

CMS 探测器与升级简介

王大勇

<u>dayong.wang@pku.edu.cn</u> 北京大学技术物理系

第三届中国CMS冬令营,北航 2025.01.17

中国CMS冬令营2025

- 粒子探测基本原理回顾
- CMS探测器的整体设计思路
- CMS各子探测器简介与性能
- HL-LHC与探测器升级

粒子与物质相互作用(I)

- 与核外电子发生非弹性 碰撞,入射粒子损失能 量,引起原子激发或电 离 → 电离能量损失
- 与原子核发生弹性、非弹性碰 撞,产生多次散射(Multiple Scattering);过程中还可能产 生初致辐射(Bremsstrahlung)
 - → 辐射能量损失

 介质中粒子速度超过光速时 产生切伦科夫光;当粒子穿 过两种物质边界时有一定概 率发出X-光(穿越辐射)。

粒子与物质相互作用(II)

Туре	particles	fund. parameter	characteristics	effect
Multiple Scattering	all charged particle	radiation length X	almost gaussian average effect 0 depends $\sim 1/p$	deflects particles, increases measurement uncertainty
Ionisation loss	all charged particle	effective density $A/Z * ho$	small effect in tracker, small dependence on p	increases momentum uncertainty
Bremsstrahlung	all charged particle, dominant for e	radiation length X	highly non- gaussian, depends	introduces measurement bias
Hadronic Int.	all hadronic particles	nuclear interaction length A	destroys particle, rather constant effect in p	main source of track reconstruction inefficiency

电离能量损失与多次散射

Valid for heavy charged particles ($m_{incident}$ >> m_e), e.g. proton, k, π , μ

中国CMS冬令营2025

0.1

1.0

10

100

 $\beta \gamma = p/Mc$

1000

10 000

- 带电粒子在磁场中的运动:
 - $\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F} = q\vec{v}\times\vec{B}$
- 在垂直磁场和速度的方向:

$$R = \frac{p_{\perp}}{e B} = 3.3 \text{ m} \cdot \frac{p_{\perp}/(\text{GeV}/c)}{B/\text{T}},$$

• 通过运动求解带电粒子横动量

•
$$s = R - \sqrt{R^2 - \left(\frac{L}{2}\right)^2} \approx \frac{L^2}{8R}$$

•
$$p_{\perp} = \frac{0.3L^2B}{8s}$$

•
$$\frac{\delta p_{\perp}}{p_{\perp}} = \frac{8}{0.3} \frac{1}{L^2 B} p_{\perp} \delta s = \frac{\delta s}{s}$$

• 总动量的测量:

•
$$p = \frac{p_{\perp}}{\cos \lambda}$$

Tracking in B-field

Spectrometer (measure momentum): Tracking detector in magnetic field $\frac{d\mathbf{p}}{dt} = \frac{q}{c}\mathbf{v} \times \mathbf{B}$

<u>Toroid</u>

Uniform field; Vol. limited by cost

Non-uniform field; Large volume

Charge and Momentum

The momentum is measured from the curvature ρ in B-field Or from the sagitta s

Transverse momentum:

$$p_T = qB\rho$$

$$p_T[GeV] = 0.3 \ B[T] \ \rho[m]$$

$$\frac{L/2}{\rho} = \sin \frac{\theta}{2} \approx \frac{\theta}{2} \ (\text{for small } \theta) \Rightarrow \theta \approx \frac{L}{\rho} = \frac{0.3BL}{p_T}$$

$$s = \rho(1 - \cos \frac{\theta}{2}) \approx \rho \left(1 - (1 - \frac{1}{2}\frac{\theta^2}{4})\right) = \rho \frac{\theta^2}{8} \approx \frac{0.3BL^2}{8p_T}$$
Example: 3 measurements Design consideration
$$s = x_2 - (x_1 + x_3)/2 \rightarrow ds = dx_2 - dx_1/2 - dx_3/2$$
assume uncorrelated errors: $\sigma(x) \approx dx_i$

$$\sigma_s^2 = \sigma^2(x) + 2\frac{\sigma^2(x)}{4} = \frac{3}{2}\sigma^2(x)$$
改善动量分辨: 增加L²B, 减小p_{++} \delta_S

核与粒子物理实验方法二 中国CMS《今宫2025

造价一般正比L³

粒子与物质相互作用(III)

Simple qualitative model

- Consider only Bremsstrahlung and (symmetric) pair production.
- Assume: $X_0 \sim \lambda_{pair}$

$$N(t) = 2^t$$
 $E(t) / particle = E_0 \cdot 2^{-t}$

Process continues until $E(t) < E_c$

$$N^{total} = \sum_{t=0}^{t_{\text{max}}} 2^{t} = 2^{(t_{\text{max}}+1)} - 1 \approx 2 \cdot 2^{t_{\text{max}}} = 2\frac{E_{0}}{E_{c}}$$
$$t_{\text{max}} = \frac{\ln E_{0}/E_{c}}{\ln 2}$$

After $t = t_{max}$ the dominating processes are ionization, Compton effect and photo effect absorption of energy.

$$\frac{\delta E}{E} = \frac{a}{\sqrt{E}} \bigoplus \frac{b}{E} \bigoplus c$$

随机项 a: 信号过程的随机涨落, 即光电子数目的涨落

- 常数项 b: 量能器不均匀响应,刻度误差,能量丢失在探测器死区等
- 噪声项 c: 读出电子学噪声, 堆积事例贡献等

中国CMS冬令营2025

簇射的横向发展

Lateral spread of an em shower is dominated by two processes:

- Multiple scattering of electrons away from the shower axis
- Relatively long mean free path of photons

Molière radius: lateral spread for E_C electrons after one X_0

中国CMS冬令营2025

几个重要概念

 $\frac{dE}{dt} \propto E_0 t^{\alpha} e^{\beta t}$

longitudinal development

e.m case, E. Longo (active CMS member! Rome group), I. Sestili, NIM 128 (1975)

Radiation length (X_0): thickness of material that reduces the mean energy of a beam of high energy electrons by a factor *e*, $X_0 \sim A/Z^2$

Molière radius (R_M): average lateral deflection of electrons of critical energy E_c after traversing $1X_0$; 90% E_0 within $1R_M$, 95% within $3R_M$

Interaction length (λ_{int}): average distance a high energy hadron has to travel inside a medium before a nuclear interaction occurs, $\lambda_{int} = A/N_A \sigma_{int} \propto A^{1/3} \gg X_0$

	LAr	Fe	Pb	U	С
$\lambda_{\rm int}$ [cm]	83.7	16.8	17.1	10.5	38.1
X_0 [cm]	14.0	1.76	0.56	0.32	18.8

中国CMS 终令营2025

量能器Calorimeter:全吸收与取样型

Homogeneous calorimeters: all the energy is deposited in the active medium

- Excellent energy resolution
- No information on longitudinal shower shape

Cost Examples

Flavor factories (small γ energies): KLOE, BESIII, CLEO_c, Belle(II), Babar OPAL, Delphi, L3 (LEP) ALICE PHOS & CMS ECAL

中国CMS搀令营2025

Sampling calorimeters: the shower is sampled by layers of active medium (low-Z) alternated with dense radiator (high-Z)

- Limited energy resolution
- Longitudinal segmentation: detailed shower shape information
- Cost

Examples Aleph ECAL (LEP) LHCb & ATLAS ECALs All HCALs so far

Requirements on CMS detector

- CMS探测对象: 电子, 光子, 缪子, 喷注等
- 性能要求
 - 在大空间范围,大动量范围内有好的单个mu鉴别和动量、角度分辨;好的的双mu质量分辩(1%@100GeV);在<1TeV动量下有好的电荷符号鉴别(Muon探测器)
 - 好的带电径迹的动量分辨和重建效率,探测径迹的IP,鉴别 b-喷注(内径迹探测器)
 - 好的电磁能量分辨率和双电子/光子质量分辨(1%@100GeV),
 π0分辨,光子鉴别,孤立化鉴别(电磁量能器)
 - 好的丢失横动量和双喷注能量分辨(强子量能器)

CMS Timeline

- 1984 Workshop on a Large Hadron Collider in the LEP tunnel, Lausanne.
- 1990 ECFA LHC Workshop, Aachen. First proposal of CMS.
- 1992 General Meeting on LHC, Evian les Bains. Letter of Intent of CMS.
- 1994 CMS Technical Proposal Approved.
- 1996 Approval to move to Construction (materials cost of <475 MCHF₁₉₉₆)
- 1998 Construction Begins (after approval of Technical Design Reports)
- 2008 CMS ready for First LHC Beams
- 2012 Higgs discovery.

- 全世界40多个国家、~200个研究机构的~4000名科学家和工程技术人员分担各个子 探测器的研发和生产任务。
- ▶ 建成的子探测器运到CERN进行组装测试、安装调试。

土建工程(2000年10月)

地面探测器组装大厅(2006年2月)

组装好的探测器被吊装到地下(2007年2月)

在地下继续进行安装、接线等工作(2007年12月) 中国CMS冬令营2025

安装调试完成,准备取数

CMS (Compact Muon Solenoid) 探测器

	ATLAS	CMS
谱仪磁场	2 T螺线管 + 环形线圈(桶部 0.5 T/端盖1 T)	4T螺线管 + 磁轭
径迹探测系统	硅像素+ 硅微条 + TRT $\sigma/p_{\rm T} \approx 5 \cdot 10^{-4} p_{\rm T} + 0.01$	硅像素+ 硅微条 $\sigma/p_{\rm T} \approx 1.5 \cdot 10^{-4} p_{\rm T} + 0.005$
电磁量能器	液氩+铅吸收体 σ/E ≈ 10%/√E + 0.007	钨酸铅晶体 $\sigma/E \approx 2.8\%/\sqrt{E} + 0.003$
强子量能器	铁 +闪烁体/铜+液氩(10λ) σ/E ≈ 50%/√E + 0.03	黄铜 +闪烁体(7λ + catcher) σ/Ε ≈ 100%/√E + 0.05
缪子谱仪	(径迹探测器 + 缪子探测器) <i>σ/p</i> _T ≈ 2% @50 GeV	(径迹探测器 + 缪子探测器) $\sigma/p_{\rm T} \approx 1\% \ @50 \ {\rm GeV}$
触发系统	L1 + HLT (L2 + EF)	L1 + HLT (L2+L3)

CMS 探测器

CMS cordinates

- X轴: LHC环的平面内,指向LHC的中心
- Y轴: 朝上垂直于LHC环的平面
- Z轴: 和X, Y行成右手坐标系
- θ: 极角
- η = -ln[tan(θ/2)]: 赝快度
- *φ*

z-axis points into page

xy-plane

 $\Delta R = \sqrt{\Delta \phi^2} + \Delta \eta^2$

 $\Delta A = \Delta \phi \text{ or } \Delta R$

 $\eta = -\ln(\tan(\theta/2)) \qquad \Delta \phi = \phi_2 - \phi_1$ $p_T = \sqrt{p_x^2 + p_y^2} \qquad \Delta \eta = \eta_2 - \eta_1$ 中国CMS终令营2025

CMS探测器: solenoid磁铁

中国CMS冬令营2025

CMS磁铁系统: solenoid

- <u>铌钛合金@4.2K</u>
- 20 kA @ 2179 圈
- 12米长,6米直径
 - 包住了量能器和内部径迹探 测器
- 内部磁场3.8特斯拉,外部~ 2T

ATLAS

μ

中国CMS终令营2025

CMS实验的超导螺线管磁铁参数

- 10 000 吨轭铁,相当于2个埃菲尔铁塔
- 220吨 NbTi超导线材
- 运行温度1.8K, 电流 19.14 kA, 41.7 MAturns, 总电感 14.2 H
- The ratio between stored energy and cold mass is high (11.6 KJ/kg)
- Large mechanical deformation (0.15%) during energizing
- 磁场4T,直径6.3m,长度12.5m

$$W_m = \frac{1}{2}LI^2 = \frac{1}{2}BHSl = \frac{1}{2}BHV \quad \vec{B} = \mu_0 \vec{H}$$

- 可以计算储能 W=2.6 GJ,该能量可以 熔化18吨黄金
- 失超时,巨大能量瞬间释放破坏力巨 大=>保护电路

中国CMS冬令营2025

中国CMS冬令营2025

中国CMS28令营2025

- 100X150 µm² 像素,工作在零下22度, n-in-p 型传感器
- 覆盖了|η|=2.5 的区域
 - 作为寻迹开始的种子,以及探测径迹的顶点参数
- 在半径 = 3cm处
 - 600 MHz/cm² (在LHC 瞬时峰亮度下 (L=2x10³⁴ cm)⁻²s⁻¹)
 - 抗辐照强度: 3x10¹⁴ neq/cm²/yr
 - 占空比: 10-3

Silicon Pixel 硅像素探测器

Each pixel cell in the sensor is connected to a pixel cell in the readout chip via a bump bond.

中国CMS39令营2025

- Sensor Technology p-in-n
- Design occupancy 1-3% resolve & isolate tracks
 - Outer cell size ~20cm x 100-200mm
 - Inner cell side ~10cm x 80mm
- Operation -20C
- Signal / noise ~20 (above 10 after radiation)
- Radiation tolerance $\sim 1.5 \times 10^{14}$ neq

中国CMS冬令营2025

中国CMS務令营2025

电磁量能器

Homogeneous, hermetic, high granularity PbWO₄ crystal calorimeter

- density of 8.3 g/cm³, radiation length 0.89 cm, Molière radius 2.2 cm,
 ≈ 80% of scintillating light in ≈ 25 ns, refractive index 2.2, light yield spread among crystals ≈ 10%
- Barrel: 61200 crystals in 36 super-modules, Avalanche Photo-Diode (APD) readout
- Endcaps: 14648 crystals in 4-Dees, Vacuum Photo-Triode (VPT) readout
- **Preshower** (endcaps only): $3X_0$ of Pb/Si strips,

 $|\eta| < 1.48,$

 $1.48 < |\eta| < 3.0,$

Before and after cutting & polishing

Barrel (HB)

- 36 brass/scintillator wedges
- 17 longitudinal layers, 5 cm brass, 3.7 mm scintillator
- $|\eta| < 1.3$

Fun fact: much of the brass came from old

WWII shells from the Russian Navy!

Endcap (HE)

- Two brass/scintillator discs
- 19 longitudinal layers, 8 cm brass, 3.7 mm scintillator

■ $1.3 < |\eta| < 3.0$

CMS 强子量能器 HCAL Barrel

中国CMS级令营2025

CMS muon探测器

- Muon detectors are on the outside, so must be large
- Economics: use gas detectors to cover a large surface area
 - Need amplification of the electron ionization signal within the gas volume
 - Factors of 10⁵-10⁷ are typical, using wires or parallel plates

CMS muon探测器的组成

- Four types of detector(since 2019, adding GEM):
 - Precise position measurement and triggering by Drift Tubes (DT) in the barrel, and Cathode Strip Chambers (CSC) in the endcap
 - Redundant triggering by Resistive Plate Chambers (RPC)
 - Adding Gas Electron Multiplier (GEM) in LS2 since 2019

Barrel: $0 < |\eta| < 1.2$

5 wheels / 4 stations instrumented with DTs and RPCs

Endcap: $0.9 < |\eta| < 2.4$

3 discs / 4 stations instrumented with CSCs and RPCs

Spatial precision 75-150 µm /station

中国CMS49令营2025

CMS Drift Tubes (DT)

- 240 chambers in CMS <u>barrel</u> 5 wheels
- Drift time measurement, gives distance (d) to wire to $\sim 250 \ \mu m$ accuracy $d = (T - T_0) \ x \ V_{drift}$

- **12** layers per station in groups of 4
 - $8 \text{ axial } (r-\phi), 4 \text{ longitudinal } (r-z)$

1800 V

CMS Cathode Strip Chambers (CSC)

• 540 trapezoidal chambers in CMS endcaps

- Electrons drift to wires, **induce** opposite charge on perpendicular cathode strips
- Precise ~2% interpolation of cathode charge on ~cm strips gives ~200 μm accuracy
- 6 layers: precision ϕ from cathode strips, coarse r and timing from anode wires

CMS Resistive Plate Chambers (RPC)

- 480 <u>barrel</u> and 576 <u>endcap</u> chambers
- Charge induced onto external strips
 - Resistive layer (Bakelite plastic) with $\rho \sim 10^{10}$ Ω cm is transparent to signal as if infinite, quenches avalanche as if conducting
- Spatial resolution 0.8-1.2 centimeters
- Double gap, each 2 mm, 9.6 kV, for high ε
- Fast triggering

Muon探测器性能

- The spatial resolution per chamber was
 - 80-120 µm in the DTs,
 - 40-150 µm in the CSCs,
 - 0.8-1.2 centimeters in the RPCs

The μ measurements improve the momentum resolution for $p_T > 200$ GeV/c if the DT/CSC chambers are properly aligned

Especially for p_T>1 TeV

Alignment is done with hardware sensors to <1 mm level, then track-based correction to chamber positions to ~10 µm level

CMS触发和数据获取系统

中国CMS45令营2025

High Lumi-LHC upgrade

Phase-II upgrade of CMS matches HL-LHC and provide bases for future physics until 2040s

HL-LHC: challenges and CMS solution

- Expected pileup (PU): ~140 -200 (nominal-1.5xnorm)
- Motivates/requires:
 - Improved granularity wherever possible
 - Novel approaches to in-time Pile Up mitigation: Precision Timing detectors (30ps)
 - A complete renovation of the Trigger and DAQ systems for better selectiveness, despite the high PU.

需承受>10¹⁶等效MeV中子/cm²辐照 局部区域吸收剂量~10MGy, 1Gy=1J/kg

- Radiation damage / accumulated dose in detectors and on-board electronics may result in a progressive degradation of the performance.
 - Maintain detector performance in harsh conditions:
 - The complete replacement of the Tracker and Endcap Calorimeter systems.
 - Major electronics overhaul and consolidation of the Barrel Calorimeters and Muon systems

CMS 探测器II期升级: 2019-2026年, 匹配高亮度LHC升级, 是未来物理研究的基础!

Impacts on Physics

LHC nominal: 10³⁴ cm⁻² s⁻¹

HL-LHC: 10³⁵ cm⁻² s⁻¹

~35 pile-up ~2' 000 tracks per collision bunch (40 MHz)

Higgs boson produced in the VBF process on top of 200 pile-up collisions. The efficient identification of the forward jets accompanying this process requires association of the calorimeter energy deposits with charged tracks.

中国CMS冬冬营2025

2029

25 https://cerncourier.com/atlas-and-cms-upgrade-proceeds-to-the-ne

200 vertices

CMS探测器 II期升级项目

中国CMS冬令营2025

Coverage extended to $|eta|^{\sim}3:ME0$

中国组参与的CMS II期探测器升级

Tracker Upgrade: layout and material

- More granularity
- Lower material budget

TEPX

FILTE

TFPX

Extended coverageTracking in L1 Trigger

• Inner tracker:

- Increased granularity with occupancy at per mille level: pixel size $\sim 25 \times 100 \ \mu\text{m}^2$ or $50 \times 50 \ \mu\text{m}^2$
- Coverage up to $\eta \sim 4$, with $\sim 4.9 \text{ m}^2$ active area
- Layout: 4 barrel layers, 8 small disks, 4 large discs per side
- Mechanics and support: simple structure for easy installation and removal → potential replacement of inefficient parts possible!

• Outer tracker:

- Layout: 6 barrel layers, 5 discs per endcap
- 9.5 million channels:
 - ~ 200 m² of active silicon sensors \rightarrow 44M strips and 174M macro pixels (r < 60 cm)
- Vastly reducing material:
 - light-weight mechanics and modules
 - improved routing of services
 - tilted barrel section

TBPX

中国CMS冬令营2025

Tracks into L1 Trigger FPGA-based Hardware Demonstrator

Geometric Processor GP

Processes stub data, sub-divides octant into 36 sub-sectors

Hough Transformation HT

Track finder, identifies groups of stubs consistent with a track in r- ϕ

Kalman Filter KF Candidate cleaning and precision fitting

Duplicate Removal DR

Uses fit information to remove duplicate tracks generated by the HT

Data flow

Expected performance

MIP Timing Detector

- Time information improves the quality of the reconstruction of physics objects.
 - Track time association allows to remove spurious pile-up tracks from reconstruction,
 - Impact on fake jet reconstruction, lepton isolation and ID, b-tagging, p_T^{miss} resolution.
 - Also adding the possibility to perform Time-Of-Flight particle identification

Impact on the reach of physics analysis: both SM and BSM

CMS Phase-2 Simulation Preliminary 14 TeV $\tilde{t} \rightarrow \chi_1^0 + t, \chi_1^0 \rightarrow Z + \tilde{G}, Z \rightarrow I^{\dagger}I^{\dagger}$ $M(\tilde{t}) = 1000 \text{ GeV}, M(\chi^0) = 700 \text{ GeV}, M(\tilde{G}) = 1 \text{ GeV}$ - cτ = 100mm $-c\tau = 30mr$ $-c\tau = 10mm$ $-c\tau = 3mm$ 800 900 1000

 $M(\chi_1^0)$ [GeV]

IP

Improve HH sensitivity by 20% Improve single Higgs precision by 20-30%

中国CMS冬令营2025

MIP Timing Detector

BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: |η| < 1.45
- Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: 2x10¹⁴ n_{ed}/cm²

ETL: Si with internal gain (LGAD):

- On the CE nose: 1.6 < $|\eta|$ < 3.0
- Radius: 315 < R < 1200 mm
- Position in z: ±3.0 m (45 mm thick)
- Surface ~14 m²; ~8.5M channels
- Fluence at 4 ab⁻¹: up to 2x10¹⁵ n_{ea}/cm²

Thin layer between tracker and calorimeters

Hermetic coverage for $|\eta| < 3.0$

Feature:

MIP Time resolution 30-50 ps

4D vertex reconstruction

Expand physics at HL-LHC:

- Reduction of pile-up enhances quality of reconstruction

- Mass reconstruction of the long-lived particle

MTD Technology

BTL: first HEP experiment "PET-like" system

thin layer of LYSO:Ce crystal bars + SiPM + thermal electric coolers providing $\sigma_t \simeq 30/60 \text{ ps}$ before/after irradiation

16 LYSO bars polished on both ends $(56 \times 3 \times 3.75 \text{ mm}^3)^{\circ}$ per module ($\simeq 21000$)

CMS端部量能器升级

arXiv:1307.7335, 1506.05348

LHCC-P-008

JINST 12 (2017) no.10, P10003

CMS

高粒度量能器HGCa1

Electromagnetic calorimeter (CE-E): Si, Cu/CuW/Pb absorbers, 28 layers, 25.5 $X_0 \& \sim 1.7\lambda$ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 22 layers, $\sim 9.5\lambda$ (including CE-E)

CMS-HGCAL预期性能与物理

Muon Challenges: MEO as example

Requirements:

- 97% module efficiency
- < 500 μ rad resolution
- 8-10 ns time resolution
- $\leq 15\%$ gain uniformity
- <u>Work</u> in high rate environment: 50kHz/cm²
- <u>Survive</u> harsh radiation environment: 280mC/cm²
- Discharge rate that does not impede performance or operation

 6-Layer Triple-GEM stack installed behind HGCAL (complex environment)
 2 x 18 stacks (20°) covering 2.0 < η < 2.8

CMS 端盖µ子探测器 GEM

GEM工作机制:

GEM: Gaseous Electron Multiplier (气体电子倍增器)

粒子射入探测器,在漂移区产生的电离电子在电场作用下, 穿过多层强电场微孔膜,在收集电极产生级联放大的信号。

 □ CMS内圈µ子探测器工作在极强辐照环境中,将采用GEM(气体电子倍增器) 技术。优点:结构简单,时间、空间、计数率性能优异。
 →大面积GEM技术在高能对撞实验中的首次大规模应用

CMS-GEM性能与未来物理研究 □CMS-GEM不仅提供触发,且高空间分辨能力可提供µ子径迹重建。 →保证高亮度运行时µ子触发效率,且大大提高新物理发现

CMS-GEM探测器分阶段项目与中国组贡献

第·	一站内圈GE1/1 GEM			第二站内圏 GE2/1 GEM	HGCAL后面的 ME0 GEM
	升级探测器		GE1/1	GE2/1	ME0
	探测器个数*		288 (=2×36×4)	$288 (=2 \times 18 \times 8)$	216 (=2×18×6)
	计划	预研	2013-2017	2014-2022	2014-2023
		批量生产	2017-2019	2022-2028	2024-2026
		安装调试	2018-2021	2029-(?)	2027-2029
	中国组任务		全部前端电子板GEB 生产测试,在CERN 的探测器组装测试、 安装调试	设计研发及生产测试 全部GEB,在北大生 产1/8 GEM探测器, 在CERN进行组装测 试、安装调试	设计研发及生产测试 全部GEB,在北大生 产~1/5 GEM探测器, 在CERN进行组装测 试、安装调试

*(总探测器个数=端部数×每个端部module数×每个module探测器个数)

中国组还将负责GEM-FR4框架和超级模块结构部件生产

中国CMS冬令营2025

GE1/1 探测器已经成功运行

中国CMS冬令营2025

Phase-II trigger upgrade

- Retain two-level trigger approach
- ✓ Level-1 + High-Level Trigger
- L1 Key parameters
- ✓ Rate: 100 kHz \rightarrow 750 kHz
- ✓ Latency: $3.8 \ \mu s \rightarrow 12.5 \ \mu s$
- Inputs
- ✓ Calorimeters
- ✓ Muon System
- ✓ Outer Tracker

Four independent trigger processing paths

- ✓ Sophisticated FPGA-based algorithms: using particleflow (PF) or ML approaches.
- ✓ Increase trigger acceptance&physics sensitivity, while maintaining Run-2 thresholds.
- ✓ Scouting into HL-LHC data @ 40 MHz: storing only high-level information

67

- CMS detector (design, R&D, building, commissioning and operation) has been a great success story
- It laid down the basis of excellent physics results (>1300 publications after 15 years)
- To meet the challenges of HL-LHC and maintain physics potential, CMS needs Phase-II upgrade, with important contributions from CMS-China
 - MTD, HGCAL, GEM, PRC electronics

<u>中国CMS冬令营2025</u>

LHC 加速器参数

中国CMS物令营2025

量能器:全吸收与取样型

Homogeneous

- Advantages
 - See all charged particles in the shower → best statistical precision (lowest stochastic term)
 → minimizes detector contribution to measured particle widths
 - Same response from everywhere → good linearity (in principle)
- Disadvantages
 - Limited segmentation
 - Relatively high cost
- Examples
 - Flavor factories (small γ energies): KLOE, BESIII, CLEO_c, Belle(II), Babar
 - OPAL, Delphi, L3 (LEP)
 - ALICE PHOS & CMS ECAL

Sampling

- Advantages
 - Relatively low cost
 - Transverse & longitudinal segmentation possibilities
 → can significantly help to suppress background
- Disadvantages
 - Only part of the shower is seen →
 higher stochastic (sampling) term
- Examples
 - Aleph ECAL (LEP)
 - LHCb & ATLAS ECALs
 - All HCALs so far

CMS Phase-II upgrade

Replacements of existing system Electronics upgrade/replacement New detector

Projects with major CMS-China contributions
中国组参加探测器升级的意义

重要升级系统

硅径迹探测器、μ子探测器、量能器和相关电子学和事例触发等

采用新一代粒子探测技术

- 大面积的抗辐照、高空间分辨硅探测器
- 大面积、高计数率、高效率的新型µ子探测器
- 高粒度高能量分辨量能器
- 高致密度ASIC 芯片
- 先进事例触发、数据获取与计算技术

→代表当今世界探测技术最前沿,可以跟踪掌握这些技术、打破禁运、推动我国在这些关键材料、技术和方法的发展,并辐射至其他领域。

→人才培养和个人发展

- 1. CMS超导螺线管磁铁在正常运行时储能多少?
 - A. $2.6 \times 10^9 \text{J}$
 - B. $2.6 \times 10^{10} \text{J}$
 - C. $2.6 \times 10^{11} J$
 - D. $2.6 \times 10^{12} \text{J}$
- 2. 目前的CMS缪子探测器使用了几种探测技术?
 - A. 2种
 - B. 3种
 - C. 4种
 - D. 5种