GEN Tutorial Part. I

CMS

Sitian Qian (PKU)

CMS China Winter Camp 2025 2025/01/18

- As a hep-exer, a "generator" that you might hear from your friends could be:
 - A coding concept from your programmer friends

def fibonacci_gen(): yield 0 yield 1 $prev_prev = 0$ prev = 1while True:

Python Generators

- Theory of Python / Python Tutorial

```
result = prev + prev_prev
prev_prev = prev
prev = result
yield result
```


- As a hep-exer, a "generator" that you might hear from your friends could be: A coding concept from your programmer friends
- - A Lie group theory concept from your hep-th / hep-ph friends

- As a hep-exer, a "generator" that you might hear from your friends could be:
- A coding concept from your programmer friends
 - A Lie group theory concept from your hep-th / hep-ph friends
 - A statistics concept from your statistician friends

- As a hep-exer, a "generator" that you might hear from your friends could be:
 - A coding concept from your programmer friends
 - A Lie group theory concept from your hep-th / hep-ph friends
 - A statistics concept from your statistician friends
- Today, the "generator" you are going to play with is: A tool (program) to generate events from certain (collision) physics events

- N.B.
- Very often generators (physics process provider) are discussed together with <u>detector simulators</u> as they both contributes to the Monte Carlo (MC) Modeling

What if a world without Generators?

Higgs mass measurement is of course a
 Vacuum stability, mass origin...

<u>Code</u>	Name		<u>Stat</u>	<u>is</u> 🔶 P/	AS	PAPER	ARC	
📡 HIG-24-007 » l 🔺	show H->gamma gamma mass me	easurement (full Run2)	PRE	APP			Philippe Gras (SACLA	
HIG-24-007 (Sat, 1	8 Jan 2025 00:38:52) 🚔 🗾 🗐							
Name	H->gamma gamma mass measurement (full Run2)	Description	Measurement of H mass with gamma gamma channel with full Run2 data, and combination with other channels					
Status	PRE-APP	Contact Person	Fabio lemmi (BEIJING-IHEP)					
Twiki	HIG-24-007 ⊑→	Forum	PubTalk HIG-24-007 ⊑→					
Data,Samples	DataSet: Run2 Samples: not set	Conference						
Target Date PreAp	p 28/06/2024	Target Date PhysApp						
Talks	Pre-Approval Talk » I No Approval Talk	Actions	Not in Edit Mode					
Related Analyses	HIG-19-004	Related CMS Notes	AN-2020/217 AN-202	025				
Physics Analysis	Summary (PAS)							
ARC Chair	Philippe Gras (SACLAY)	ARC	Accepted show 4 me	nbers				
PAS Actions		PAS CDS id						
PAPER								
Target Journal		Target Date Pub						
AuthorList	No AL available yet	IRC	No IRC yet					
PAPER Actions		PAPER CDS id						
arXiv		DOI						
HepData		Rivet Plugin tar file						

Now, Imagine yourself measuring higgs diphoton decay channel

Higgs mass measurement is of course an import input to understand our universe

Now, Imagine yourself measuring higgs boson mass without event generators in its

WHAT IF A WORLD WITHOUT GENERATORS?

Vacuum stability, mass origin...

- Now, Imagine yourself measuring higgs boson mass without event generators in its diphoton decay channel
 - ??All needs: Higgs BW shape + Detector photon resolution + pure higgs phase space??

WHAT IF A WORLD WITHOUT GENERATORS?

Vacuum stability, mass origin...

- Now, Imagine yourself measuring higgs boson mass without event generators in its diphoton decay channel
 - ??All needs: Higgs BW shape + Detector photon resolution + pure higgs phase space?? Yes, though it is not BW shape, detector res. Is complicated, and no perfect purity!

Higgs mass measurement is of course an import input to understand our universe

LUCKILY WE HAVE GENERATORS

- Higgs mass measurement is of course an import input to understand our universe
 - Vacuum stability, mass origin...
- Now, Imagine yourself measuring higgs boson mass without event generators in its diphoton decay channel
 - ??All needs: Higgs BW shape + Detector photon resolution + pure higgs phase space?? Yes, though it is not BW shape, detector res. Is complicated, and no perfect purity!
- Since we have generator:
- We could model every time phase space related cuts/acceptance/efficiencies to model higgs shape
- We could have properly modeled detector response modeled event by event And we just need to simulate additional background processes :)

Generator (Matrix Element modeling) usage breakdown based on legacy Run2 dataset Pythia8 mostly chosen for *parton shower* and *hadronization*

More events calls for more sophisticated modeling (high order, jet merging...)!

SO:

- This tutorial will be focused on MG
 - For its wide usage
 - For its user friendly design
 - For me as CMS MG5 contact :)
- Please check out this gitlab repo, and login into lxlogin server!

5	MadC	iraph	n5_aM0	C@NLO			
Overview	Code	Bugs	Blueprints	Translations	Answers		

Registered 2009-09-15 by 🙇 Michel Herquet

MadGraph5_aMC@NLO is a framework that aims at providing all the elements necessary for SM and BSM phenomenology, such as the computations of cross sections, the generation of hard events and their matching with event generators, and the use of a variety of tools relevant to event manipulation and analysis. Processes can be simulated to LO accuracy for any user-defined Lagrangian, an the NLO accuracy in the case of models that support this kind of calculations -- prominent among these are QCD and EW corrections to SM processes. Matrix elements at the tree- and one-loop-level can also be obtained.

MadGraph5_aMC@NLO is the new version of both MadGraph5 and aMC@NLO that unifies the LO and NLO lines of development of automated tools within the MadGraph family. It therefore supersedes all the MadGraph5 1.5.x versions and all the beta versions of aMC@NLO. As such, the code allows one to simulate processes in virtually all configurations of interest, in particular for hadronic and e+e- colliders; starting from version 3.2.0, the latter include Initial State Radiation and beamstrahlung effects.

The standard reference for the use of the code is: J. Alwall et al, "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations", arXiv:1405.0301 [hep-ph]. In addition to that, computations in mixed-coupling expansions and/or of NLO corrections in theories other than QCD (eg NLO EW) require the citation of: R. Frederix et al, "The automation of next-to-leading order electroweak calculations", arXiv:1804.10017 [hep-ph]. A more complete list of references can be found here: http://amcatnlo.web.cern.ch/amcatnlo/ list refs.htm

