px.push_back(iter.first.getMomentum().x);
- m_EcalClus_truthMC_py.push_back(iter.first.getMomentum().y);
- m_EcalClus_truthMC_pz.push_back(iter.first.getMomentum().z);
- m_EcalClus_truthMC_E.push_back(iter.first.getEnergy());
- m_EcalClus_truthMC_EPx.push_back(iter.first.getEndpoint().x);
- m_EcalClus_truthMC_EPy.push_back(iter.first.getEndpoint().y); m_EcalClus_truthMC_EPz.push_back(iter.first.getEndpoint().z);
- m_EcalClus_truthMC_weight.push_back(iter.second);

Ecal Energy:p(trk)

Features on Ecal energy:

- electrons will lose all energy
- muon lose the same energy
- pion lose more energy at low momentum and the same energy as muon at high momentum

Hcal Energy:p(trk)

Features on Hcal energy:

- Most of electrons will not reach Hcal.
- muons lose the same energy
- pions lose more energy than muon and lose more energy if their momentum is bigger.

Summary

- Had a look at the energy deposits in Ecal and Hcal for e/mu/pi with different momenta 1-10GeV
- A couple of issues:
 - No track momentum for 1 GeV particles
 - maybe wrong truth matching ($e \rightarrow pi$, pi-->e...)
- Work to do (hope to report on next Monday):
 - design identification criteria for electrons and muons
 - calculate the ID efficiency
 - meanwhile, fix the issues above
 - update with including Fangyi's updates