PID efficiency study

- Summary of efficiency study in physical process $Z \rightarrow qq$
 - Calculate efficiency and purity in all phase space using minimum χ^2 PID
 - Veto decay particles
 - Debug function FindToFHits() which didn's set no hit's returned bool values
 - TPC PID efficiency dips because of K/p and K/pi misidentification
 - Compare with ParticleGun single particle's results
 - Almost match
 - Low momentum multi-tracks not considered in Zqq events but in particlegun's
 - Lower degree has higher PID efficiency
 - To understand PID efficiency asymmetry and tof_meast bump of pion
- Samples used under CEPCSW_tdr24.12.0
 - ParticleGun 10000 * 22 single K⁻ events
 - $Z \rightarrow qq$ 100000 events (truth π : *K*: *p* = 1767358: 211458: 90572)
 - stable π: K: p = 1520685: 163926: 90572 (simulatorStatus==0)

X.Ma, C.Zhang

PID efficiency and purity in $Z \rightarrow qq$

1200

1000

800

600

400

200

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.9

0.8

0.7

0.6

0.5

0.4

- Track truth phase
 space (p_{gen}, cosθ_{gen})
 0-20GeV
- PID efficiency
 distribution of track
 π/K/p (minimum
 combined χ²)
- Purity distribution of track π/K/p

TPC/TOF TRK efficiency comparison with ParticleGun

PID efficiency comparison with ParticleGun

Efficiency asymmetry in $Z \rightarrow qq$

PID efficiency not the same at 40-50 degree and 130-140 degree

Backup

$$\begin{split} \chi_{\mathrm{TPC}}(i) &= \frac{(dN/dx)_{\mathrm{meas}} - (dN/dx)_{\mathrm{exp}}^{i}}{\sigma_{(dN/dx)_{\mathrm{meas}}}}, i = \pi/K/p \\ \chi_{\mathrm{TOF}}(i) &= \frac{t_{\mathrm{meas}} - t_{\mathrm{exp}}^{i}}{\sigma_{t_{\mathrm{meas}}}}, \sigma_{t_{\mathrm{meas}}} = \sqrt{0.05^{2} + 0.02^{2}} \\ \chi^{2}(i) &= \chi_{\mathrm{TOF}}^{2}(i) + \chi_{\mathrm{TPC}}^{2}(i) \\ \chi(i) &= \sqrt{\chi^{2}(i)} \end{split}$$
Efficiency_{tot}(i) &= Efficiency_{\mathrm{trk}}(\mathrm{TPC}/\mathrm{TOF}) \times Efficiency_{\mathrm{PID}}(i) \\ \mathrm{Efficiency_{\mathrm{trk}}}(i) &= \frac{N_{\mathrm{trk}}^{\mathrm{TPC}}}{N_{\mathrm{trk}}^{\mathrm{reco}}} \\ \mathrm{Efficiency_{\mathrm{PID}}}(i) &= \frac{N_{\mathrm{trk}}^{\mathrm{TPC}}(\chi^{2}(i) < \chi^{2}(j))}{N_{\mathrm{trk}(i)}^{\mathrm{TPC}}} (j \neq i) \\ \mathrm{purity}(K) &= \frac{N_{K \to K}}{N_{K \to K} + N_{\pi \to K} + N_{p \to K}} \\ \mathrm{Efficiency_{\mathrm{opti.\,PID}}}(i) &= \frac{N_{\mathrm{trk}(i)}^{\mathrm{TPC}}(a < \chi(i \to i) < b)}{N_{\mathrm{trk}(i)}^{\mathrm{TPC}}} \\ \mathrm{purity}_{\mathrm{opti.\,PID}}(K) \end{split}