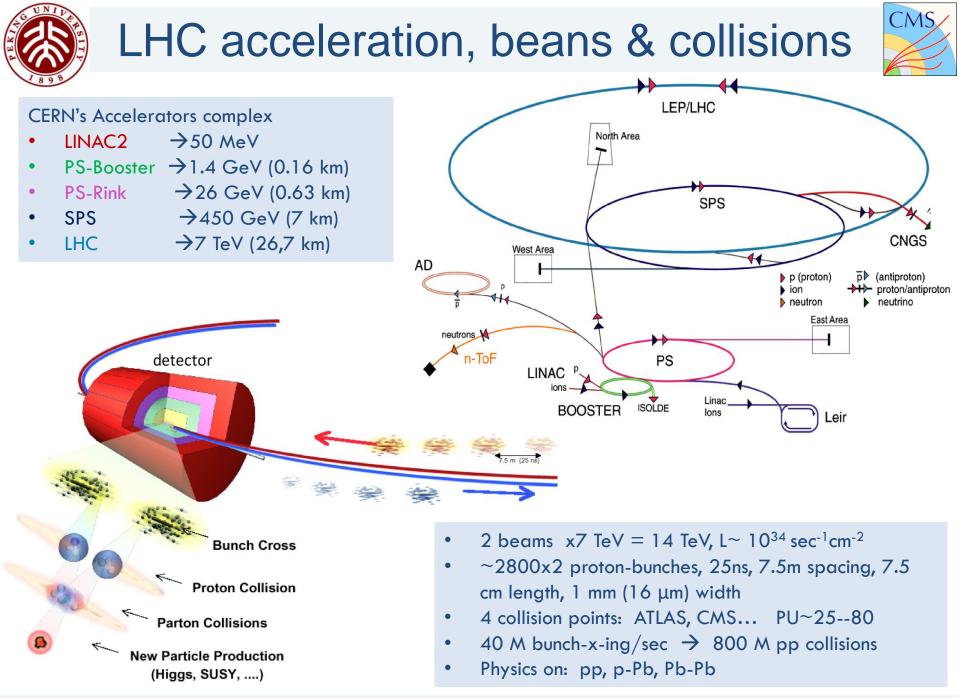


Introduction to Data Analysis at CMS concepts, examples, how-to-s & more

Outline: in this talk

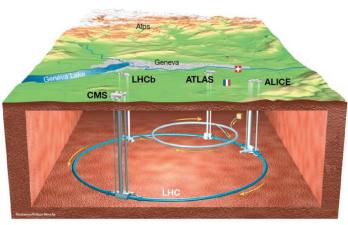
- 1. Intro: CERN, LHC, beams, & collisions
- 2. Detector basics, physics objects, & Trigger
- 3. The Physics objects we use: e, μ , τ , jets, γ , "MET"
- 4. LHC collisions' kinematics & variables
- 5. CMS PAGs & POGs, overview
- 6. What is data analysis? The concept of Signal & BKG.
- 7. Measurements & Searches
- 8. Resonances: examples
- 9. Production modes & BRs

Break


10. How to... (read plots, pulls, limits, ROCs, etc.)

11. Jets reconstruction, clustering, substructure, & tagging

12. The taggers we use (DeepAK8, Particle Net, Part. Transformer)

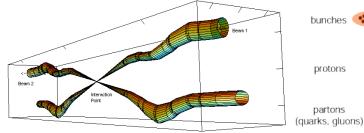

Analyses Examples:

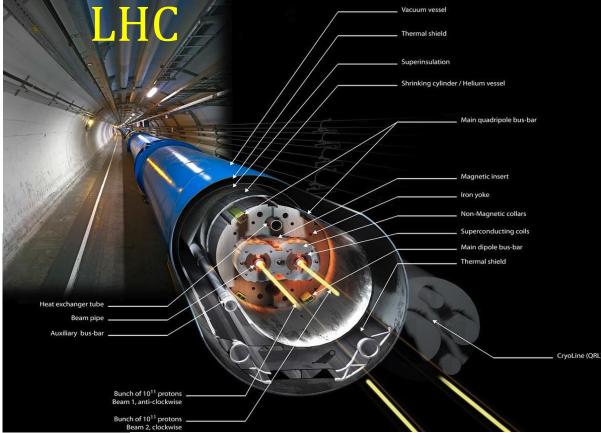
- 1. Search with 4 jets in 2 pairs, prediction with parametric fit
- 2. Search in diphoton spectrum (reso & non-reso cases)
- 3. Search for resonant $X \rightarrow gWW$ in fully hadronic mode.
 - Selection, binning, data driven prediction, post-fit results, etc

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

19/1/25

- 26.7 km •
- 40-175 m bellow ground
- 1232 dipole magnets
- 392 quadrupoles
- 2x8 RF-cavities
- Revolution freq: 11.3MHz,
- B = 8.33 T,
- I~12500 Ampere, •
- NbTi superconductor
- $T = 1.9 \text{ K} = -271.3 \text{ C}^{\circ}$ (He)

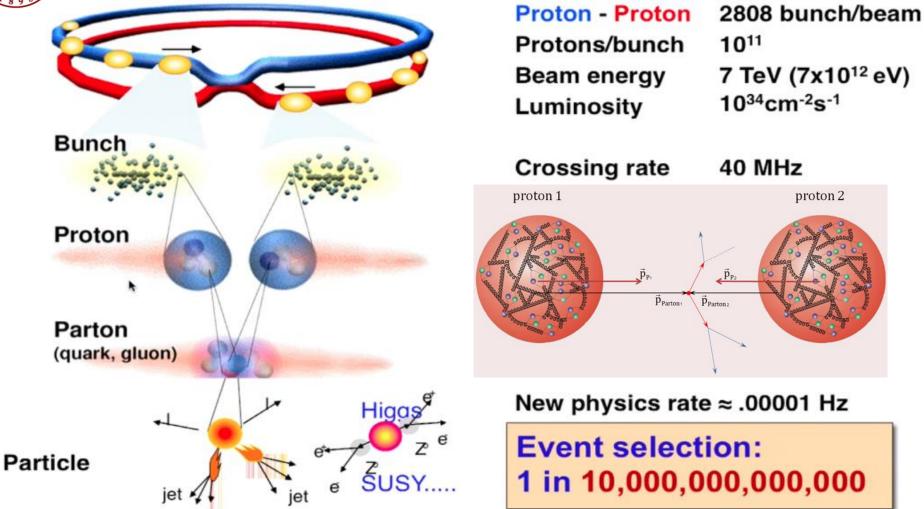

LHC


bunches

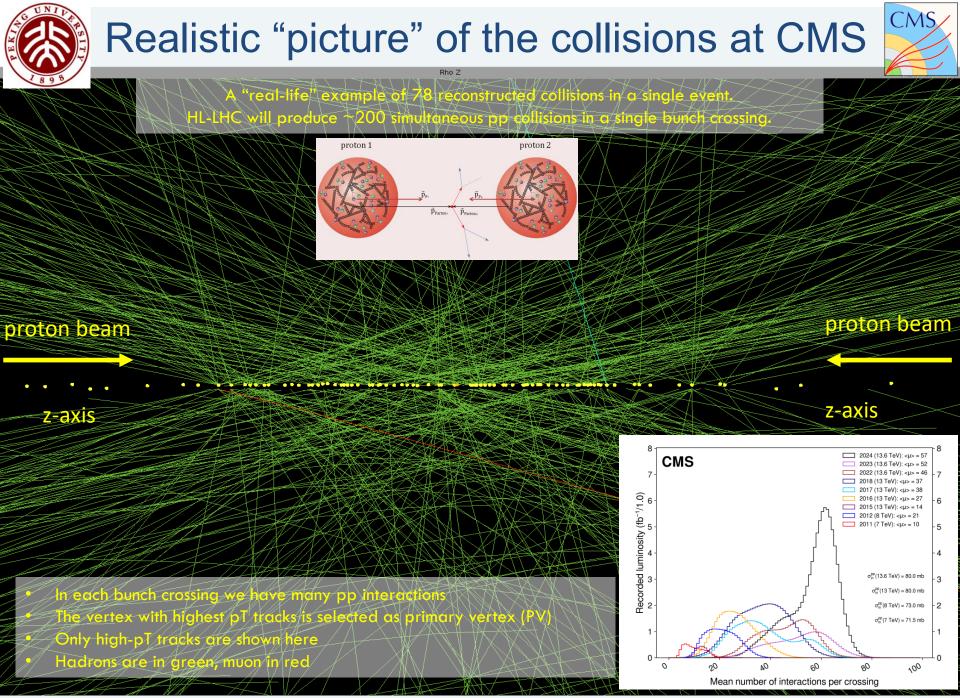
protons

partons

- Vacuum ~100 nPa
- 4 collision p. \rightarrow 4 Exprms



Relative beam sizes around IP1 (Atlas) in collision


Collisions at the LHC: summary

While the protons have 7+7 TeV energy, the partons have a small fraction of that, \rightarrow the parton interaction has energy about an order of magnitude lower than 14 TeV

19/1/25

19/1/25

CMS Detector/Experiment

Compact Muon Solenoid Mass: ~12500 Tonnes Size: ~15m x 22m Magnetic field: 4 T (3.8 T)

TLUX 153-12

CMS collaboration is 31 yo -6100 collaborators ~250 Institutes ~57 countries here for more

ö 🔅 🏟 Ö 🔗

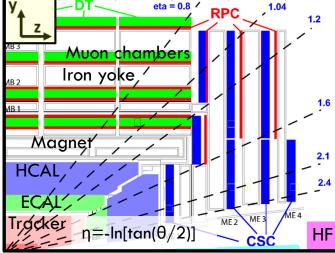
The CMS experiment has 6055 active members from 255 institutes coming from 57 countries

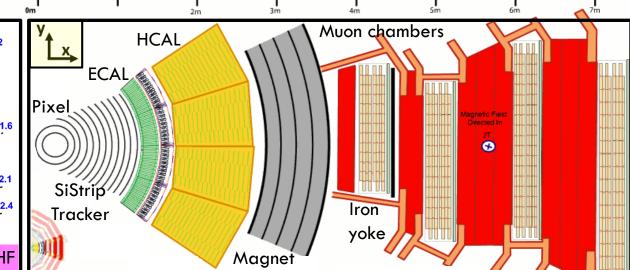
1295

218 Full member institutes 28 Associated Institutes 9 Cooperating Institutes 2121

Phd Phy

269 113 echnicians Administrat


1002



CMS sub-detectors

Pixel & Silicon Tracker - 70M pixels. - "e-holes" pairs→ signal. - |ŋ| < 2.5, 2.4 (hits:10-13). Silicon Strip Pixel ECAL (e^{\pm} , γ)

- 76k crystals PbWO₄.
- $X_0 \sim 0.9$ cm, $|\eta| < 3$.

PbWO₄ crystal

EM-shower

No. Anton

Photo-multiplier

- HCAL (p[±],n,π,K,Δ...)
- HB, HE(16 leyers), HO, HF.
- Plastic scint.:Quartz fibers.
- Brass(Cu-Zn) absorber
- $X_0 \sim 1.5$ cm, $|\eta| < 3$.

Solenoid Magnet, Iron Yoke - NiTi, T~1.8K, I~19kA, B~4T.

Muon chambers:

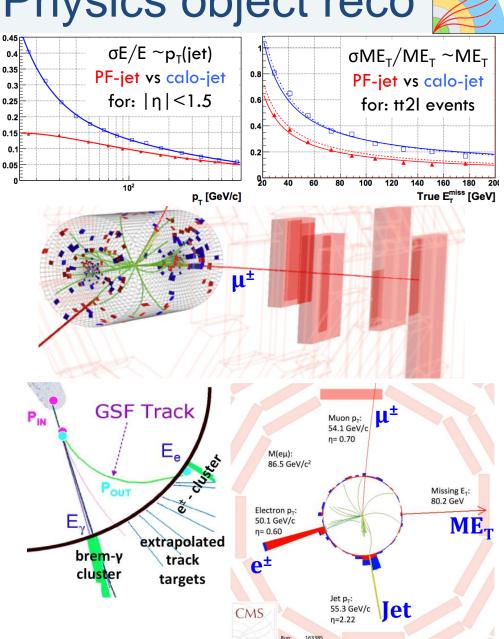
- DTs, CSCs, RPCs, $|\eta| {<} 2.4.$
- Argon-based gasses.

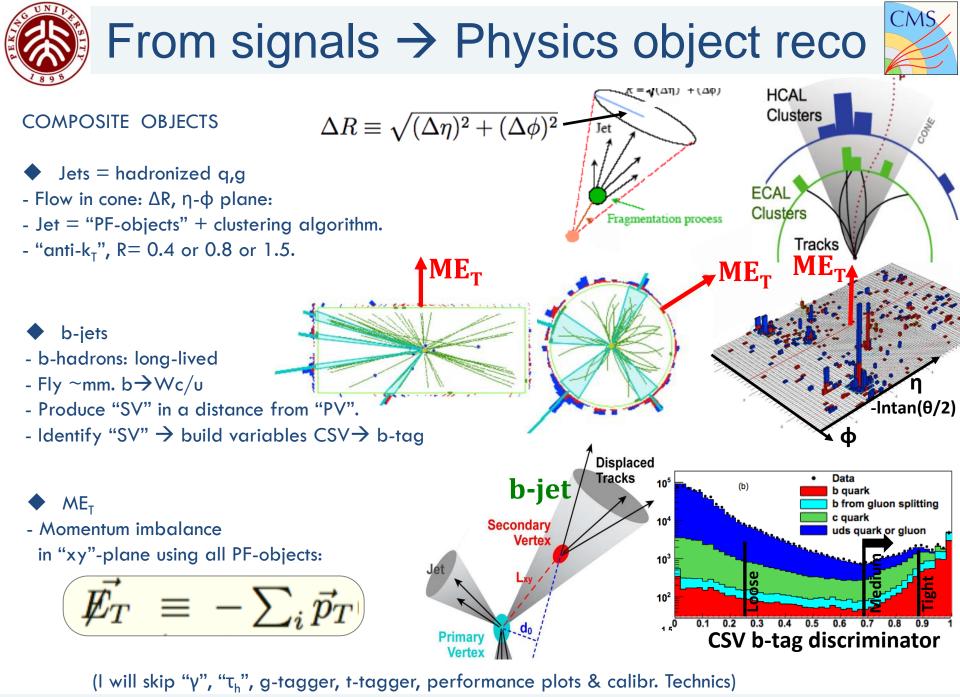
Trigger: L1→HLT→DAQ

- 40M→40K→~100 ev./s
- Store:Tier-0-1-2→GRID...

From signals \rightarrow Physics object reco

Jet-Energy Resolutio


- ♦ Main Strategy: "Particle Flow".
- Input: vertexes/tracks/calo-clast.
- Clustered to 5 type of particles: γ , e[±], μ^{\pm} , had^{±,0}.


LEPTONS:

- Muons [μ[±]] (~stable, τ~2 μs)
- Reco: Tracker & μ -chambers info.
- Purity-Eff. enhance with cuts: hits, lso, d_z...

• Electrons [e[±]]

- e^{\pm} interact with tracker \rightarrow radiates " γ ".
- Reco: ECAL & Tracker info.
- Correct for brem- $\gamma \rightarrow$ fit to get "e[±]".
- Reject γ-conversion.
- Purity-Eff. enhance cuts: χ^2/ndf , hits, Iso, $d_{z,xy}$, E/p-match, E/H, $\Delta \phi_{in}$, $\Delta \eta_{in}$ \rightarrow Correct MC eff-SF.

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

19/1/25

Data online selection & Trigger

LV1

HLT

Detectors Diaitizers

Front end pipelines

Readout buffers

Switching networks

Processor farm

(M	S	/
				>
	2	2	F	

Run3

LS2

18, 19, 120, 121, 122, 123, 124 Jan Jan Jan Jan Jan Jan 12, 120, 124

- 40 MHz crossing rate.
- We can't record and store all...
- We need to make a wise decision of which events to keep for offline analysis \rightarrow this is done by the "Trigger"
- CMS trigger has two tiers: Run 3 pp data certification efficiency 93% \rightarrow Level 1 Trigger: 40 MHz \rightarrow 100 kHz (reduction by ~400) \rightarrow High Level Trigger (HLT) 100 kHz \rightarrow 1000 Hz (reduction by ~100)

Most of events are QCD (not interesting)

LS1

n'15,16,17

Jan 14

Ian

.13

Jan

LHC delivered: 389.35 fb⁻

CMS recorded: 359.01 fb⁻¹

Run2

'Jan'18

Date

CMS

350

250

200

150

100

50

Run

Jan'12

_g 300

luminosity

Total integrated

Physics criteria on what to keep, like, high energy leptons, MET, b-jets, H_T, ...

Year	Standard rate [Hz]	Parking rate [Hz]	Scouting rate [Hz]
2011	100	-	400
2012	100	500	500
2016	1000	500	500
2017	1200	500	4000
2018	1350	900	5000

HLT paths & Trigger efficiency

 In the offline analysis, we take data events from a "dataset" depending on what physics we do

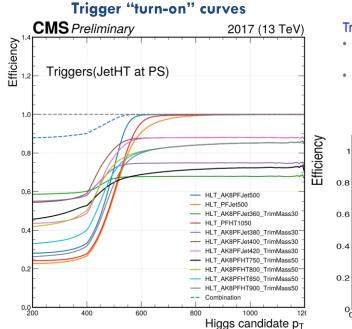
e.g., single µ/e, photon, JetHT, ... Sample name

/JetHT/Run2018A-UL2018_MiniAODv2-v1/MINIAOD /JetHT/Run2018B-UL2018_MiniAODv2-v1/MINIAOD /JetHT/Run2018C-UL2018_MiniAODv2-v1/MINIAOD /JetHT/Run2018D-UL2018_MiniAODv2-v2/MINIAOD

• Each dataset can have events

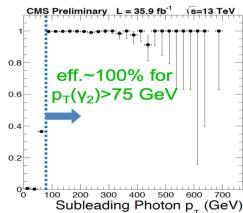
accepted by several "HLT paths":

Trigger name	act. lumi	eff. lumi
HLT_PFHT1050_v*	59.96	59.96
OR HLT_PFJet500_v*	59.96	59.96
OR HLT_AK8PFJet500_v*	59.96	59.96
OR HLT_AK8PFJet400_TrimMass30_v*	59.96	59.96
OR HLT_AK8PFJet420_TrimMass30_v*	59.96	59.96
OR HLT_AK8PFHT800_TrimMass50_v*	59.96	59.96
OR HLT_AK8PFHT850_TrimMass50_v*	59.96	59.96
OR HLT_AK8PFHT900_TrimMass50_v*	59.96	59.96


- Each event has HTL val. either accepted (1) or rejected (0).
- We evaluate trigger eff. using another orthogonal dataset

$$eff(var = x, trigger) \\ = \frac{Nevents(var > x \&\& trigger == True)}{Nevents(var > x)}$$

HL-Triggers:

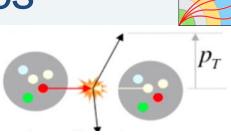

- μ: Single_Muon OR MET
- e: Single_Electron OR Photon

Period	Channel	Dataset	Trigger name
2016	electron	SingleElectron	HLT_Ele27_WPTight_Gsf_v*
			OR HLT_Ele115_CaloIdVT_GsfTrkIdT_v*
		SinglePhoton	HLT_Photon175_v*
	μ	SingleMuon	HLT_Mu50_v* OR HLT_TkMu50_v*
	· ·	MET	HLT_PFMETNoMu120_PFMHTNoMu120_IDTight_v*
2017	electron	SingleElectron	HLT_Ele35_WPTight_Gsf_v*
		Ŭ	OR HLT_Ele115_CaloIdVT_GsfTrkIdT_v*
		SinglePhoton	HLT_Photon200_v*
	μ	SingleMuon	HLT_Mu50_v* OR HLT_OldMu100_v* OR HLT_TkMu100_v*
		MET	HLT_PFMETNoMu120_PFMHTNoMu120_IDTight_v*
2018	electron	Egamma	HLT_Ele32_WPTight_Gsf_v*
			OR HLT_Ele115_CaloIdVT_GsfTrkIdT_v*
			OR HLT_Photon200_v*
	μ	SingleMuon	HLT_Mu50_v* OR HLT_OldMu100_v* OR HLT_TkMu100_v*
		MET	HLT_PFMETNoMu120_PFMHTNoMu120_IDTight_v*

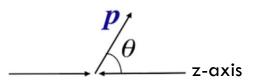
Triggers: [2016 DoubleEG data, 35.9 fb⁻¹]

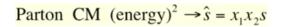
- Use HLT_DoublePhoton60
 "or" HLT_ECALHT800 for main analysis
- Use HLT_Ele27_WPTight_Gsf for Z → e⁺e⁻ control sample (energy scale and efficiency measurement)

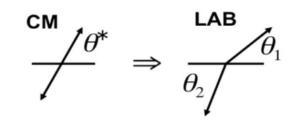
19/1/25


pp collisions' kinematics

- Natural variables would be: p, θ , ϕ ,... but...
- Longitudinal momentum & energy: p_Z, E, can NOT be used
 they are conserved, but are unknown
 - particles close to beam axis escaping detection have large $\ensuremath{\textbf{p}}_{\ensuremath{\textbf{Z}}}$
- More useful transverse momentum: p_T


$$p_T \equiv \sqrt{p_x^2 + p_y^2} = |p|\sin\theta$$


Lab frame ≠ parton-parton CM frame
 → additionally, p, E & θ, are NOT Lorentz invariant along z-axis boosts.


$$= \frac{1}{2} \ln \frac{E + p_z}{E - p_z} = \frac{1}{2} \ln \frac{1 + \beta \cos \theta}{1 - \beta \cos \theta}$$
$$\beta \rightarrow 1 \ (m << p_T):$$
$$\eta = -\ln \tan \frac{\theta}{2}$$

CMS

Advantage!!! Δη is invariant under z-axis Lorentz boosts

• Distance between 2 particles:

(it is just a function of θ)

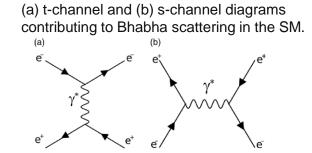
Rapidity "y"

Pseudo-rapidity "n"

 $\Delta R = \sqrt{\Delta \eta^2 + \Delta i \phi^2}$ Iso an invariant.

 \rightarrow To take away: particles are described by pT, η , ϕ coordinates

19/1/25



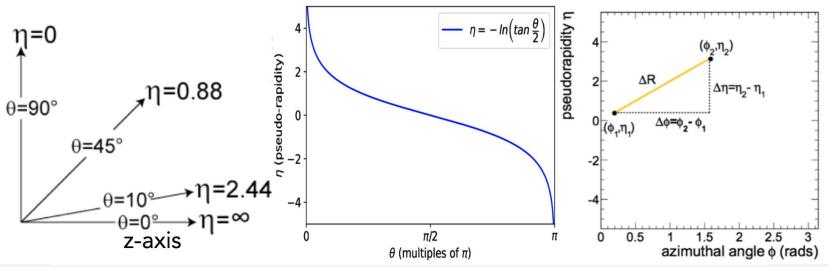
Kinematics & variables used (1/2)

- 1. Mandelstam invariant variables:
 - $$\begin{split} s &\equiv (p_1 + p_2)^2 = (p_3 + p_4)^2 = (E_1 + E_2)^2 + (\vec{p}_1 + \vec{p}_2)^2, \\ t &\equiv (p_1 p_3)^2 = (p_2 p_4)^2 = (E_1 E_3)^2 + (\vec{p}_1 \vec{p}_3)^2, \\ u &\equiv (p_1 p_4)^2 = (p_2 p_3)^2 = (E_1 E_4)^2 + (\vec{p}_1 \vec{p}_4)^2, \\ \text{where in the relativistic limit } ((p_i/E_i) \to 1) \text{ turn to:} \\ s &= 2p_1p_2 = 2p_3p_4 \end{split}$$

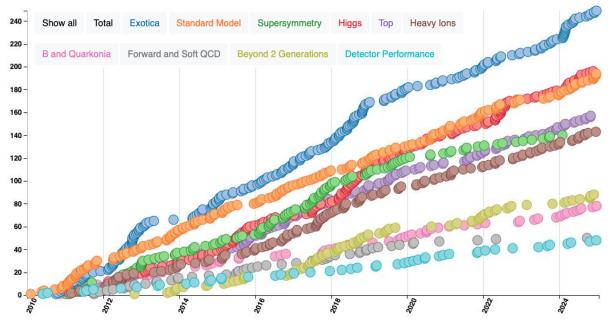
$$t = -2p_1p_3 = -2p_2p_4$$

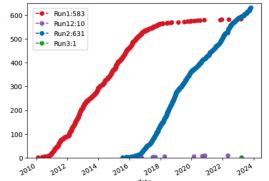
 $y = -2p_1p_3 = -2p_2p_3$

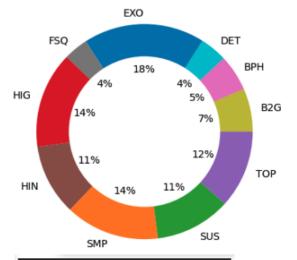
where momenta $(p_i \equiv p_i^{\mu})$ stands for the generic interaction "1+2 \rightarrow 3+4" and thus $p_1 + p_2 = p_3 + p_4$. The \sqrt{s} is the total (initial and final) energy into the lab-frame; it is also true that: $s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$.

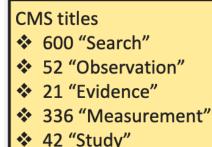

- 2. Transverse momentum: $p_T \equiv \sqrt{p_x^2 + p_y^2} = |p| \sin \theta$.
- 3. Transverse energy : $E_T \equiv E \sin \theta = p_T(E/|p|)$.
- 4. Transverse mass (of a single particle): $m_T \equiv \sqrt{p_T^2 + m^2}$.
- 5. Rapidity: $y \equiv \frac{1}{2} \ln[(E + p_Z)/(E p_Z)].$
- 6. Pseudorapidity: $\eta \equiv \lim_{[(E/p) \to 1]} y = -\ln[\tan(\theta/2)].$
- 7. Invariant η - ϕ solid angle: $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.
- 8. Four-momentum of a particle as function of different variables: $f(E, p_x, p_y, p_z): p^{\mu} \equiv (E; p_x, p_y, p_z),$ $f(m_T, p_x, p_y, y): p^{\mu} = (m_T \cosh y; p_x, p_y, m_T \sinh y),$ $f(m_T, p_T, y, \phi): p^{\mu} = (m_T \cosh y; p_T \cos \phi, p_T \sin \phi, m_T \sinh y),$ $f(m, p_T, \eta, \phi): p^{\mu} = (\sqrt{m^2 + p_T^2 \cosh^2 \eta}; p_T \cos \phi, p_T \sin \phi, p_T \sinh \eta).$

Kinematics & variables used (2/2)

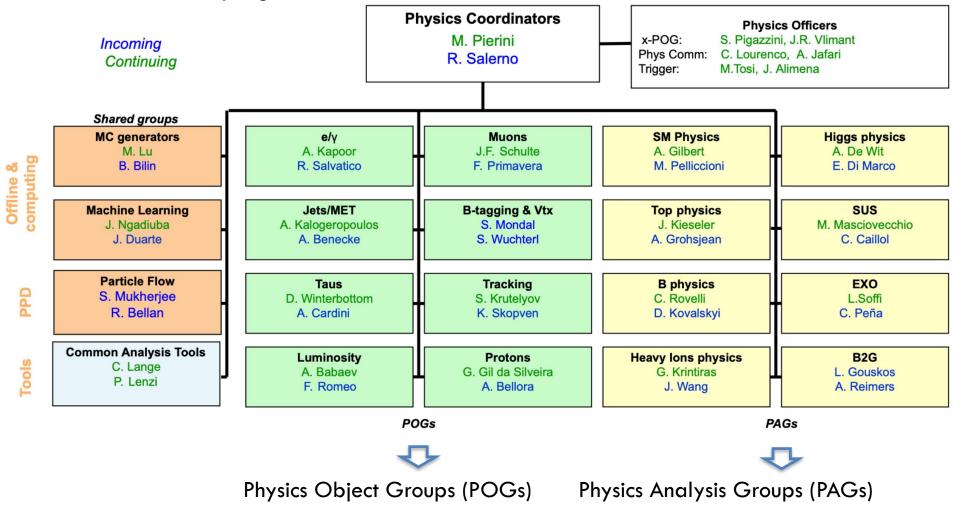

- 9. Invariant mass of n particles: $M \equiv \sqrt{(p_1^{\mu} + p_2^{\mu} + ... + p_n^{\mu})^2} = \sqrt{(E_1 + E_2 + ...)^2 (\vec{p_1} + \vec{p_2} + ...)^2}$.
- 10. Invariant mass of 2 particles: $M = \sqrt{E_1^2 + E_2^2 + 2E_1E_2 p_1^2 p_2^2 2\vec{p_1}\cdot\vec{p_2}}$.
- 11. Invariant mass of 2 particles for $(E_i/p_i) \to 1$: $M = \sqrt{2p_1p_2(1-\cos\theta)}$.
- 12. Transverse mass of 2 particles: $M_T \equiv \sqrt{(E_1 + E_2)^2 (\vec{p}_{T1} + \vec{p}_{T2})^2}$.
- 13. Transverse mass of 2 particles for $(E_i/p_i) \rightarrow 1$: $M_T = \sqrt{2p_{T1}p_{T2}(1-\cos\theta)}$.
- 14. Transverse hadronic activity: $H_T \equiv \sum_i p_T(jet[i])$ (where the sum runs over all jets above some thresholds, which in particular analysis are $p_T > 30$ GeV, $|\eta| < 4.5$).
- 15. Hadronic recoil: $\vec{H}_T^{miss} \equiv -\sum_i \vec{p}_T(jet[i])$ where the sum runs over all jets. (Usually used in Z+jets samples where is equal with the $p_T(Z)$). It is true that: $|\vec{H}_T^{miss}| \neq H_T$ due to the threshold(s) imposed to selected jets in H_T .
- 16. Transverse missing energy (or momentum): $\vec{E}_{T} \equiv -\sum_{i} \vec{p}_{T}(i)$ where the sum runs over, all reconstructed objects: jets, leptons, taus, photons (without cut thresholds).



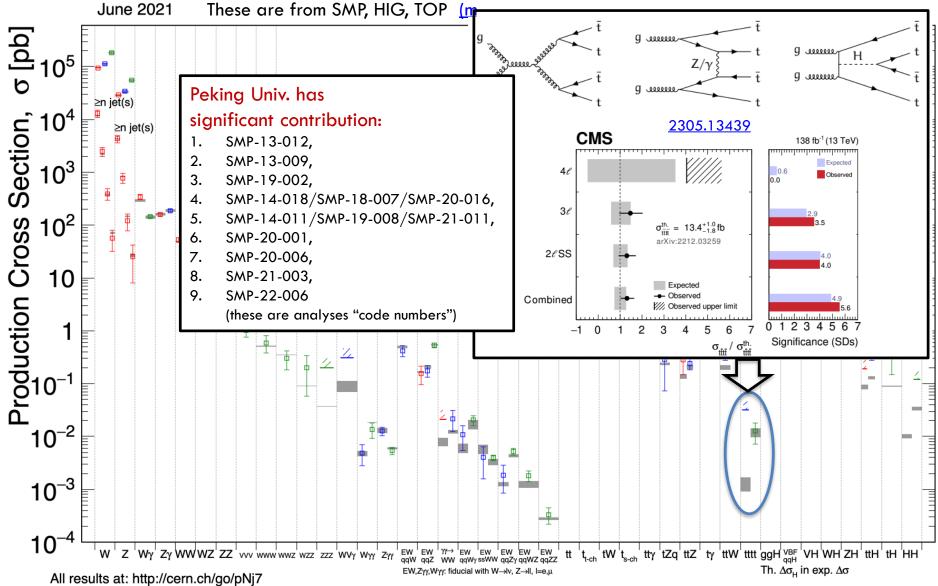

Physics program at CMS



- 1347 collider data papers submitted (as of 2025-1-1)
- Publication statistics Run2 not yet at plateau!
- ~90 analyses in CWR or beyond, ~200 in AWG progress https://cms-results.web.cern.ch/cms-results/public-results/publications-vs-time/
- Physics Analyses Groups (PAGs)
 - \rightarrow (BSM) Searches : SUS, EXO, B2G
 - \rightarrow SM Measurements (mostly): SMP, TOP, BPH, HIG, HIN



CMS organigram at Physics coordination areas: POGs & PAGs


How is our community organized?

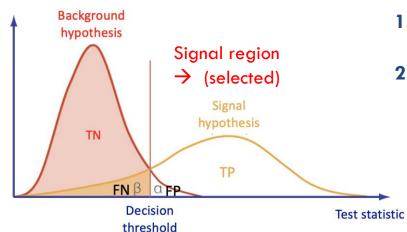
Several SM measurements (summary)

19/1/25

Excl. limits from several searches (summary)

				Overview of CMS B2	G Results		These are from B2G only (r	nore	here)	
~	89	•	► $R \rightarrow q\bar{q}\gamma \rightarrow W\gamma (g_m = 0.1, \Lambda = 4M_X)$ M ₂	CMS Preliminary PLB 826 (2022) 136888		→ 0.7 - 1.1				36 – 138fb ⁻¹ (13TeV)
		포	► W' $\rightarrow q\bar{q}\gamma \rightarrow W\gamma (g_m = 0.1, \Lambda = 4M_X)$ $\Rightarrow Z' (2016 combination)$ $\Rightarrow Z' \rightarrow ZH \rightarrow q\bar{q}\tau\bar{\tau}$ M_{Z}	r PLB 826 (2022) 136888 PLB 796 (2019) 134952 PHEP 01 (2019) 051 EPJC 81 (2021) 688			0.9 - 2.2			 138 fb⁻¹ 36 fb⁻¹
		2', HVT B	$\begin{array}{ccc} \bullet & Z' \rightarrow ZH \rightarrow (\ell\ell, vv)b\bar{b} & M_Z \\ \bullet & Z' \rightarrow ZH \rightarrow q\bar{q}q\bar{q} & M_Z \\ \bullet & Z' \rightarrow WW \rightarrow q\bar{q}q\bar{q} & M_Z \end{array}$	PLB 844 (2023) 137813 PLB 844 (2023) 137813		—	► $t^{\dagger}t^{\dagger} \rightarrow tgtg, 1l$ (spin-1/2)	M+*	B2G-22-005	▶ 36 fb ⁻¹
		Z	$\begin{array}{llllllllllllllllllllllllllllllllllll$	PRD 105 (2022) 032008 PHEP 07 (2021) 208 BEG-23-008 PB 8/29-808			► $t^* \bar{t}^* \rightarrow tgtg, 1l$ (spin-3/2)	Mt*	B2G-22-005	
		œ	$\Rightarrow W' \rightarrow WZ \rightarrow llq\bar{q}$ M_W $\Rightarrow W' \rightarrow WZ \rightarrow uuq\bar{q}$ M_W	HEP 09 (2018) 101			▶ b [*] → tW → bq \bar{q} q \bar{q} (LH+RH)		HEP 12 (2021) 106	
es		W', HVT B	$ \begin{array}{c} W' \rightarrow WZ \rightarrow \ell \ell q \bar{q} & M_{\ell q} \\ \rhd W' \rightarrow WH \rightarrow q \bar{q} \tau \bar{\tau} & M_{\ell \ell} \\ \blacktriangleright W' \rightarrow WZ \rightarrow q \bar{q} q \bar{q} \bar{q} & M_{\ell \ell} \\ \blacktriangleright W' \rightarrow WH \rightarrow \ell v q \bar{q} & M_{\ell \ell} \\ \end{array} $	r PLB 844 (2023) 137813		ks (▶ $b^* \rightarrow tW \rightarrow bq\bar{q} q\bar{q}$ (RH)	M _b ,		
onanc			► $W' \rightarrow WZ \rightarrow \ell v q \bar{q}$ ► $W' \rightarrow \ell v$ ► $R \rightarrow ZZ \rightarrow v v q \bar{q}$ M_W	F PRD 105 (2022) 032008 F JHEP 07 (2022) 067 PRD 106 (2022) 012004		quarks	▶ b → tW → bqq qq (tH) ▶ b [*] → tW → bqq qq (tH)	M _b ,	JHEP 12 (2021) 106	
y res		~	$ ightarrow R ightarrow HH ightarrow q\bar{q}\tau\bar{\tau}$ $M_{\rm F}$ $ ightarrow R ightarrow HH (combination) M_{\rm F} ightarrow R ightarrow HH ightarrow b\bar{b}WW (lep.) merged-jet M_{\rm F}$	n HEP 01 (2019) 051 n 2403.16926 sub. to Phys. Rep. HEP 05 (2022) 005 2403.09430, Sub. to IHEP			b → tW → bqq qq (LH) b b^* → tW → bqq ℓv (LH+RH)	M _b ,	JHEP 12 (2021) 106	
W/VH/HH/Vy resonances		, A _R = 3Te	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			Excited	► b [*] → tW → $bq\bar{q} lv$ (RH)	M _b *	JHEP 04 (2022) 048	
W/W		Radion	▶ $R \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ merged-jet M_{ij} ▶ $R \rightarrow VV \rightarrow q\bar{q}q\bar{q}$ M_{ij} ▶ $R \rightarrow WW \rightarrow hn\bar{n}$ M_{ij}	R PLB 842 (2023) 137392 R PLB 844 (2023) 137892 R PLB 044 (2023) 137813 R PRD 105 (2022) 032008		cit	► b \rightarrow tW \rightarrow bqq $\ell\nu$ (RH)	M _b *	JHEP 04 (2022) 048	
			$[> R \rightarrow ZZ$ M_{0} $[> R \rightarrow WW$ M_{0} $[> R \rightarrow WW$ M_{0}	HEP 03 (2019) 128 HEP 03 (2020) 034 HIG-20-016		ă		M _b ,	JHEP 04 (2022) 048	
		5	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	jHEP 03 (2018) 003 jHEP 09 (2018) 101 pRD 106 (2022) 012004 jHEP 04 (2022) 087			► b [*] → tW → $blv q\bar{q}$ (LH+RH)	M _b .	B2G-21-005	
		/Mpi = 0.1	► G → ZZ → \mathcal{U} qq̃ \mathcal{M}_{q} ► G → HH (combination) \mathcal{M}_{q} ► G → HH → $b\bar{b}WW$ (lep.) \mathcal{M}_{q}	G 2403.16926 sub. to Phys. Rep. B JHEP 05 (2022) 005			► b [*] → tW → blv qq̄ (RH)	M _b ,	B2G-21-005	
		Bulk G, K	\models G → HH → ττγγ (not in HH Comb.) M ₀ \models G → HH → multi-leptons M ₀ \models G → HH → wybh M ₀	HIG-22-012 PHEP 07 (2023) 095 2310.01643, Acc. by JHEP			► $b^* \rightarrow tW \rightarrow b\ell v q\bar{q}$ (LH)	M _b *	B2G-21-005	
			► $G \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ merged-jet M_c ► $G \rightarrow WW \rightarrow lvq\bar{q}$ M_c	G PLB 842 (2023) 137392 G PRD 105 (2022) 032008			$ ightarrow LQ\overline{LQ} \rightarrow b\nu b\nu$ (scalar)	MLQ	PRL 121 241802 (2018)	Simulation boundary
		2	▶ $t^*t^* \rightarrow tgtg. 1\ell (spin-1/2)$ M _c ▶ $t^*t^* \rightarrow tgtg. 1\ell (spin-3/2)$ M _c ▶ $b^* \rightarrow tW \rightarrow bq\bar{q} q\bar{q} (LH+RH)$ M _b	. JHEP 12 (2021) 106	es	g	$ ightarrow LQ\overline{LQ} \rightarrow t\mu t\mu$ (scalar)	MLQ	PRL 121 241802 (2018)	
		ted quari	▶ $b^+ \rightarrow tW \rightarrow bq\bar{q} q\bar{q}$ (RH) M_b ▶ $b^+ \rightarrow tW \rightarrow bq\bar{q} q\bar{q}$ (LH) M_b ▶ $b^+ \rightarrow tW \rightarrow bq\bar{q} t\nu$ (LH+RH) M_b	 JHEP 12 (2021) 106 JHEP 12 (2021) 106 JHEP 04 (2022) 048 HEP 04 (2022) 048 	Ŭ		⊳LQLQ → trtr	MLQ	EPJC 78 (2018) 707	
		Exci	$\begin{array}{c} \mathbf{b}_{-}^{*} \rightarrow \mathbf{tW} \rightarrow bq\bar{q} \ t\nu \ (\mathbf{RH}) & M_{0} \\ \mathbf{b}_{-}^{*} \rightarrow \mathbf{tW} \rightarrow bq\bar{q} \ t\nu \ (\mathbf{LH}) & M_{0} \\ \mathbf{b}_{-}^{*} \rightarrow \mathbf{tW} \rightarrow bt \ qq \ (\mathbf{LH}) & M_{0} \\ \mathbf{b}_{-}^{*} \rightarrow \mathbf{tW} \rightarrow bt \ qq \ (\mathbf{LH}) & M_{0} \\ \mathbf{b}_{-}^{*} \rightarrow \mathbf{tW} \rightarrow bt \ qq \ (\mathbf{LH}) & M_{0} \end{array}$	JHEP 04 (2022) 048 B2G-21-005 B2G-21-005	aŭ		\triangleright W' \rightarrow tb, 1 ℓ (RH) $M_{\nu_{e}} > M_{W'}$	MW	PLB 777 (2018) 39	
ŝ		3	▶ $b^* \rightarrow tW \rightarrow b\bar{t}v q\bar{q}$ (LH) M_{b^*} ▷ LQEQ $\rightarrow bvbv$ (scalar) M_{b^*} ▷ LQEQ $\rightarrow tutu$ (scalar) M_{b^*}	B2G-21-005 PRL 121 241802 (2018) PRL 121 241802 (2018) PRL 121 241802 (2018)	ŭ		► W' \rightarrow tb, 0 ℓ , (LH)	M _W	PLB 820 (2021) 136535	
nance		-	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		0	Ę	► W' \rightarrow tb, 0 ℓ , (RH)	M _W	PLB 820 (2021) 136535	
Reso		W⊣tb	$\begin{array}{llllllllllllllllllllllllllllllllllll$		es.	Ţ	► W' → tb, 1ℓ (LH, $\Gamma/M_{W'}=1\%$)	M _W	JHEP 05 (2024) 046	
		÷			Re	Ň	► W' \rightarrow tb, 1 ℓ (RH, $\Gamma/M_{W'}=1\%$)	M _W	JHEP 05 (2024) 046	1.0 - 6.6
		12 ⁻ 2'	$arproperto Z' \rightarrow t\bar{t} (\Gamma/M_{Z'}=1\%)$ M_Z $arproperto Stealth \bar{q} \rightarrow \bar{\chi}_1^0 q\bar{q} (\gamma + jets, M_{\bar{\chi}_1^0}=0.2 \text{ TeV})$ M_Z $arproperto Z' \rightarrow tT \rightarrow 2774 \text{ H} t \rightarrow h_Z + jets (M_Z=1.5 \text{ TeV})$ M_Z	HEP 04 (2019) 031 PRL 123 241801 (2019) EPIC 79 (2019) 208			► W' → tb, 1 ℓ (LH, $\Gamma/M_{W'}=10\%$)	M _W	JHEP 05 (2024) 046	
		KK & othe	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	r JHEP 09 (2022) 088 x B2G-23-004 x PRL 129 (2022) 021802			▶ W' → tb, 1ℓ (RH, $\Gamma/M_{W'}=10\%$)	Mw	JHEP 05 (2024) 046	
		ĸ		x PRD 106 (2022) 012002 x PLB 835 (2022) 137566 x PEP 01 (2020) 036			⊳Z′ → tt̄ (Γ/M _{Z′} =30%)	M _{Z'}	JHEP 04 (2019) 031	
			▷ b (tH + tZ) (H/Z → bb), ($\Gamma/m = 0.05$, singlet) M ₁ ▶ b (tH + tZ) (H/Z → bb), ($\Gamma/m = 0.05$, Singlet) M ₁ ▶ b Zt (Z → vv) ($\Gamma/m = 0.3$, Singlet) M ₁ ▶ b Zt (Z → vv) ($\Gamma/m = 0.2$, Singlet) M ₁	γ μτΕΡ 01 (2020) 036 γ 2405.05071 sub. to PRD γ μτΕΡ 05 (2022) 093 γ μτΕΡ 05 (2022) 093		ţ	$\triangleright Z' \rightarrow t\bar{t} (\Gamma/M_{Z'}=10\%)$	M _{Z'}	JHEP 04 (2019) 031	
		(db)T	$ \begin{array}{c} b \ b \ zt \ (Z \rightarrow vv) \\ b \ b \ zt \ (Z \rightarrow vv) \\ b \ zt \ (Z \rightarrow vv) \\ b \ zt \ (Z \rightarrow vv) \\ (\Gamma/m=0.05, \ singlet) \\ b \ b \ tH \ (H \rightarrow \gamma\gamma), \\ \end{array} $	JHEP 05 (2022) 093 JHEP 05 (2022) 093 JHEP 05 (2022) 093 PLB 781 (2018) 574		Ń	$\triangleright Z' \rightarrow t\bar{t} (\Gamma/M_{Z'}=1\%)$	M _{Z'}	JHEP 04 (2019) 031	
		G	▶ b tH (H \rightarrow yy), ($\Gamma/m=0.04$, Singlet) M ▶ b tH (H \rightarrow yy), ($\Gamma/m=0.03$, Singlet) M	HEP 09 (2023) 057 HEP 09 (2023) 057 HEP 09 (2023) 057 HEP 09 (2023) 057			▷ Stealth $\tilde{g} \rightarrow \tilde{\chi}_1^0 q\bar{q} (\gamma + jets, M_{\tilde{\chi}_1^0} = 0.2 \text{ TeV})$	Mg	PRL 123 241801 (2019)	
suo			▶ b tH (H → $\gamma\gamma$), ($\Gamma/m=0.02$, Singlet) M ₁ ▶ b tH (H → $\gamma\gamma$), ($\Gamma/m=0.01$, Singlet) M ₁ ▶ (qb)T Comb. ($\Gamma/m=0.05$, Singlet) M ₁ b tW t→ len + iets ($\Gamma/m=0.1$, IH) M ₂	T JHEP 09 (2023) 057 T JHEP 09 (2023) 057 T 2405.17605 sub. to Phys. Rep. FPE/7 270 (2019) 90		others	$\triangleright Z' \rightarrow tT \rightarrow tZt/tHt \rightarrow \ell v + jets (M_T = 1.5 TeV)$	M _{Z'}	EPJC 79 (2019) 208	
fermi		8(dp)/	$ \begin{array}{l} \triangleright \ b \ Wt \rightarrow lep. + jets & (\Gamma/m=0.1, LH) & M_{\rm I} \\ \triangleright \ b \ Wt \rightarrow lep. + jets & (\Gamma/m=0.2, LH) & M_{\rm I} \\ \triangleright \ b \ Wt \rightarrow lep. + jets & (\Gamma/m=0.1, LH) & M_{\rm I} \end{array} $	B EPJC 79 (2019) 90 B EPJC 79 (2019) 90 B EPJC 79 (2019) 90 B EPJC 79 (2019) 90 B JPEP 06 (2018) 031		Ě	► W' \rightarrow Tb/Bt ($M_{VLQ} = 2/3M_{W}$)	MW	JHEP 09 (2022) 088	
eavy		(dt)	$ ightarrow Hb (H \rightarrow b\bar{b})$ ($\Gamma/m=0.3$, Doublet) M_{f} $ ightarrow Hb (H \rightarrow b\bar{b})$ ($\Gamma/m=0.2$, Doublet) M_{f} $ ightarrow Wt \rightarrow lep. + jets$ ($\Gamma/m=0.3$, LH) $M_{X_{22}}$	B JHEP 06 (2018) 031 EPJC 79 (2019) 90			► $g_{KK} \rightarrow gR \rightarrow gWW(0l) (M_R/M_{gex}=0.5)$	Mg _{KK}	B2G-23-004	
Very heavy fermions		(dt))	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	EPJC 79 (2019) 90 B EPJC 79 (2019) 90 PLB 779 (2018) 82 PRD 100 (2019) 072001		د د د	▶ $W_{KK} \rightarrow RW \rightarrow WWW (0\ell + 1\ell)$	M _{WKK}	PRL 129 (2022) 021802	
-			$ \begin{array}{c} b & BB \rightarrow bq\bar{q} \ bq\bar{q} \ control \\ BB \rightarrow bq\bar{q} \ bq\bar{q} \ (B(bZ) = 1) \\ BB \rightarrow bq\bar{q} \ bq\bar{q} \ (B(bH) = 1) \\ BB \rightarrow bq\bar{q} \ bq\bar{q} \ (B(bH) = 1) \\ BB \rightarrow bq\bar{q} \ bq\bar{q} \ (B(bH) = 1) \\ \end{array} $	PRD 100 (2019) 072001 in PRD 102 (2020) 112004 in PRD 102 (2020) 112004 in PRD 102 (2020) 112004		¥	► $W_{KK} \rightarrow RW \rightarrow WWW$ (0 <i>l</i>)	M _{WKK}	PRD 106 (2022) 012002	
		Pair prod	▶ BB → lep. + jets (Doublet) Mi ▶ BB → lep. + jets (Singlet) Mi ▶ TT → lep. + jets (Singlet and Doublet) Mi	B JHEP 07 (2023) 020 B JHEP 07 (2023) 020 T JHEP 07 (2023) 020			▶ X → aa → $b\bar{b}b\bar{b}$ ($M_a = 0.1 \text{ TeV}$, $M_XN/f = 8$)	MX	PLB 835 (2022) 137566	
			▶ BB → lep. + jets (B(bH) = 1) M_1 ▶ BB → lep. + jets (B(bZ) = 1) M_2 ▶ BB → lep. + jets (Doublet) M_3	2402.13808 sub. to PRD 2402.13808 sub. to PRD		\mapsto	1.0 - 1.5 1.0 - 1.5			•
		$\rightarrow ZH = 1$	▶ BB → lep. + jets (Singlet) M_{ij} ▶ BB Comb. (Singlet and Doublet) M_{ij} $\ell t \bar{t}$ (2HDM T-II, tanβ = 1, m_H = 400 GeV) M_{ij}	8 2402.13808 sub. to PRD 8 2405.17605 sub. to Phys. Rep. 8 B26-23-006		►→1.0 - 1.1 ►→ 0.6 - 1	.1.1-1.5			
H-ext	► /	$4^{++} \rightarrow WV$	$ \begin{array}{ll} & \mathcal{H}_{\mathcal{H}} (2HOM \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			0.8 - 3	2.4 0.2 - 1.8			
				-1	0	1	2 3 4		5 6 Excluded mass	

Analysis: Signal & Background


• What is Data Analysis?

→ The offline "Data Analysis" refers to the processing of real data (and MC simulated) events (samples) in order to make physics conclusions. Examples will follow.

• What is Signal (S) and Background (B)?

 \rightarrow For each analysis there is a process which we want to study or search for, this is Signal (S). Other SM processes which have similar kinematics and final state appear as Background (B).

- Every analysis has as common goal: to **select Signal and reject Background**. This is done by exploiting kinematics and applying cuts on kinematic variables.
- We optimize these cuts based on signal significance e.g. S/\sqrt{B} (or others)
- Finally, we count S & B events in some bins and make inferences on physics.

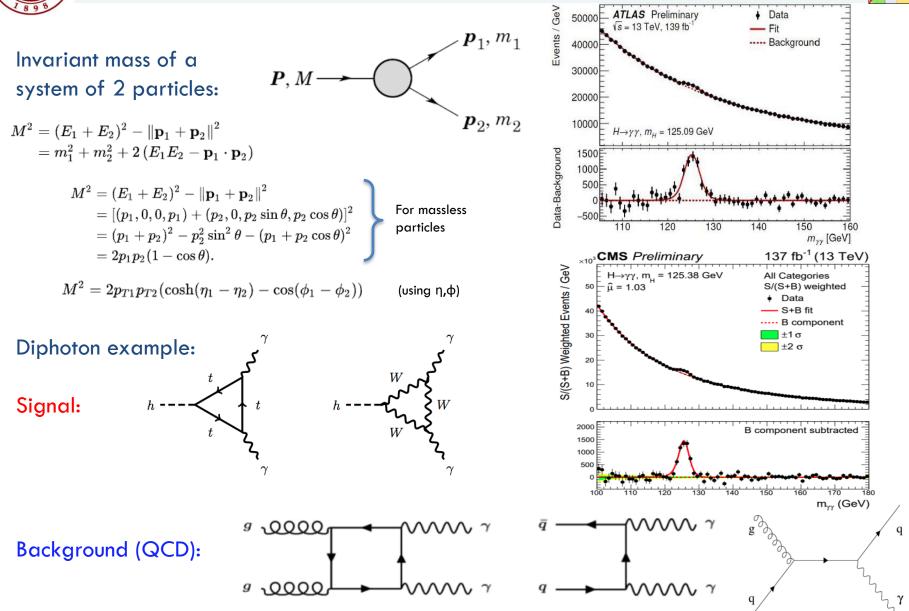
Two general types of analyses in HEP:

1. SM Measurements:

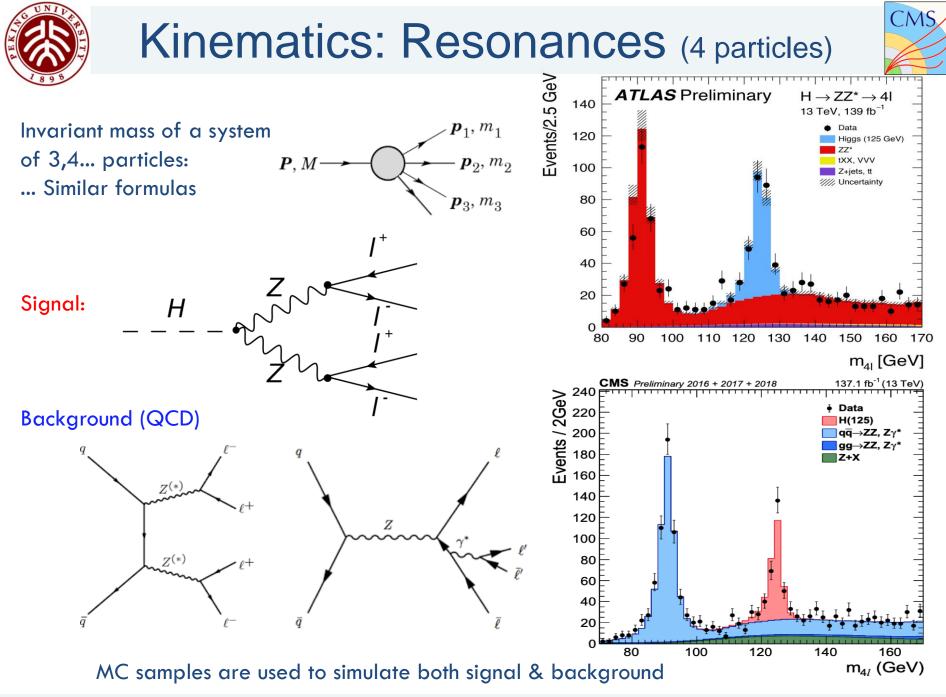
We measure events of an existing physics process.

2. Searches for BSM physics:

We look for a process which is not predicted by SM but from by BSM.


If such a process exists, it will appear as an excess of events compatible with the BSM model simulation.

Density


Kinematics: Resonances (2 particles)

19/1/25

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

19/1/25

Ó

19/1/25

20

60

40

 $m_T^{W^{\pm}}$ [GeV]

80

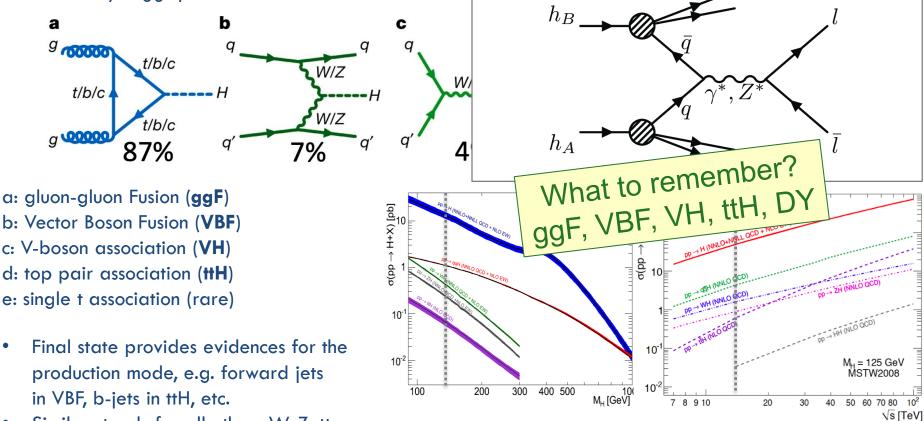
100

Resonances with neutrinos: Transverse mass (M_T)

> 2000 5 1800 Transverse mass of a system of 2,3, Data particles, with 1 (or more) invisible p **ATLAS** Preliminary Uncertainty (like neutrinos: v) \rightarrow MET WW 1600 $H \rightarrow WW^* \rightarrow ev \mu v, N_{jet} \leq 1$ VV st 1400 1200 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Mis-Id $M_T^2 = m_1^2 + m_2^2 + 2 \left(E_{T,1} E_{T,2} - ec{p}_{T,1} \cdot
ight)$ Z/Y* 1200 tt/Wt Higgs For massless particles $M_T^2
ightarrow 2 E_{T,1} E_{T,2} \left(1ightarrow 2 E_{T,1} E_{T,2}
ight)$ 1000 800 (see here for more, also search for Jacobian p 600 400 Asymmetric peak, a bit lower than t 200 nominal masses. 0 Data-Bkg. SCET+NNLOIET $p\bar{p} \rightarrow W^{\pm}(\rightarrow \ell \nu) + X$ $\sqrt{s} = 1.96 \text{ TeV}$ 300 NNLO 0.14 0.12 0.12 0.10 NIO N3LO 200 NNPDF40 nnlo ±⁴(1/a)da/dm¹/₁ ±¹(a)da/dm¹/₁ 7-point scale variation 100 $u_c = u_p = m_p$ 0 0.00 50 100 150 200 250 OTN 1.04 1.02 $q_T^{cut} = 0.5 \text{ GeV}$ $q_T^{cut} = 0.75 \text{ GeV}$ m_⊤ [GeV] Ratio to 1.00 86.0 to

Q: why the $ev\mu v$ channel has been selected?

m_⊤ [GeV]



What is the production mechanism?

- The pp collisions are essentially parton collisions where gluons and quarks interact→
- Several different way to produce a particular particle (e.g a Higgs) and a final state.
- Let's study Higgs production \rightarrow 4 main mechanisms:

Another important production mechanism (which does not apply to Higgs production) is the Drell-Yan (DY) production. This is qqbar-annihilation essentially:

Similar stands for all others W, Z, tt,...
We rely on MC for the correct productions which is usually inclusive.

BRs: how to & what to remember

Unstable particles (have decay widths and) decay into two or more particles. The relative fraction of each decay mode is called Branching Fraction or Ratio (BR or BF).

All BRs can be found in <u>PDG</u> (there is also an app <u>here</u>) You can find tables like→

With these BRs, we can estimate the BRs for pairs or particles like tt, ττ, HH, WW, WZ, ZZ, etc. (We can use double-entry matrix like this to help calculations)

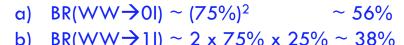
 $au_{
m h} au_{
m h}$

 $\mu au_{
m h}$

 $\mathrm{e} au_\mathrm{h}$

 $\tau\tau$ decay modes

W ⁺ DECAY MOD	ES Fraction (Γ_i / Γ)	Z DECAY MODES	Fraction	(Γ;/Γ)
$ \begin{array}{c} \ell^+ \nu \\ e^+ \nu \\ \mu^+ \nu \\ \tau^+ \nu \end{array} $	$ \begin{array}{l} [b] & (10.86 \pm \ 0.09) \% \\ & (10.71 \pm \ 0.16) \% \\ & (10.63 \pm \ 0.15) \% \\ & (11.38 \pm \ 0.21) \% \end{array} $	$ \begin{array}{c} \overline{e^{+}e^{-}} \\ \mu^{+}\mu^{-} \\ \tau^{+}\tau^{-} \\ e^{+}e^{-} \end{array} $	[h] (3.30 [h] (3.30 [h] (3.30	532±0.0042) % 562±0.0066) % 596±0.0083) %
hadrons		$\ell^+\ell^-\ell^+\ell^-$	[<i>i</i>] (4.55	$558 \pm 0.0023)\%$ 5 ± 0.17) × 1
τ^- DECA	Υ MODES Fraction (Γ _j			$\begin{array}{c} 00 \pm 0.055 \) \% \\ 11 \pm 0.056 \) \% \end{array}$
$\mu^- \overline{\nu}_\mu \nu$	r [g] (17.39 ±	0.04)%		
$\mu^-\overline{\nu}_{\mu}$	$_{\iota} \nu_{\tau} \gamma$ [e] (3.67 \pm	0.08)×10 ⁻³		
$\begin{array}{c} e^- \overline{\nu}_e \nu_\tau \\ e^- \overline{\nu}_e \\ \dots \end{array}$	[g] (17.82 $\pm \nu_{\chi} \gamma$ [e] (1.83 \pm			
W decay modes		Higgs I	3R	cc 2.9% YY / 0.2%
alliote	$\frac{1}{dd}$		gg π 8.2% 6.3%	2.6%
an jets			%	
$ au+\mathrm{jets}$			b	b /
$\mu+{ m jets}$			58	4%
			00.	
${ m e+jets}$	10 100 120 140	160 180 200 M _H [GeV]		
	$ \frac{\ell^+ \nu}{e^+ \nu} \\ \frac{\ell^+ \nu}{\mu^+ \nu} \\ \frac{\tau^+ \nu}{\tau^+ \nu} \\ \frac{\mu^- \overline{\nu}_{\mu} \nu}{\mu^- \overline{\nu}_{\mu}} \\ \frac{\ell^- \overline{\nu}_e \nu_{\tau}}{e^- \overline{\nu}_e \nu_{\tau}} \\ e^- \overline{\nu}_e \nu_{\tau} \\ e^- \overline{\nu}_e \nu_{\tau} \\ e^- \overline{\nu}_e \nu_{\tau} \\ e^- \overline{\nu}_e \nu_{\tau} \\ \frac{\ell^+ \nu}{\mu^+ \nu} \\ \ell$	$\frac{\ell^+ \nu}{e^+ \nu} \qquad [b] (10.86 \pm 0.09) \% \\ e^+ \nu (10.71 \pm 0.16) \% \\ \mu^+ \nu (10.63 \pm 0.15) \% \\ \tau^+ \nu (11.38 \pm 0.21) \% \\ hadrons (67.41 \pm 0.27) \% \\ \cdots \\ \hline \frac{\tau^- \text{DECAY MODES}}{\mu^- \overline{\nu}_{\mu} \nu_{\tau}} \qquad [g] (17.39 \pm \mu^- \overline{\nu}_{\mu} \nu_{\tau} \gamma [e] (3.67 \pm e^- \overline{\nu}_{e} \nu_{\tau} \gamma [e] (13.83 \pm \cdots \\ e^- \overline{\nu}_{e} \nu_{\tau} \gamma [e] (13.83 \pm \cdots \\ \cdots \\ \hline \end{bmatrix}$ W decay modes $all \text{ jets}$ $\frac{\tau + \text{ jets}}{\mu + \text{ jets}} \qquad $	$\frac{\ell^{+}\nu}{\ell^{+}\nu}$ $\frac{(b)}{\ell^{+}\nu}$ $\frac{(10.71\pm0.16)\%}{(10.63\pm0.15)\%}$ $\frac{\tau^{+}\nu}{\tau^{+}\nu}$ $\frac{(10.63\pm0.15)\%}{(11.38\pm0.21)\%}$ $\frac{\tau^{-} \text{DECAY MODES}}{(67.41\pm0.27)\%}$ $\frac{\tau^{-} \text{DECAY MODES}}{(67.41\pm0.27)\%}$ $\frac{\tau^{-} \text{DECAY MODES}}{(17.39\pm0.04)\%}$ $\frac{\tau^{-}\overline{\nu}\mu\nu_{\tau}\gamma}{\mu^{-}\overline{\nu}\mu}\nu_{\tau}\gamma$ $\frac{[g]}{(17.39\pm0.04)\%}$ $\frac{\ell^{-}\overline{\nu}e\nu_{\tau}\gamma}{\ell^{-}}$ $\frac{[g]}{(17.82\pm0.04)\%}$ $\frac{\ell^{-}\overline{\nu}e\nu_{\tau}\gamma}{\ell^{-}}$ $\frac{[g]}{(17.82\pm0.04)\%}$ $\frac{\ell^{-}\overline{\nu}e\nu_{\tau}\gamma}{\ell^{-}}$ $\frac{[g]}{(17.82\pm0.04)\%}$ $\frac{\ell^{-}\overline{\nu}e\nu_{\tau}\gamma}{\ell^{-}}$ $\frac{[g]}{(17.82\pm0.04)\%}$ $\frac{\ell^{-}\overline{\nu}e\nu_{\tau}\gamma}{\ell^{-}}$ $\frac{[g]}{(17.82\pm0.04)\%}$ $\frac{\ell^{-}\overline{\nu}e\nu_{\tau}\gamma}{\ell^{-}}$ $\frac{[g]}{\ell^{-}}$ $\frac{10^{4}}{\sqrt{2}}$	$\frac{\ell^{+}\nu}{\ell^{+}\nu} = \begin{bmatrix} b \end{bmatrix} (10.86 \pm 0.09) \% \\ (10.71 \pm 0.16) \% \\ (10.71 \pm 0.16) \% \\ \mu^{+}\nu = (10.63 \pm 0.15) \% \\ \pi^{+}\nu = (11.38 \pm 0.21) \% \\ hadrons = (67.41 \pm 0.27) \% \\ \vdots = \begin{bmatrix} \tau^{-} \text{ DECAY MODES} & \text{Fraction } (\Gamma_{i}/\Gamma) \\ \mu^{-}\overline{\nu}\mu\nu_{\tau} = \begin{bmatrix} g \end{bmatrix} (17.39 \pm 0.04) \% \\ \mu^{-}\overline{\nu}\mu\nu_{\tau}\gamma = \begin{bmatrix} g \end{bmatrix} (17.39 \pm 0.04) \% \\ \mu^{-}\overline{\nu}\mu\nu_{\tau}\gamma = \begin{bmatrix} g \end{bmatrix} (17.32 \pm 0.04) \% \\ e^{-}\overline{\nu}e^{-}\nu_{\tau}\gamma = \begin{bmatrix} g \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau} & g \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} (17.82 \pm 0.04) \% \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} \\ \vdots = \begin{bmatrix} \sigma_{e}\nu_{\tau}\gamma & e \end{bmatrix} \\ $


19/1/25

 $e\tau_h \mu \tau_h$

 $\mu\mu$

- In CMS we consider "leptons" the e & μ (as are ~stable)
 - The τ (unstable) has lep. decays ${\sim}35\%$ and hadronic $(\tau_h)\,{\sim}65\%$
 - BR(t→bW)~100% (because of CKM matrix...)
 - The W has BRs: ~11% $\mu\nu$, ~11% ev, and ~11% x 0.35 $\tau_{lep.}\nu$ $\rightarrow BR(W \rightarrow lv) \sim 25\%$ $W \rightarrow lv$ $W \rightarrow jets$ $\rightarrow BR(W \rightarrow jets) \sim 75\%$ Z5% Z5%

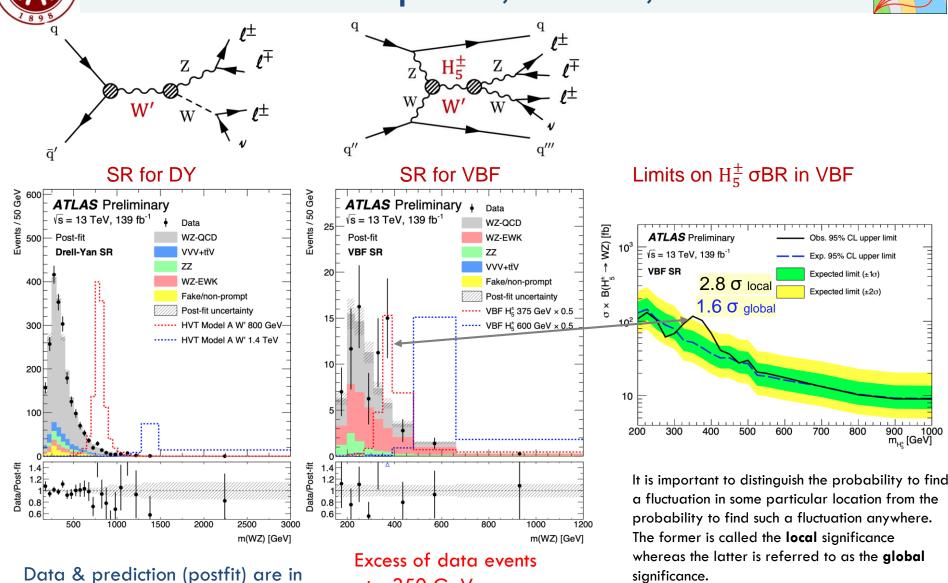
 μ^{-}

 W^+

c) BR(WW
$$\rightarrow$$
2I) ~ (25%)² ~ 6%

(25%)(75%	o) (7 <i>5</i> %) ²
(25%) ²	(25%)(75%)

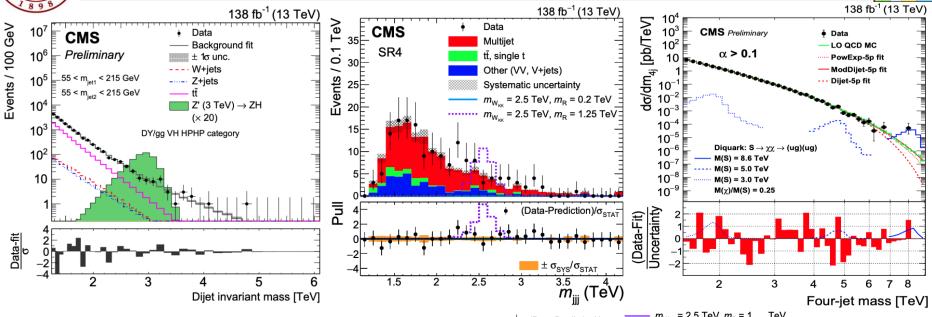
g



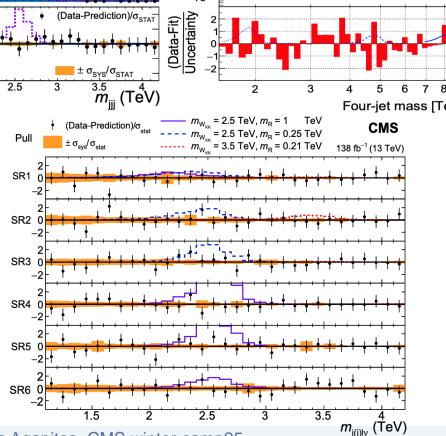
Break

How to read plots, ratios, & limits

<u>LLE</u> is the reason these two are different.


19/1/25

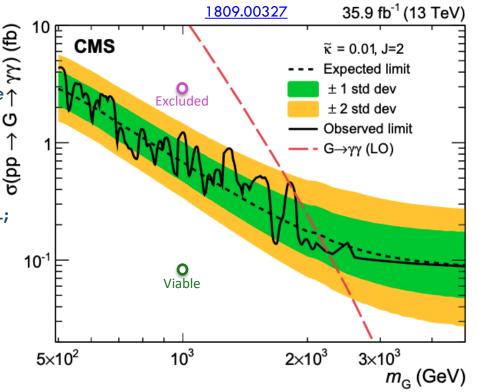
agreement withing stat.


Data analysis/Searches - Antonis Agapitos, CMS winter camp25

at ~350 GeV

- The errorbars are by definition of size 1; this is only to illustrate how far (in s.d.) a point is from the horizontal line of zero.
- If only stat. unc. is present in we expect ~68% of points to be withing ±1 ~95% of points to be withing ±2... etc

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

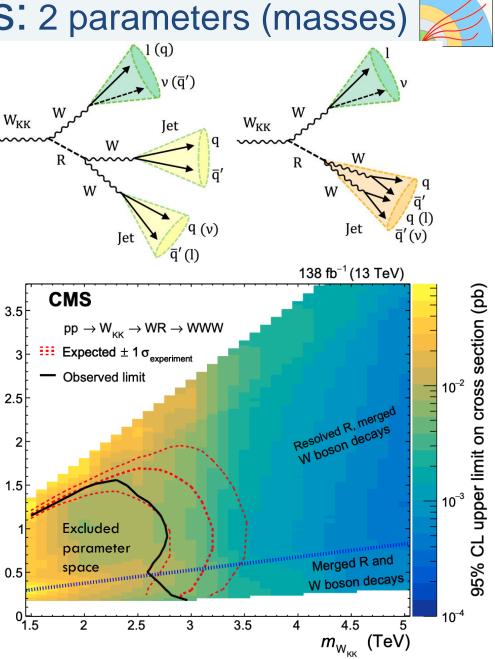

CMS

How to read limits: on σxB , 1 parameter

- 1 parameter to scan: Graviton (G) mass m_{G.}
- We set upper limits on σxBR
 Expected → limit based on prediction without use↑
 of data.
 Observed → limit resulted form the data.
- Limits are at "95% Confidence Level (CL)".
 → The "signal hypothesis" is excluded at 95% CL;
 i.e. 1 out of 20 repetitions would result in the opposite (on average).
- Area **above lines** (σ xB here) is excluded.
- Area below lines is "viable", i.e. might hide the process but statistics is not enough to probe it. →
 These are upper limits.
- The expected limit evaluation comes with ±1σ and ±2σ standard deviation belts. (These comes from the likelihood scan...)

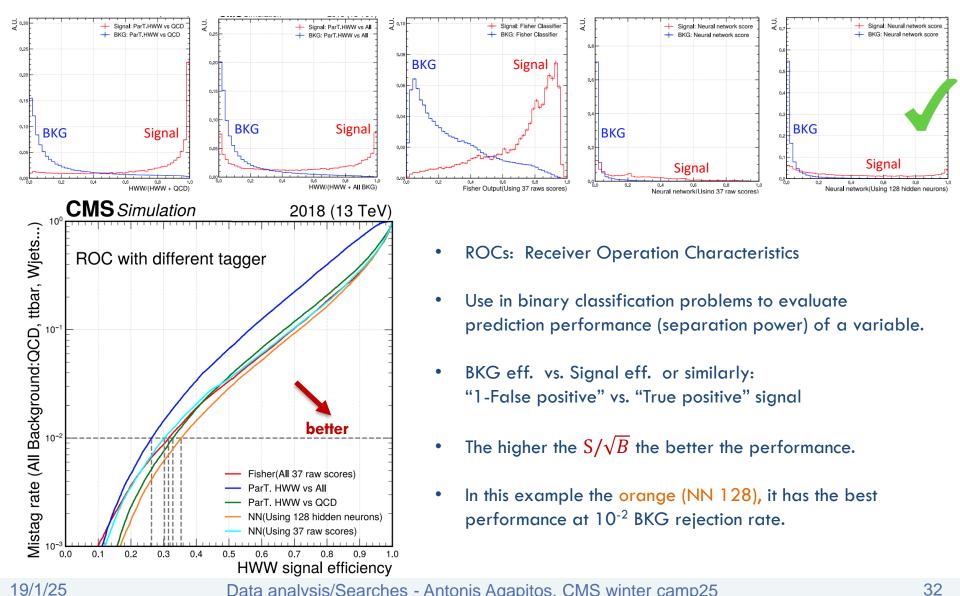
- Spikes (deeps) in observed limit indicate local excesses (deficits) of data events.
- Theory model (red) predict the σxB vs m_G; here m_G below ~2100 GeV are excluded. This is taken from intersection theory&obs.

Limit at $m_G = 500 \text{ GeV}$ is 4 fb \rightarrow we exclude scenarios which predict 4x36xEff. events at 95% CL Limit at $m_G = 4$ TeV is 0.09 fb \rightarrow we exclude scenarios which predict 3 events (=0.09x36xEff.)


19/1/25

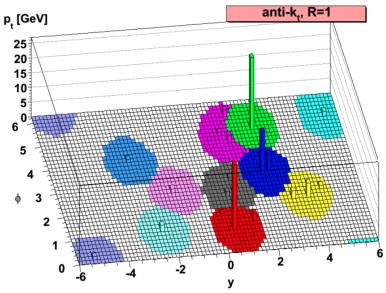
How to read limits: 2 parameters (masses)

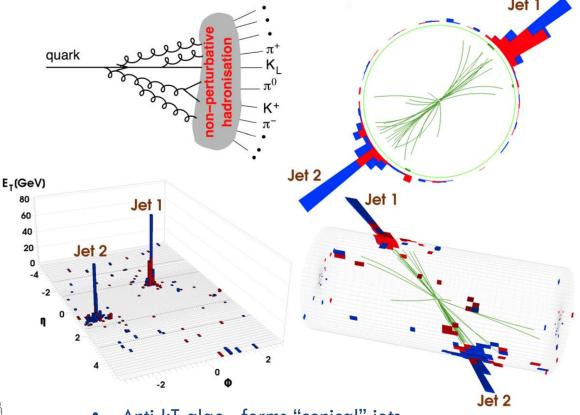
- 2 new particles W_{KK} , R ightarrow 2 masses to scan for setting limits
- We set **upper limits** on σxB for all masses these are model independent.
- We set **lower limits on W_{KK}, R** masses, TeV this is shown as a contour line (it was a single point in parameter case). $m_{\rm R}$
- Area lower-left of the curve is the excluded parameter space. This is model dependent result.
- Observed and expected are shown: Expected has only $\pm 1\sigma$ band (in red)
- Here we have observed $\sim 1\sigma$ weaker than the expected (due to excesses in data).


19/1/25

How to read ROCs

Assume we have 5 variables (classifiers) which separate signal from BKG




Jets reconstruction & clustering

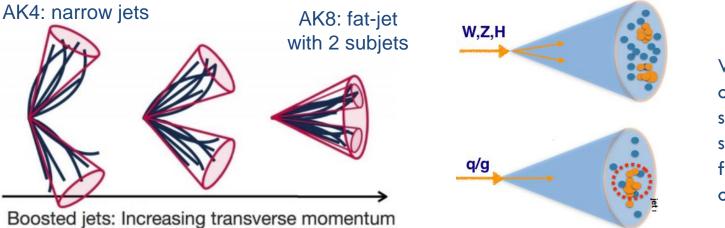
CMS

- Quarks & gluons hadronized into "sprays of long-lived" particles. These propagate in similar directions to the initial q/g forming jets.
- We use the <u>anti-kT algorithm</u> to cluster individual particles (PF candidates) into jets
 → PFJets (using clustering par. R)

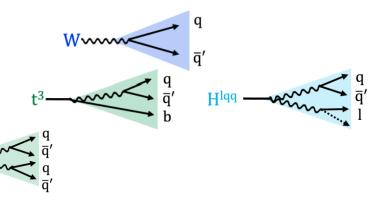
- Details & illustrations <u>here</u>.
- <u>10k-citations paper!</u>

- Anti-kT algo. forms "conical" jets,
 → i.e. circles in η-φ plane with radius "R". (This R is the "clustering parameter").
- Circle's center is the p^{μ} direction of jet.
- The n- ϕ distance of 2 jets is $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > R=1.0$

19/1/25



Jets substructure & "tagging"


Boosted objects \rightarrow small angular separation of the products \rightarrow merged to one jet

Boost should be significant: $\Delta R \sim 2m_j/p_{Tj} < 0.8 \rightarrow p_T(W,...) > 200 \text{ GeV for merging.}$

We can make use of the different substructure and separate QCD from W/Z/H/t originated jets

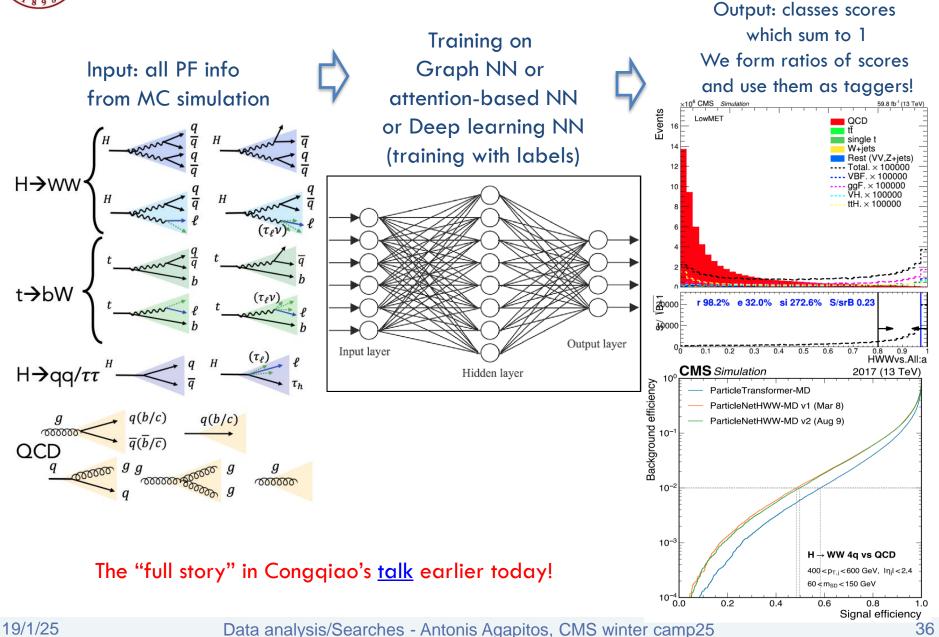
- 2 sub-jets: $W/Z \rightarrow qq$, $H \rightarrow bb/cc$, $H \rightarrow \tau\tau$
- 3 sub-jets: $t \rightarrow bW \rightarrow bqq$, $H \rightarrow WW \rightarrow lqq$
- 4 sub-jets: $H \rightarrow WW/ZZ \rightarrow 4q$

H⁴q

19/1/25

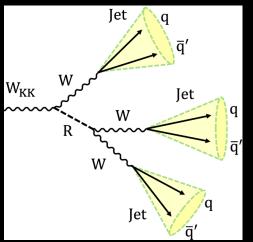
ParticleTransformer Classification

ParticleTransformer(abbr. ParT) 37 raw scores

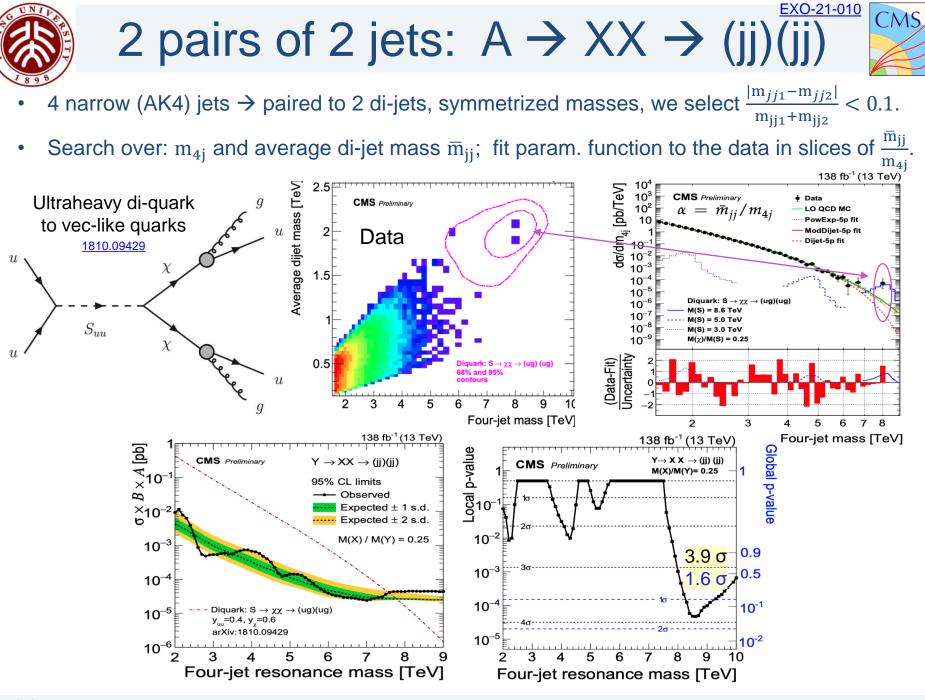

 37 classes in total: 16 Signal + 21 Background 	Signa Catego
• Link of <u>Congqiao's talk in</u> <u>JMAR meeting</u> . $H \rightarrow WW \begin{cases} H \longrightarrow q \\ H \longrightarrow q \\ H \longrightarrow q \\ H \longrightarrow q \\ \ell \\$	H → WV full-hadro
$t \rightarrow bW \begin{cases} t & t & f \\ t & b \\ t & f \\ t \\ t & f \\ t \\$	
$H \rightarrow q q / \tau \tau \overset{H}{=} \overset{q}{=} \overset{q}{=} \overset{H}{=} \overset{(\tau_{\ell})}{\overset{\ell}{=}} \overset{\ell}{\tau_{h}}$	н→w
$\begin{array}{c} g \\ 0 \\ 0 \\ q \\ q \\ q \\ 0 \\ 0 \\ q \\ q \end{array} \begin{array}{c} q(b/c) \\ \overline{q}(\overline{b}/\overline{c}) \\ g \\ g \\ g \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	semi-lepto

Signal Category	Label	Background Category	Label
	3q(0c)		bq(0c)
	3q(1c)	t → bW	bq(1c)
		hadronic	bqq(0c)
H → WW	3q(2c)		bqq(1c)
full-hadronic	4q(0c)		bev
	4q(1c)	t → bW	bμv
	44(10)	leptonic	$b\tau_h \nu$
	4q(2c)		bτ _e v
	evqq(0c)		$bτ_μν$
	evqq(1c)		bb
			сс
	μνqq(0c)	H → qq	qq (q=u/d)
	μνqq(1c)		SS
	e3vqq(0c)		$\tau_h \tau_h$
H → WW semi-leptonic		$H \rightarrow \tau \tau$	$\tau_h \tau_e$
semileptome	e3vqq(1 <i>c</i>)		$ au_{ m h} au_{\mu}$
	μ3vqq(0c)		b
	μ3vqq(0c)	0.05	bb
	τ _h νqq(0c)	QCD	c
			сс
	$\tau_h \nu qq(1c)$		others

NN classification & jet identification



Event with 3 AK8 jets, each with 2-prong substructure, all 3 tagged as originated from $W \rightarrow qq$ with Deep-AK8 algorithm


AK8 = Anti-kT with R=0.8

Let's examine real analyses examples

19/1/25

Search for new physics in diphoton spectrum

 M_{vv}

dN/dm_{$\gamma\gamma$} (TeV⁻¹

Pull

10²

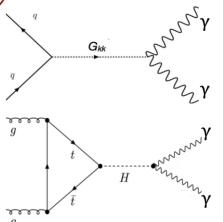
10

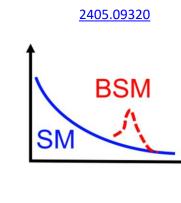
10⁻¹

10⁻²

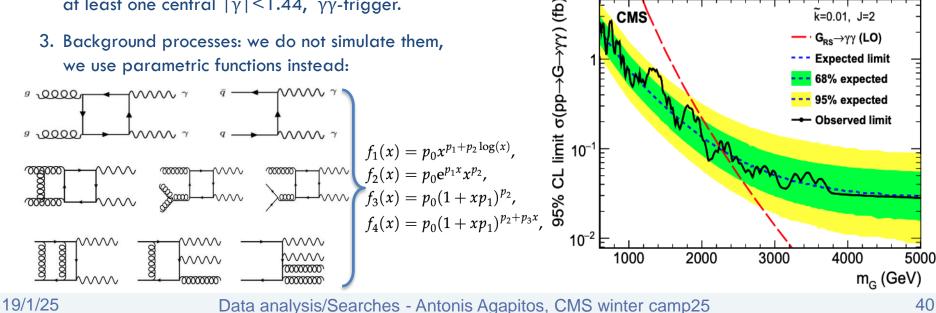
0.5

CMS


EBEB


 \tilde{k} =0.01, M_c=1.3 TeV × 0.2

k̃=0.01, M_=2.2 TeV


CMS

 χ^2 / dof = 77.1 / 111 = 0.7

- 1. Signal from (Bulk RS) Warped Extra Dim. models (Radion or Graviton) or Heavy Higgs.
- 2. Simple selection: 2γ with $p_T > 125 \text{GeV}$, at least one central $|\gamma| < 1.44$, $\gamma\gamma$ -trigger.
- 3. Background processes: we do not simulate them, we use parametric functions instead:

CMS

138 fb⁻¹ (13 TeV)

=1.3 TeV)

138 fb⁻¹ (13 TeV)

3 m_{vv} (TeV)

k=0.01, J=2

G_{RS}→γγ (LO)

Expected limit

Data

 $f_1: x^{p_1+p_2\log(x)}$

 $f_2: e^{p_1 x} x^{p_2}$

₄: (1+p₄x

Signal / Unc. (M^G=2.2 TeV)

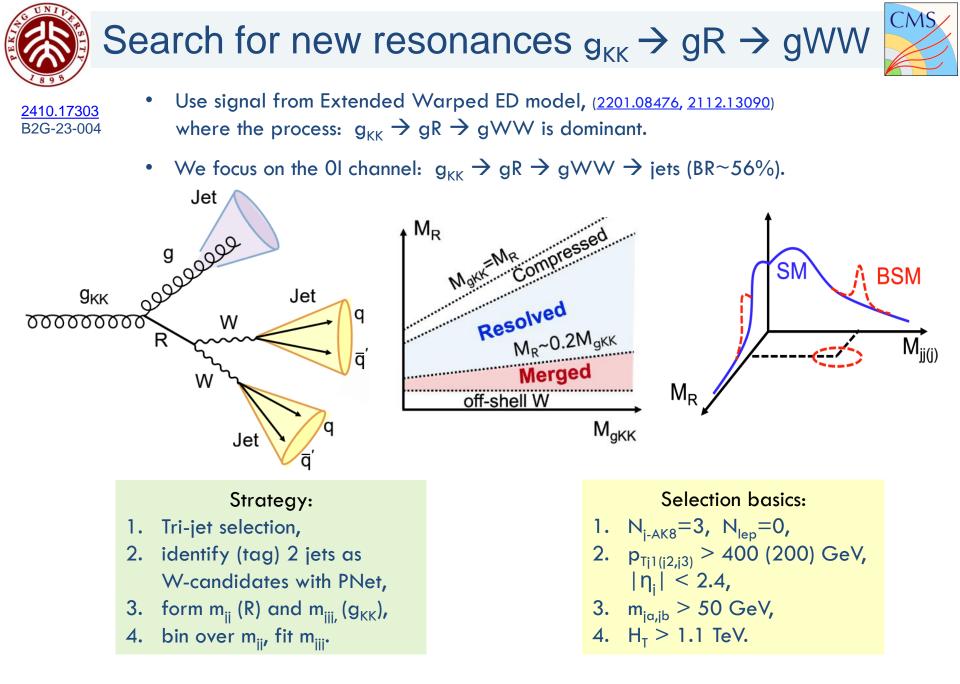
2

1.5

Search for new physics in diphoton spectrum

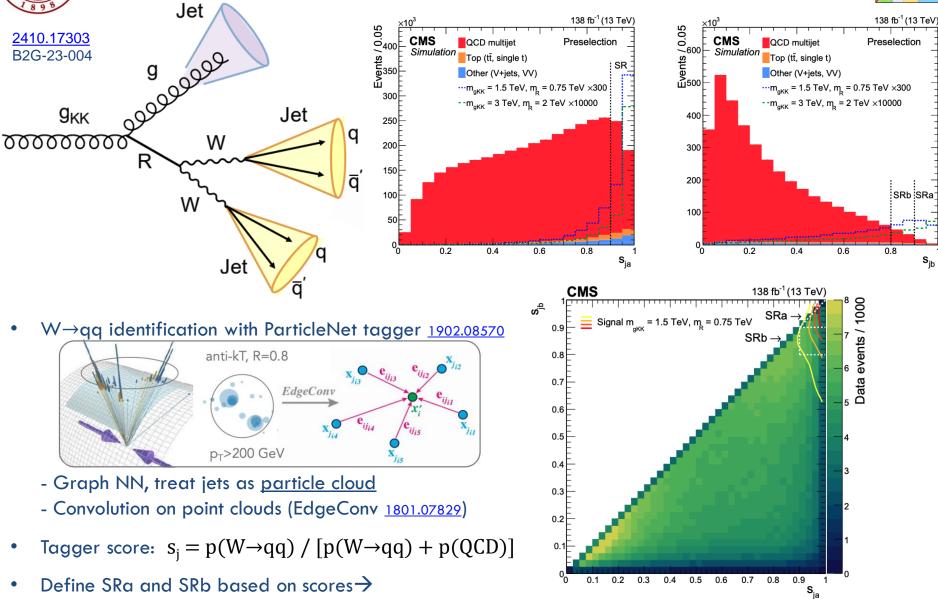
- 138 fb⁻¹ (13 TeV) Events / 100 GeV 2405.09320 CMS Data ADD large ED model γγ post-fit prediction EBEB jγ,jj post-fit prediction --- Pred + ADD GRW (M = 9 TeV) **BSM** 10 SM $M_{Pl}^2 = M_D^{2+n} R^n$ 10 Pull Select $\gamma\gamma$ events. (Data-Pred.)/ostat EBEB (here \rightarrow) and EBEE categories $\pm 1 \sigma_{_{SYS}} / \sigma_{_{STAT}}$ Signal / $\sigma_{_{STAT}}$ -3⊢ 500 1000 1500 2000 2500 3000 3500 **QCD BKG prediction:** m_{γγ} (GeV) 138 fb⁻¹ (13 TeV) - $\gamma\gamma$: Sherpa scaled at NNLO with <u>MCFM</u>. (10² CMS - $j\gamma$, jj = fakes: 10-30%, data-driven with fake rate. Observed CL lower limit on clockwork M_5 Fit the two binned $m_{_{\rm VV}}$ spectra in range 0.5-4 TeV. ····· Expected 68% expe 95% expected Non-perturbative regime (k > M_) Lower limits on M_s (or Λ_T) scale vs number of ED: (~11 TeV) 10 Signal: GRW Hewett HLZ negative positive $n_{\rm ED} = 3$ $n_{\rm ED} = 4$ $n_{\rm ED} = 5$ $n_{\rm ED} = 6$ $n_{\rm ED} = 7$ $8.7\substack{+0.7\\-0.6}$ $8.7\substack{+0.7\\-0.6}$ $6.9\substack{+0.6\\-0.5}$ $7.3^{+0.3}_{-0.3}$ $7.8^{+0.6}_{-0.5}$ $10.3\substack{+0.8\\-0.7}$ $7.9^{+0.6}_{-0.5}$ $7.3^{+0.6}_{-0.5}$ Expected: Excluded **Observed**: 9.3 7.1 8.3 11.1 9.3 8.4 7.8 7.4 5%
- Interpretation on <u>Continuum Clockwork Mechanism</u> \rightarrow Constrains on M₅ mass vs clockwork spring "k".

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

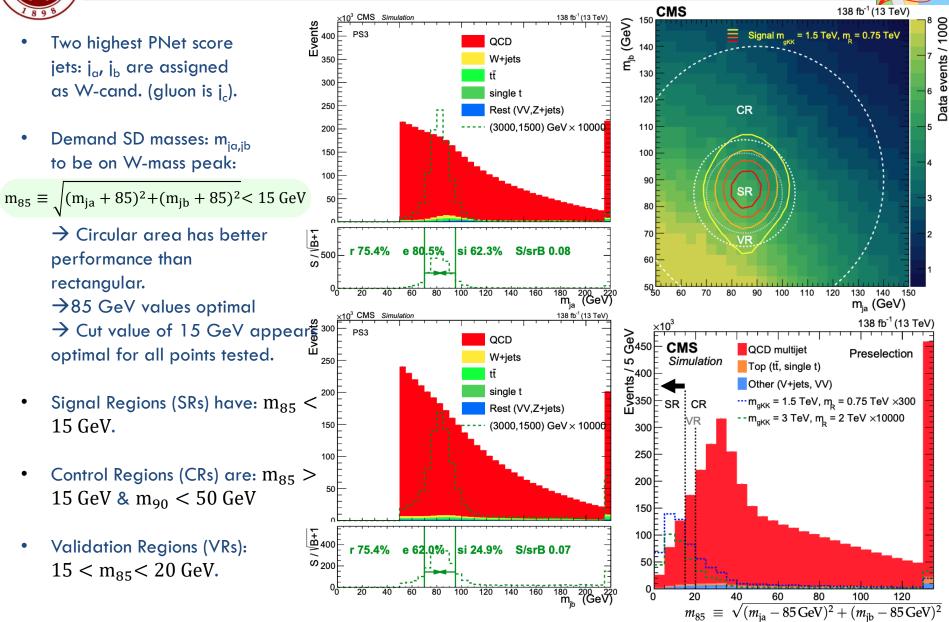

1 k (TeV)

10⁻¹

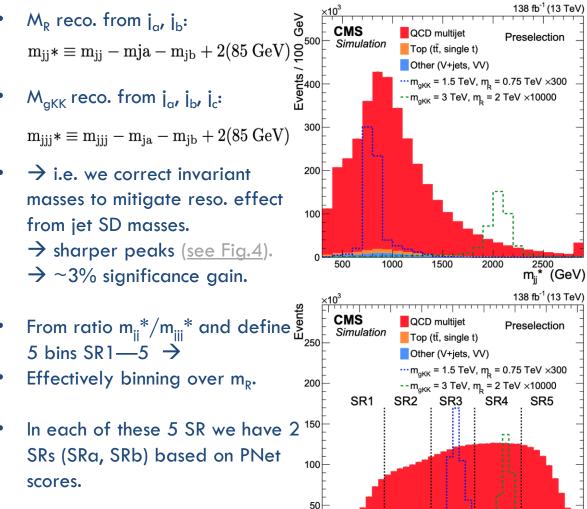
10


10-3

 10^{-2}

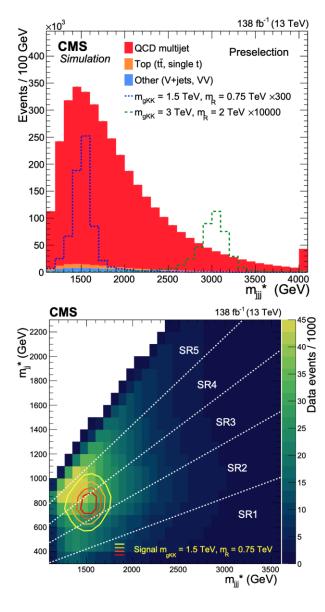


$W \rightarrow qq$ identification with Soft-drop masses



19/1/25

R, gKK reconstruction & SR binning



0.1

0.2

0.3

0.4

19/1/25

Thus, we have 10 SRs.

 \rightarrow We fit the m_{iii}* spectra.

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

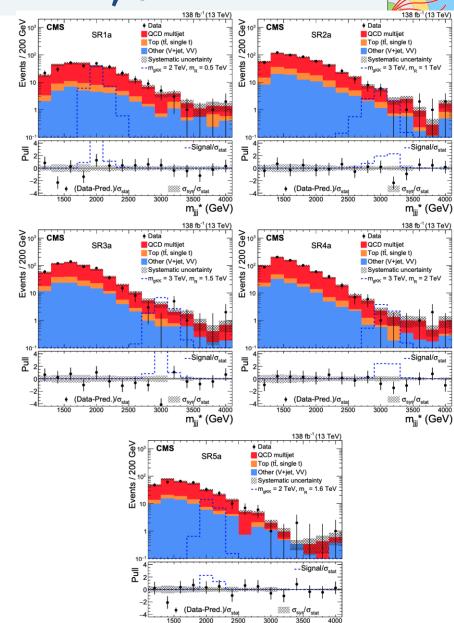
0.5

0.6

0.7

0.8 0.9 m_{ii}* / m_{ii}*

0.9


QCD prediction, Results, & Limits

QCD_{SRxy}

- Define CRs in $m_{j\alpha,jb}$ sideband with: $m_{85}>15 \text{ GeV } \& m_{90}<50 \text{ GeV}.$
- Form 10 CRs: CR1—5a, CR1—5b.
- $Pred_{SRxy}^{QCD} \equiv [Data Rest]_{CRxy} \frac{2}{QCD_{CRxy}}$ Predict QCD as:
- MC for the rest processes.
- Exclusion limits on σxB and on masses: .

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

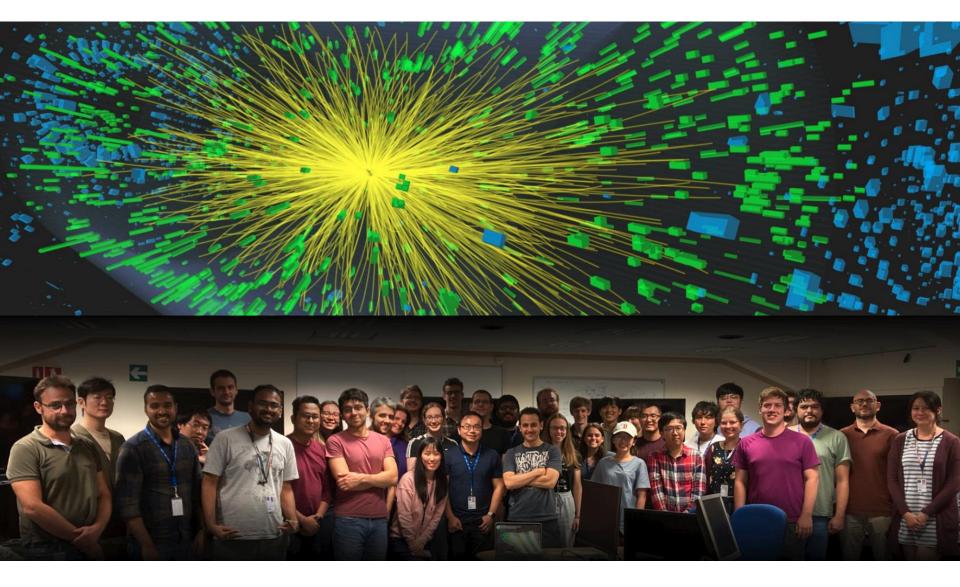
m_{iii}* (GeV)

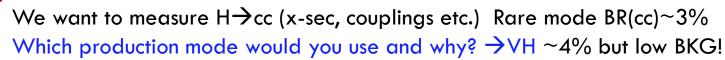
19/1/25

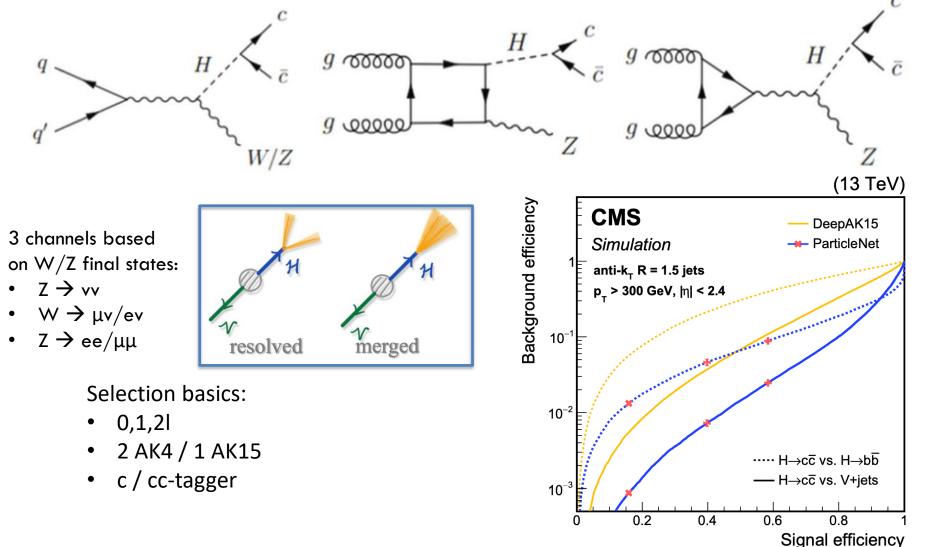
Hands-on exercise: Signal discrimination optimization, significance evaluations

- 1. Generate distributions for B & S.
 - get simple python code from <u>here</u>
 - or you can get the coping from lxplus:

"cp /afs/cern.ch/work/a/agapitos/**public**/WWW/gKK/ForSYSUschool/1D-optimization.py."


- L34 we define a BKG distribution (gamma function)
- L40 we define a signal distribution (gaussian)
- check the number of events and the parameters set
- run with "python 1D-optimization.py &"
- 2. Find the optimal cut value of x variable, based on significance S/\sqrt{B} ,
 - Need to loop over the different bin configurations from left and right
 - comment in the L69-99, and run again. Do you see the two for loops...?
- 3. Repeat with different signal:
 - comment out/in the L40/41 \rightarrow use flat distribution for signal
- 4. Change normalization of S or B and redo optimization.
 - What do you observe/conclude...?




BACK-UP SLIDES

VH production with $H \rightarrow cc$ probe

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

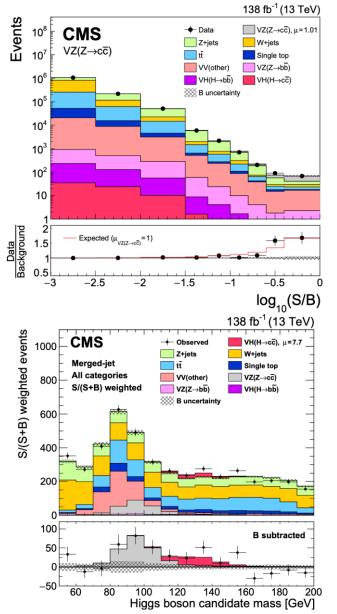
CMS

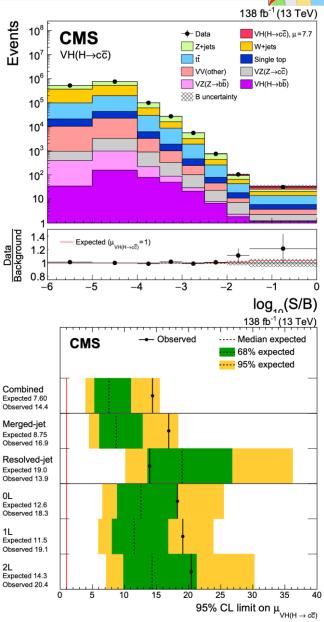
<u>PRL</u>

VH production, $H \rightarrow cc$, measurement

Resolved case:

- Use BDTs to discriminate signal
- What is a BDT?

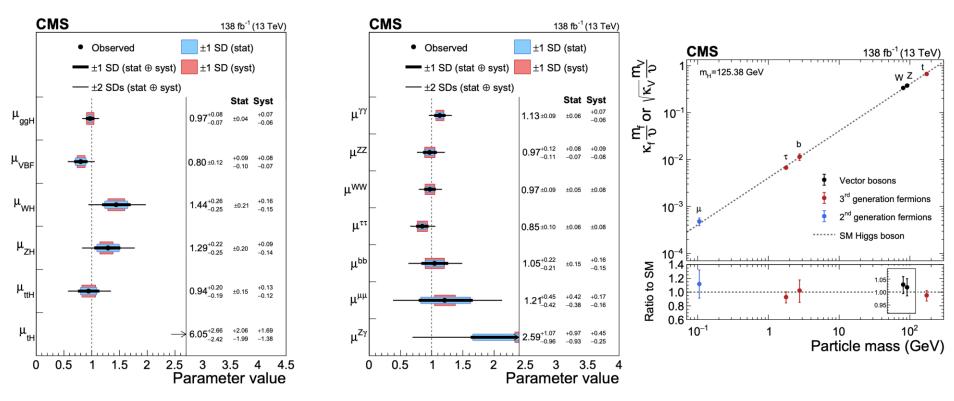

- LM technique which
combines input variables...
- Advantageous in case
where several variables
have poor discrim. power.


- Calibration with $Z \rightarrow cc$
- First observation 5.7σ

Merged case:

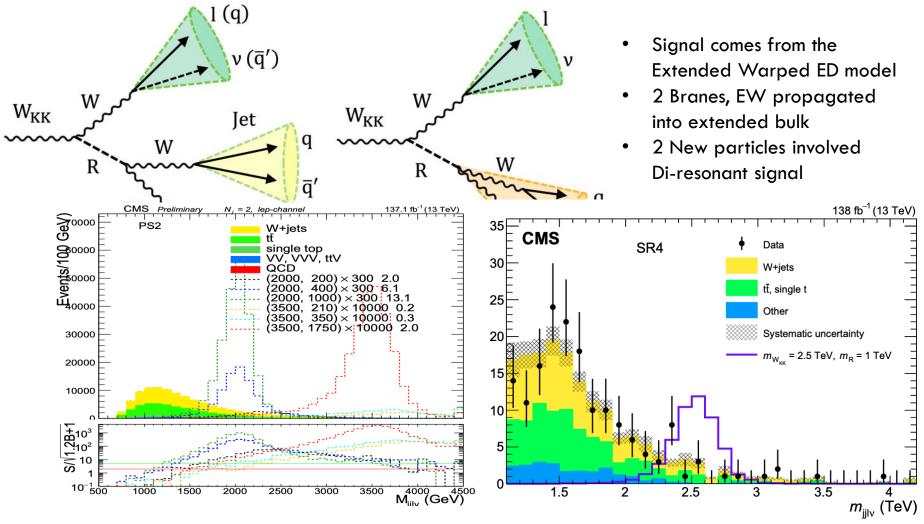
- Use SD mass of AK15 jet
- Fit Z→cc & H→cc

Result: upper limit on σB: Observed x14 SM prediction Expected x7 SM prediction



A portrait of Higgs 10y after its discovery

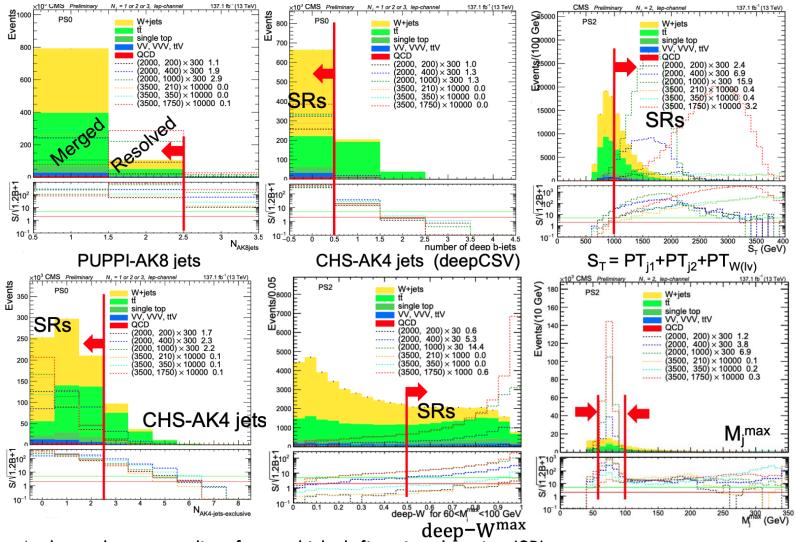
<u>Nature</u>


- We are in the era of precision measurements of H sector
- Production modes
- Decay modes
- Measured coupling modifiers to fermions & bosons, as functions of masses

Search for new resonances $X \rightarrow WR \rightarrow WWW$

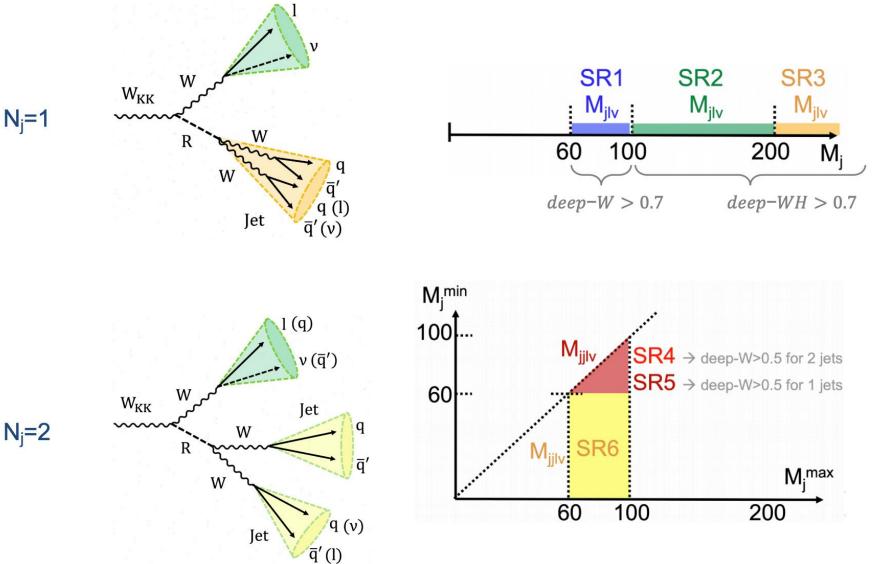
PRL

Step 1: Focus on the topology / final state, and based on this make a preselection:


- Q: Which trigger would you use?
- 19/1/25

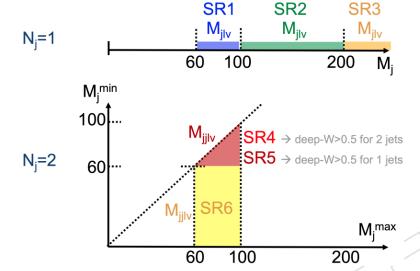
$X \rightarrow WR \rightarrow WWW$, Selection

Step 2: we explore kinematics at preselection, i.e. we plot variables and check if further selection cuts can improve **sensitivity** (S/\sqrt{B}) . Examples:



At the end, we set a list of cuts which define signal region (SR)

SRs & Binning



SRs & Binning

- $N_b^M=0, N_{j-AK4-exc} \le 2;$
- M_j^{max} : 60-..., (60-100) GeV for N_j =1(2);
- Taggers deep-W(WH)>0.7(0.7), for M_j :60-100(>100) GeV; while loosen to deep-W>0.5 in N_j =2 with M_i^{min} >60 GeV case;
- $S_T > 1$ TeV;
- $M_{j\ell\nu}(M_{jj\ell\nu}) > 1.1$ TeV for $N_j=1(2)$;

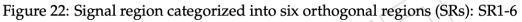


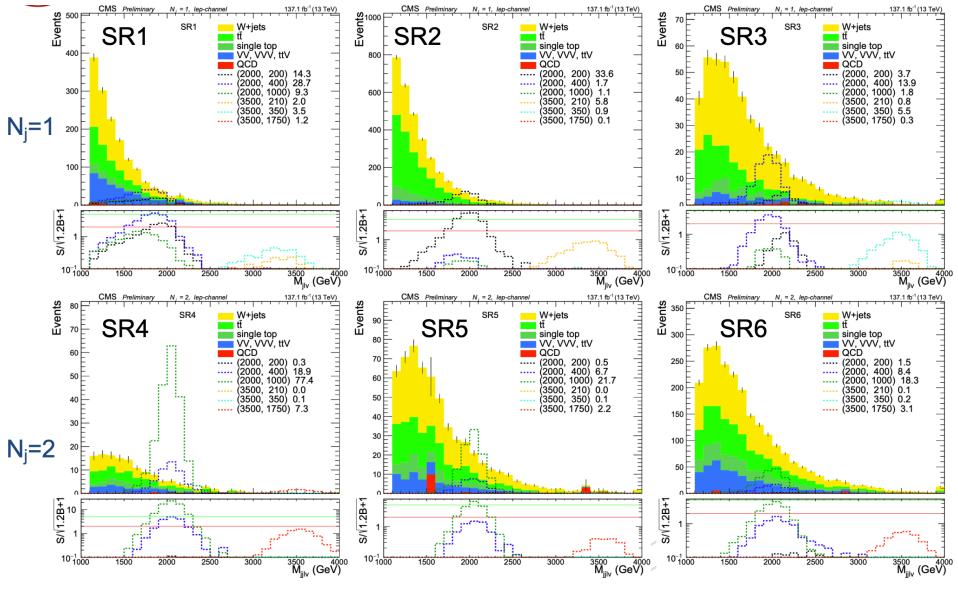
Table 9: Differences in kinematic cuts between the six SRs.

Region	$M_j^{\max}[\text{GeV}]$	taggers	$M_j^{\min}[\text{GeV}]$	tagger	N ^{AK8}	N _j AK4	N_b^M
SR1	60-100	deep-W >0.7		-	1	≤2	0
SR2	100-200	deep-WH>0.7	-	\- <	1	≤2	0
SR3	≥ 200	deep-WH>0.7		- /	1	≤2	0
SR4	60-100	deep-W >0.5	60-100	deep-W>0.5	2	≤2	0
SR5	60-100	deep-W > (<)0.5	60-100 0	leep-W(<) > 0.5	2	≤ 2	0
SR6	60-100	deep-W >0.7	0-60		2	≤ 2	0

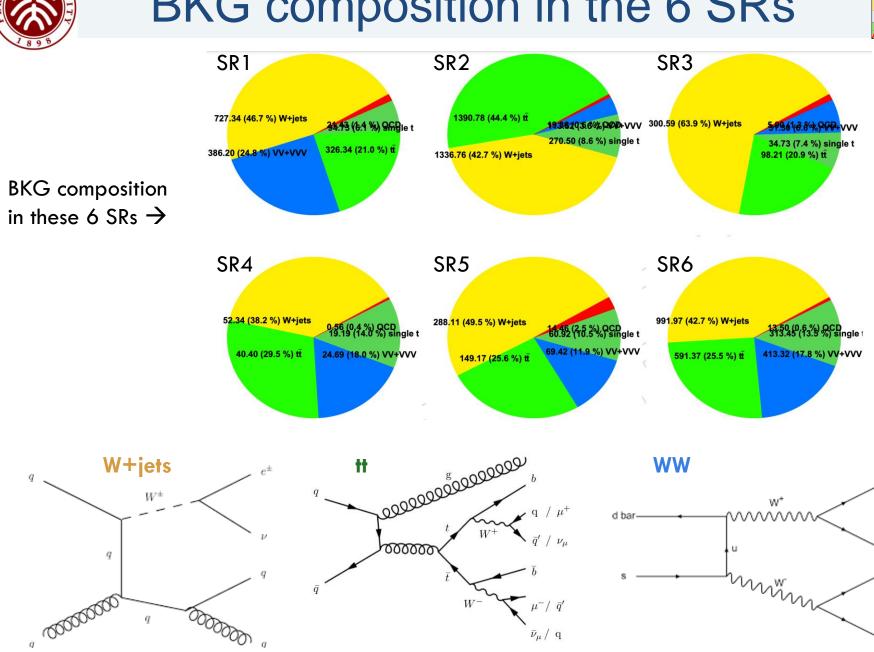
The analysis full selection is defined here as preselection + extra cuts \rightarrow This defined the SR

The SR is further "binned" into 6 different categories SR1, SR2,..., SR6.

The $m_{j|v}$ and $m_{j|v}$ are the variables where signal W_{KK} peaks these are the "observables" used for the fit. to extract potential signal from the data.


Data analysis/Searches - Antonis Agapitos, CMS winter camp25

EMS

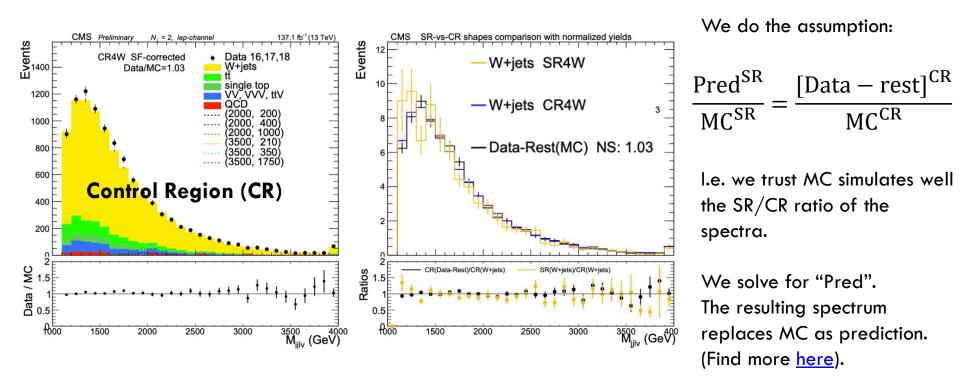

SRs & Binning

BKG composition in the 6 SRs

19/1/25

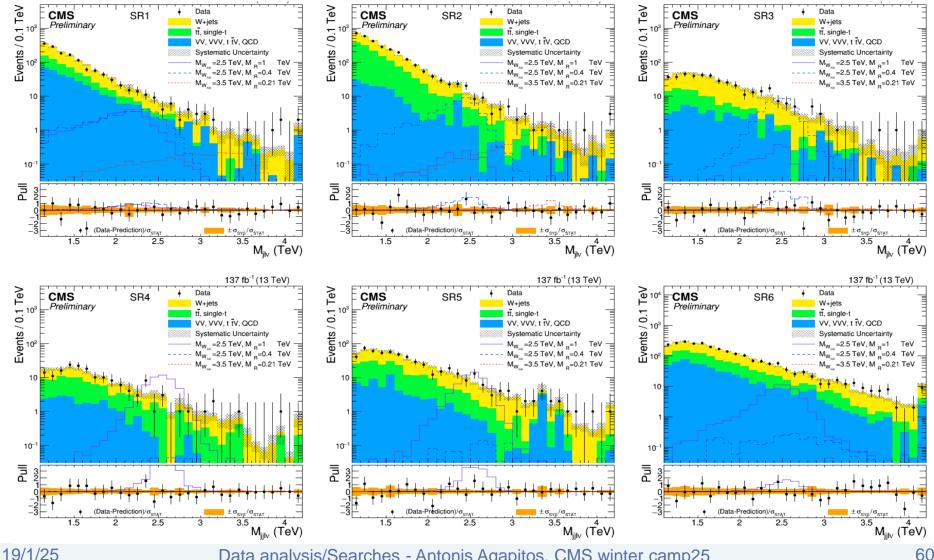
Data analysis/Searches - Antonis Agapitos, CMS winter camp25

u bar


d

W+jets BKG Data-Driven prediction with CR

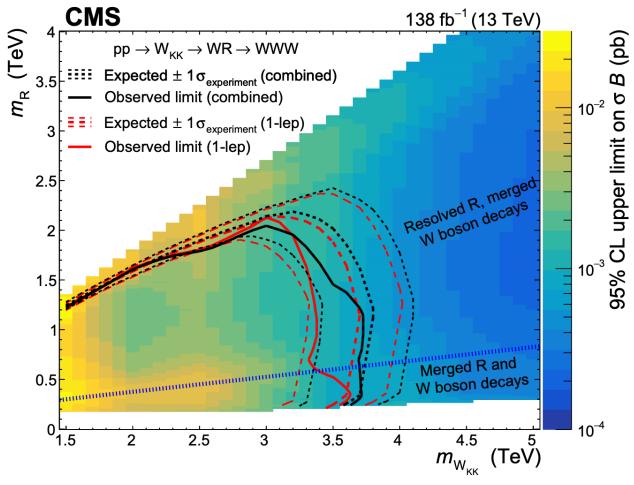
- MC very useful but it has limitations; not to be fully trusted.
 → Need to either validate that performs well in data or
 → to be replaced... by a "Data-Driven prediction" using real data. For this purpose...:
- We define **Control Region (CR)**, inverting a cut condition (tagger for this example).
- The resulting CR is pure in W+jets, signal free, has large stat. and → the W+jets has similar kinematics in CR and SR.
- Thus we use the data as [Data-rest] in CR to derive W+jets spectrum:



Final "post-fit" prediction

- We fit all 6 SRs simultaneously and get the "post-fit" prediction of the spectra.
- Systematics uncertainties are considered with nuisance parameters in this fit:

(these are for BKG prediction, rates of BKGs, PDFs, JES/R, tagger efficiencies etc.)



Limits on 2D masses plane

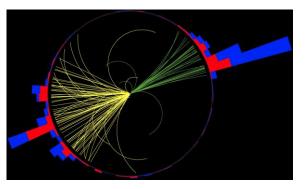
- As the data are in agreement with SM prediction no evidence of signal / new physics.
- Thus we set limits to the model parameters / masses.

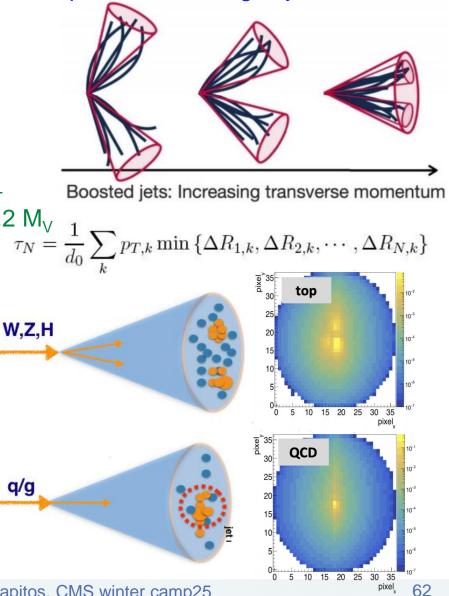
• In this example observed limit is weaker than the expected (why?) this is indicative of an excess of events (present at SR6)

19/1/25

Jets substructure & jet "tagging"

Boosted objects \rightarrow small angular separation of the products \rightarrow merged jets with substructure:


W/Z \rightarrow qq H \rightarrow bb or H \rightarrow qqqq, or H \rightarrow qqlv


- \rightarrow anti-kt clustering
- → Large-R jets: $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} \approx 2m/p_T$
- → "Groomed" Soft-Drop Masses: $M_J \sim M_V \pm 0.2 M_V$

Taggers based on (2-prong) substructure

- $T_N = N$ -subjettiness \rightarrow ratios: $T_2/T_1 = T_{21} \rightarrow$
- Decorrelated taggers T₂₁^{DDT}

Deep-NN taggers & Image taggers (soon)

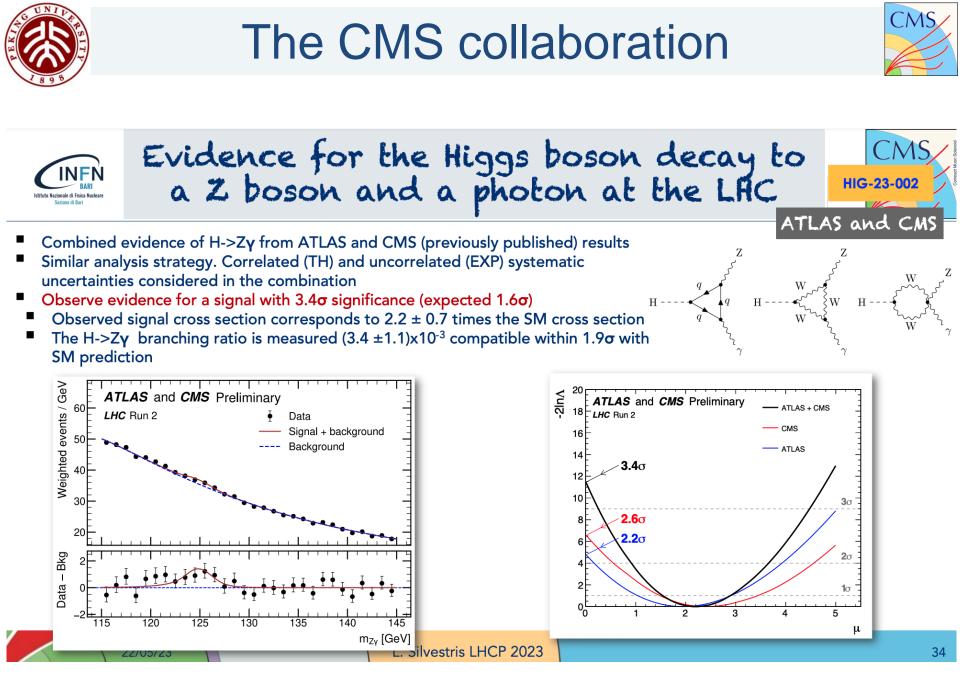
The CMS collaboration

215 full members 8 cooperating 28 associated

from

57 Countries or Regions

2234/6122 Authors/Members 1537/2125 PhD Physicists (18% Q) 665/1186 PhD Students (26% Q) 32/1090 Engineers (14% Q) 0/1321 Undergraduates (29% Q) 0/400 Technicians,Admins

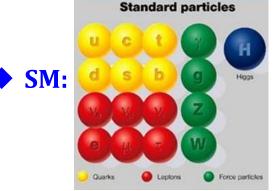

1 ser

19/1/25

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

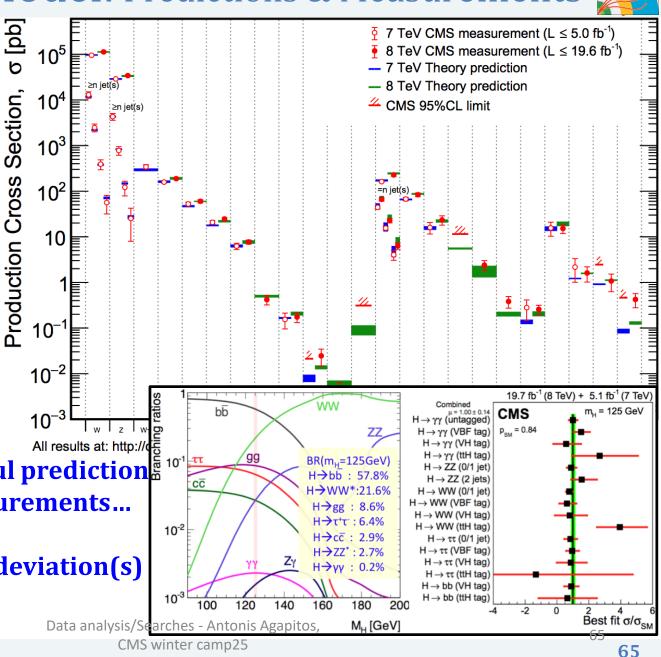
as of 21/05/23

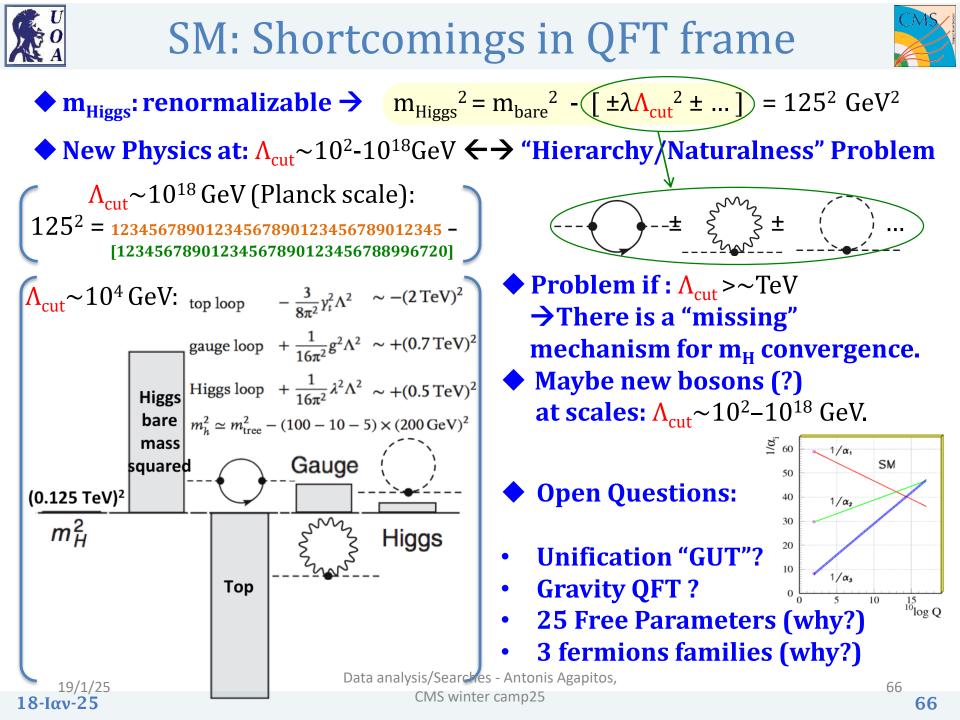
3



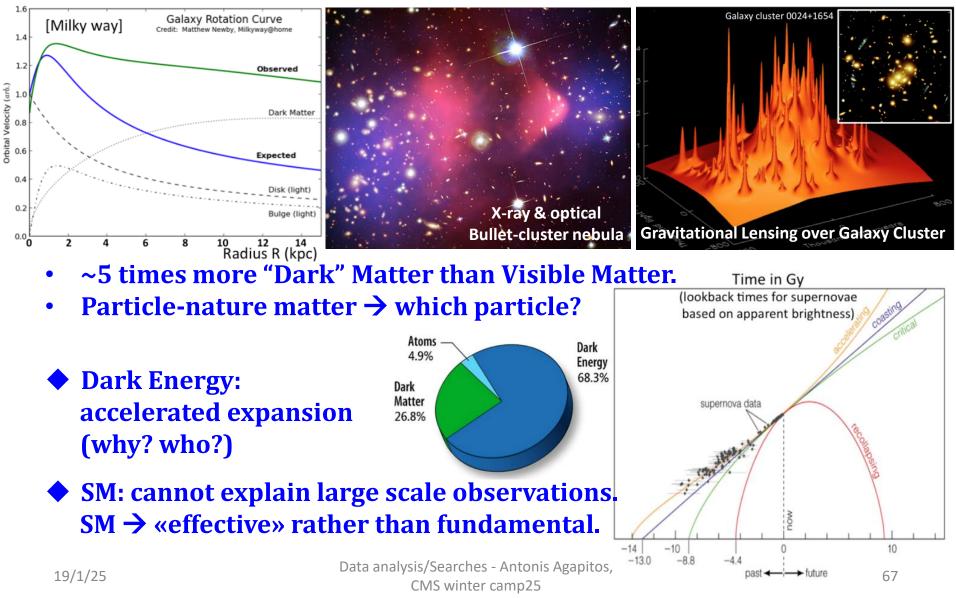
19/1/25

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

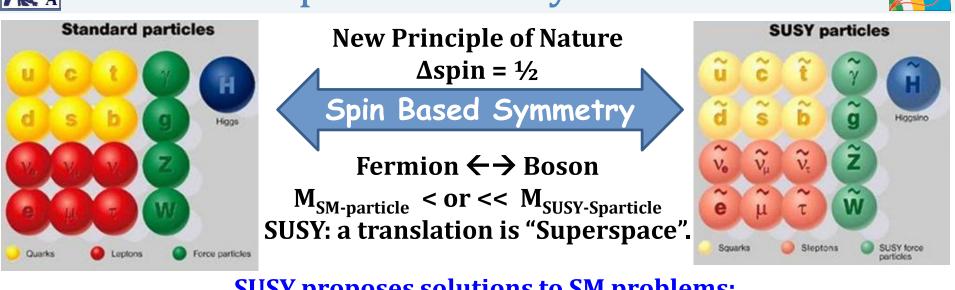

Standard Model: Predictions & Measurements



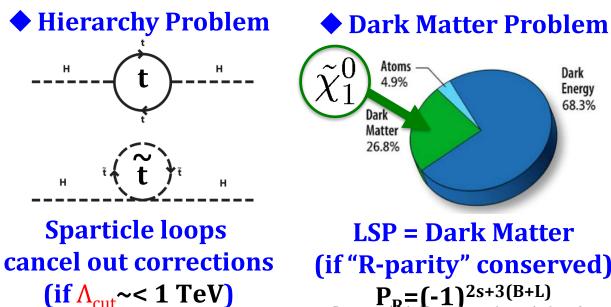
- **Very successful** gauge theory.
- **Precisely predicts** processes: **σ~[10¹¹ - 10⁻³] pb**
- Along with successful prediction of Higgs BR \rightarrow measurements...
- No evidence for any deviation(s) from the SM.



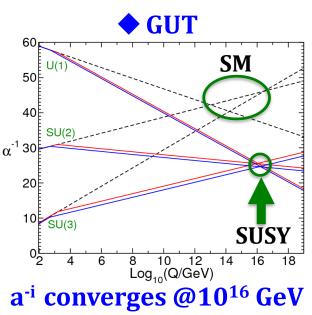
SM: Shortcomings in Cosmology



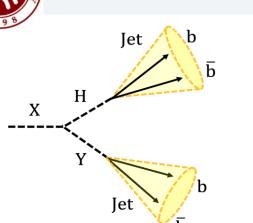
Dark Matter:

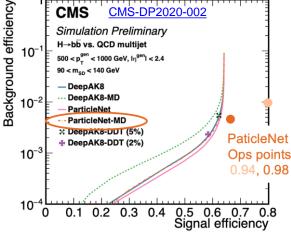


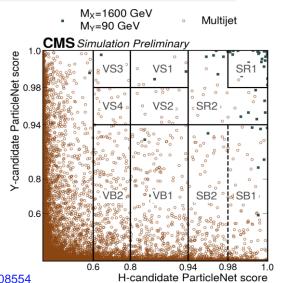
SUSY proposes solutions to SM problems:


19/1/25

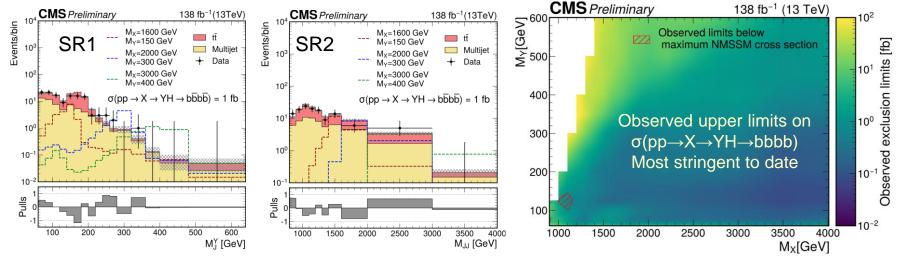
Dark


(if "R-parity" conserved)


CMS winter camp25



(13 TeV)

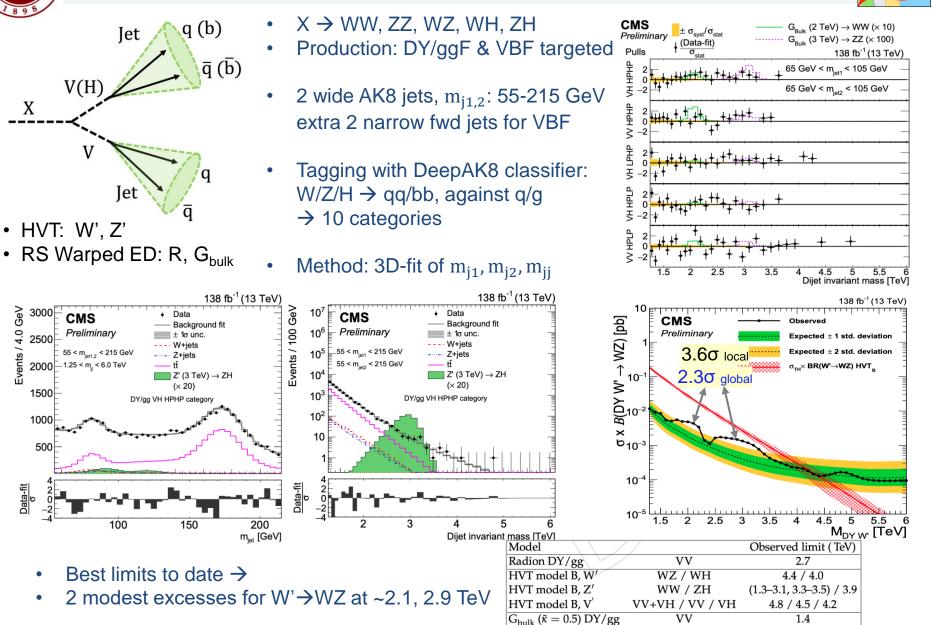


B2G-21-003

UND

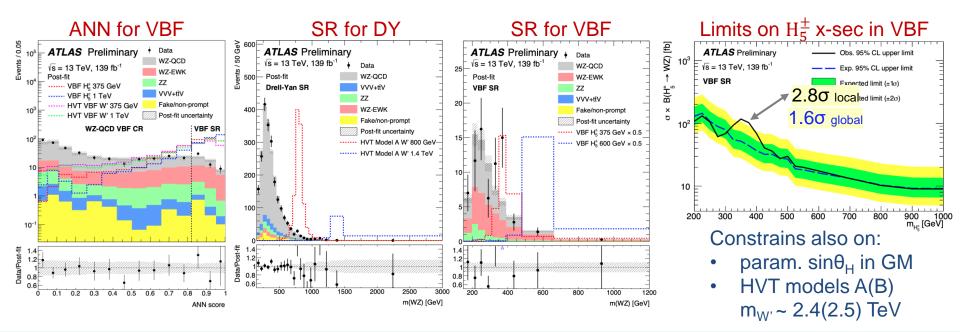
- X,Y: scalars, M_X >> M_{Y(H);}
- Models: NMSSM 0910.1785, Two-real-scalar-singlet extension 1908.08554
- 2D search over M_{jj}, M_j^Y variables
- 2 (wide) jets, m_{H(Y)}: 110-140(>60) GeV, |Δη_{ij}|<1.3
- Tagging with Graph CNN (<u>ParticleNet</u>), mistag~0.5%, eff~70%, calibration with g→bb jets

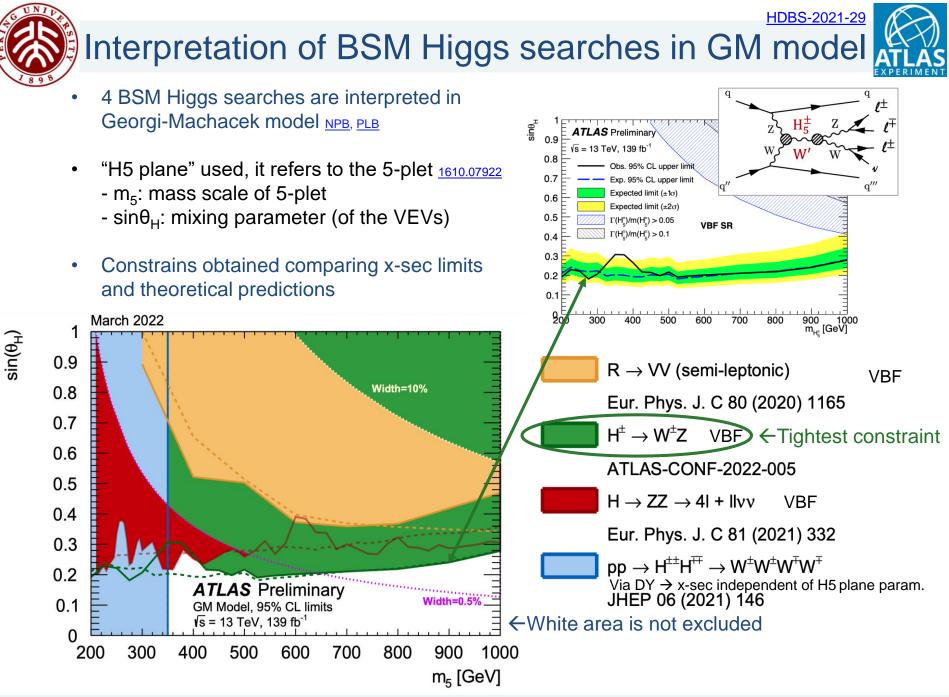
Data analysis/Searches - Antonis Agapitos, CMS winter camp25


19/1/25

$X \rightarrow VV, VH$ in DY/gg & VBF

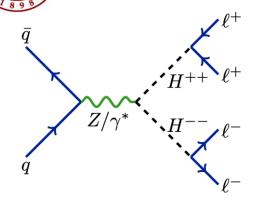
B2G-20-009


$X^{\pm} \rightarrow W^{\pm}Z \rightarrow \ell^{\pm}\nu \ell \ell$ via VBF & DY



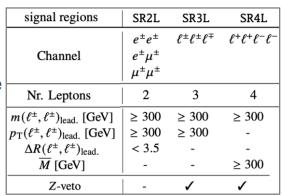
- Georgi-Machacek (GM) model NPB, PLB
 → Fermiophobic 5-plet of scalars: H^{±±}₅, H[±]₅, H⁰₅
 - \rightarrow H[±]₅ is probed here in VBF (WZ-fusion) topology
- HVT model: W'^{\pm} via DY or WZ-fusion

- Fully lep. $(\ell = e/\mu)$
- Low BKG, but also low BRs
 → best for low m_X
- VBF: 2 jets, m_{jj} >100 GeV, ANN classification
- DY: pT imbalance: $\frac{p_T^V}{m_{WZ}} > 0.35$
- Reconstruct $Z \rightarrow \ell \ell$, $W \rightarrow \nu \ell$, and m_{WZ}
- Prompt-*l* BKG from MC, fake from data


19/1/25

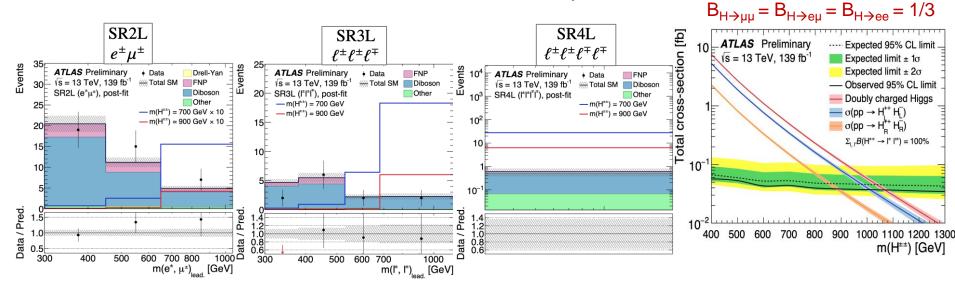
19/1/25

Data analysis/Searches - Antonis Agapitos, CMS winter camp25


- Left-Right Sym. Models production via DY
- 3-3-1 models <u>1806.04536</u>
- See-Saw type-II hep-ph/0305288
- Georgi-Machacek <u>NPB</u>, <u>PLB</u>

 $H^{++}H^{--} \rightarrow 4\ell$

• 2,3,4 ℓ (ℓ=e/µ)

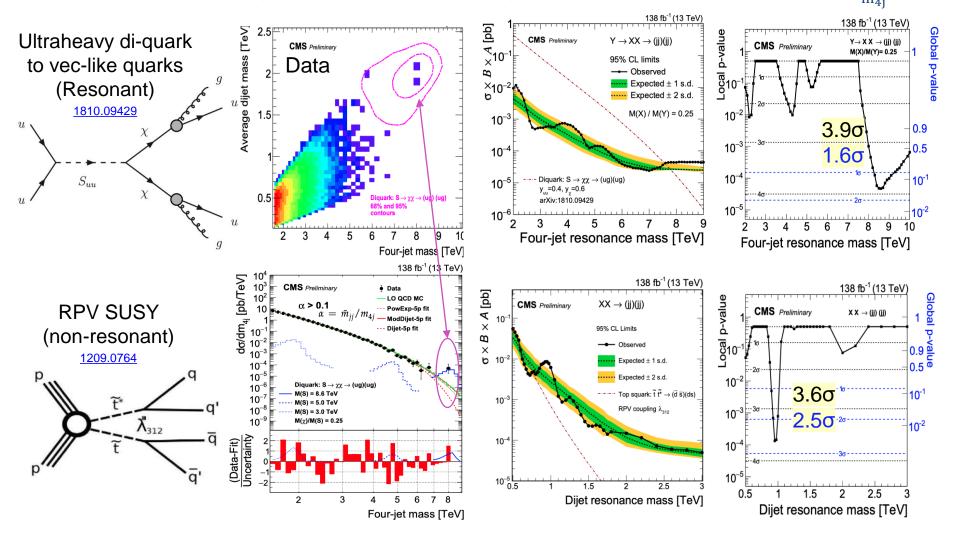

•

- At least 1 SS *l* pair (generic probe)
 SS *l* resonance: BKG-free signature
- 5 SRs: 2ℓ: μμ, ee, eμ →
 3ℓ: all together
 4ℓ: 2 SS pairs
- Observable: $m(\ell^{\pm}, \ell^{\pm})_{lead} > 300 \text{ GeV}$
 - BKGs: VV, Fake & NonPrompt (FNP)
 - CRs & VRs sidebands for prediction

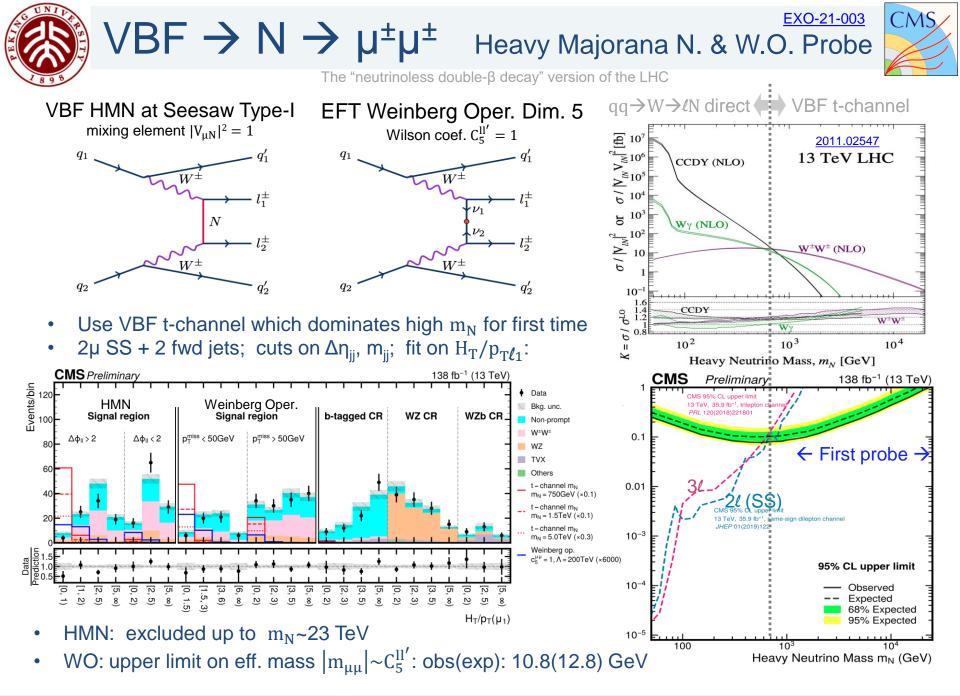
Upper limit on H⁺⁺H⁻⁻

production x-sec assuming

19/1/25


Data analysis/Searches - Antonis Agapitos, CMS winter camp25

ATLAS-CONF-2022-010 EXOT-2018-34


$(Y) \rightarrow XX \rightarrow (jj)(jj)$ paired di-jets

- 4 narrow jets \rightarrow paired to 2 di-jets, symmetrized masses: $\frac{|m_1 m_2|}{m_1 + m_2} < 0.1$
- Search over: m_{4j} and average di-jet mass \overline{m}_{jj} ; fit 3p-function to the data in slices of $\frac{m_{jj}}{m_{4j}}$

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

CMS

19/1/25

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

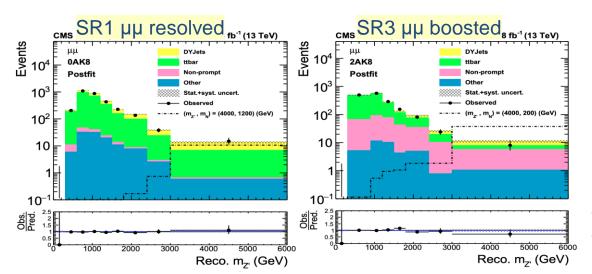
 N_{ℓ}

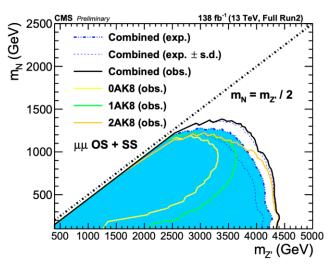
LRSM: Z', W_R^{\pm} , $N_{e/\mu/\tau}$

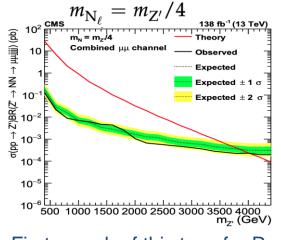
Off-shell $W_{R}^{\pm *}$, no mixing

 $m_{_{N_{\ell}}} < m_{_{W_{\tau^*}}} = 5 \text{ TeV}$

$Z' \rightarrow NN \rightarrow \ell j j \ell j j$ Heavy Majorana Neutrino pair



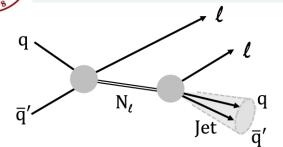

- ee, $\mu\mu$ (OS & SS), $m_{\not\!\ell\ell}>150~{\rm GeV}$
- Resolved & Boosted probed


Binning on # of wide AK8 jets:

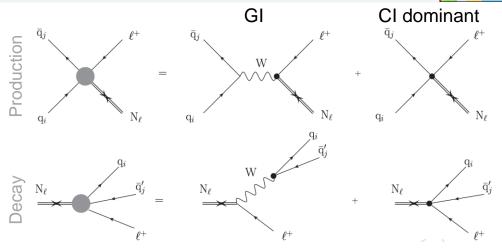
SR	N(AK8 jet)	N(tight leptons)	N(AK4 jet)
SR1 (0AK8)	= 0	= 2	≥ 4
SR2 (1AK8)	= 1	≥ 1	\geq 2
SR3 (2AK8)	\geq 2	—	_

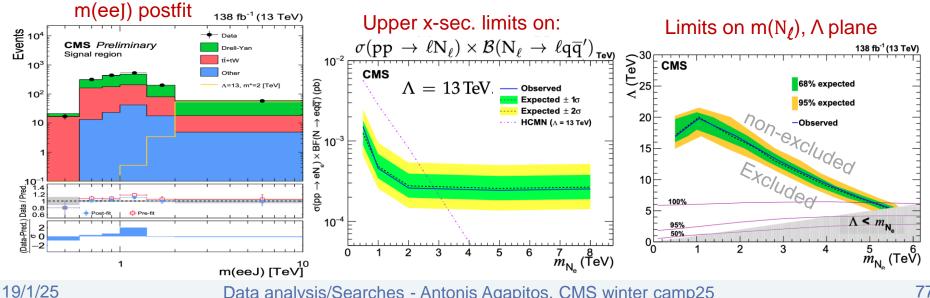
- Reconstruct N_{ℓ} as "jj ℓ " and $m_{Z'}$ minimizing m(jj ℓ)-asymmetry
- Prediction from eµ, $m_{\ell\ell}$ SBs

• First search of this type for Run2


Best direct limits on $m_{Z'}$, m_N plane

19/1/25


Data analysis/Searches - Antonis Agapitos, CMS winter camp25



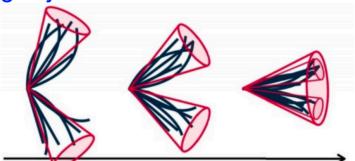
- Composite-fermion models 1510.07988, 1707.00844, 1810.00374, 1903.12285
 - \rightarrow Excited states of SM fermions
 - \rightarrow Effective interactions: gauge (GI) & contact (CI) between ordinary and excited fermions
 - \rightarrow m(N_l): [500 GeV, \land]

- ee, $\mu\mu$ (SS&OS), m($\ell\ell$)>300 GeV, \geq 1 wide AK8 jet
- Use eµ, m_{//}: 150-300 GeV as CRs
- Fit: $m(\ell I)$ constrain separately N_{μ} , N_{e} masses

A toolkit for BSM searches: Objects

Boosted objects \rightarrow small angular separation \rightarrow merged jets

- (W/Z→qq; H→bb/qqqq/qqlv)
- \rightarrow anti-kt clustering
- → Large-R jets: $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} \approx 2m/p_T$
- → "groomed" Masses: $M_J \sim M_V \pm 0.2 M_V$


Taggers based on (2-prong) substructure CMS:

- $T_N = N$ -subjettiness \rightarrow ratios: $T_2/T_1 = T_{21}$
- Decorrelated taggers T₂₁^{DDT}
 ATLAS:
- D₂: 2-point E_{cf} / 3-point E_{cf}
- TCC-jets <u>Track-Calo Clusters</u> algo unifying tracker & calo info.

Deep-NN taggers & Image taggers (soon)

MET + lep from Boson: $\rightarrow \text{Reco the W(H)} \text{ assuming } M_{W(H)} = 80(125) \text{ GeV } E_{CF2} = \sum_{i} p_{T,i} p_{T,j} \Delta R_{ij}$

b-jet tagging based on MVA, DNN

Boosted jets: Increasing transverse momentum

W,Z,H

$$p/\mathbf{T}_1 = \mathbf{T}_{21} \rightarrow \tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \{\Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k}\}$$

$$D_2^{\beta=1} = E_{\rm CF3} \left(\frac{E_{\rm CF1}}{E_{\rm CF2}}\right)^3$$

$$E_{ ext{CF1}} = \sum_i p_{ ext{T},i}$$

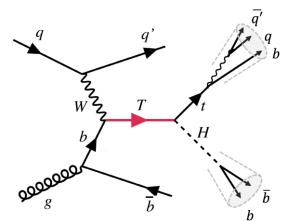
$$E_{\mathrm{CF3}} = \sum_{ijk} p_{\mathrm{T},i} p_{\mathrm{T},j} p_{\mathrm{T},k} \Delta R_{ij} \Delta R_{jk} \Delta R_{ki}$$

CERN-EP-2021-249 Single Vector-like $T \rightarrow Ht \rightarrow (bb)(bqq)$ boosted

- Н: m_i: 100-140 GeV, т₂₁

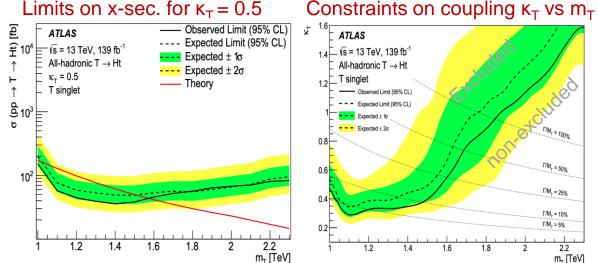
- b: RTrack, DL1 (DNN)

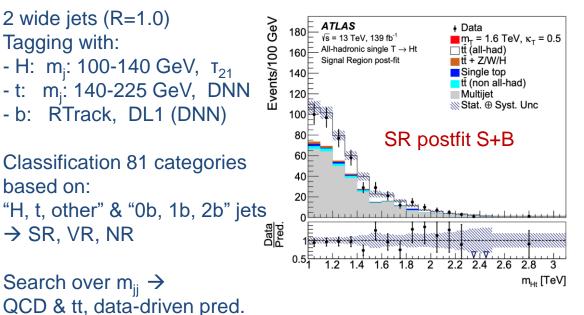
2 wide jets (R=1.0)


Tagging with:

based on:

 \rightarrow SR, VR, NR


Search over $m_{ii} \rightarrow$

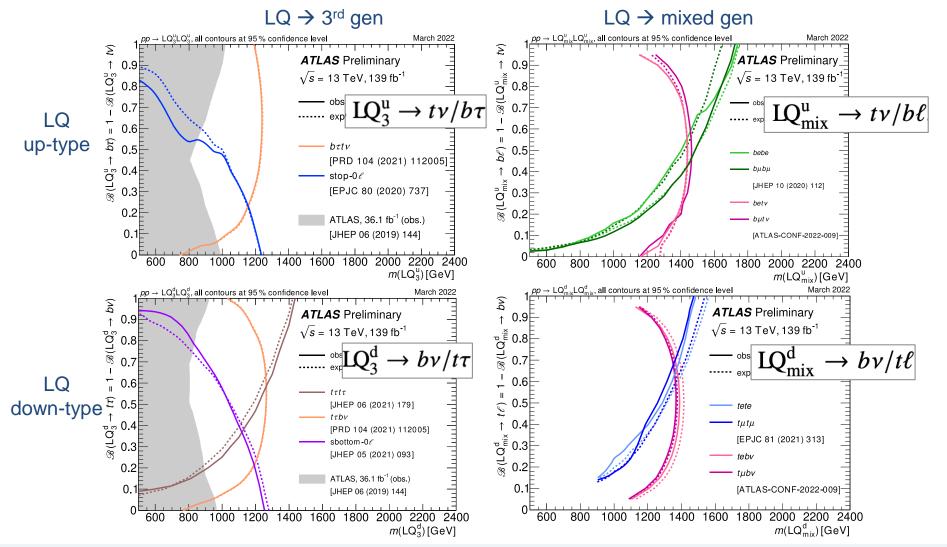




- T assumed to couple to 3rd gen.
- Here: $BR_{T \rightarrow Ht} = \frac{1}{4}$, $m_T > 1 \text{TeV}$
- κ_{τ} controls production coupling

Limits on x-sec. for $\kappa_{T} = 0.5$

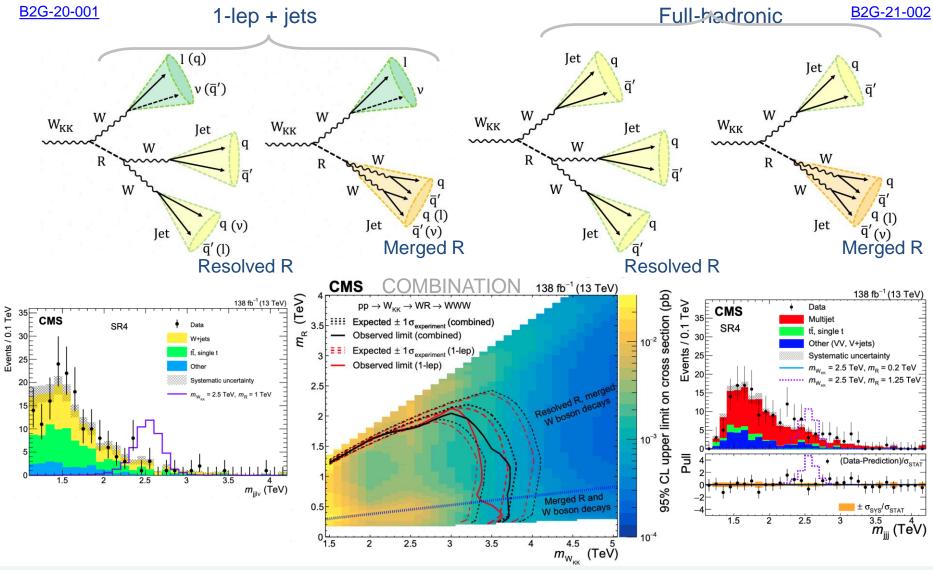
19/1/25



Summary plots for scalar LQ-pairs production

ATL-PHYS-PUB-2022-012

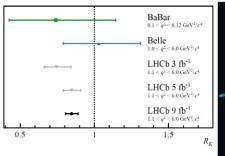
- 4 scenarios; all decays in 3rd gen quarks as final state
- 5 dedicated LQ searched + 2 SUSY searches re-interpretations used → exclusion m_{LQ}~1.2 TeV


Data analysis/Searches - Antonis Agapitos, CMS winter camp25

Resonant Triboson: $X \rightarrow WR \rightarrow WWW$

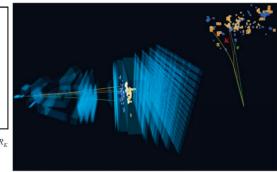
Extended (3 branes) Warped ED model

19/1/25


$X \rightarrow LL \rightarrow \geq 3b, TT/TV/VV$ vector-like lep. pair

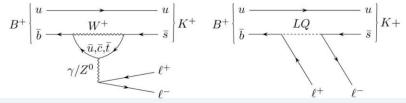
New results from LHCb showing hints of **lepton flavor universality violation**

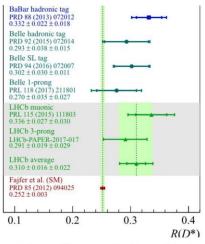
- Difference between
 measurement and prediction
 now at 3.1


 for R_K
- Interestingly, the electron measurement alone is compatible with SM, making the muon measurement the one that deviates in the ratio

Intriguing new result from the LHCb experiment at CERN

The LHCb results strengthen hints of a violation of lepton flavour universality


23 MARCH, 2021



$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to J/\psi \, (\to \mu^+ \mu^-) K^+)} \bigg/ \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to J/\psi \, (\to e^+ e^-) K^+)} \,.$$

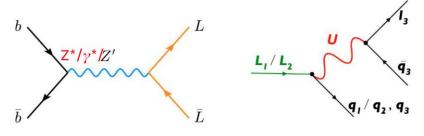
Similar results also present for $\mathbf{R}_{\mathbf{D}}^{*}$ measurements

- Deviation from SM at 3.4σ
- The tau measurement is even further from SM compared to the muon channel
- A combined explanation of both anomalies hint to BSM with yukawa-like structure favoring to third generation families
- Among the many options, one that provides a combined explanation for both anomalies is the **4321** model, extending the SM sector: SU(4)xSU(3)xSU(2)xU(1)
- A Leptoquark (U₁) is then predicted to exist as the source of LFV

$$\begin{aligned} &\mathcal{R}(D^{(*)-}) &\equiv \ \mathcal{B}(B^0 \to D^{(*)-}\tau^+\nu_{\tau})/\mathcal{B}(B^0 \to D^{(*)-}\mu^+\nu_{\mu}), \\ &\mathcal{R}(D^{(*)0}) &\equiv \ \mathcal{B}(B^- \to D^{(*)0}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(B^- \to D^{(*)0}\mu^-\overline{\nu}_{\mu}), \end{aligned}$$

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

19/1/25


$X \rightarrow LL \rightarrow \geq 3b, TT/TV/VV$ vector-like lep. pair

The SU(4) extension also brings **new families of vector-like fermions**

In this talk: vector-like leptons

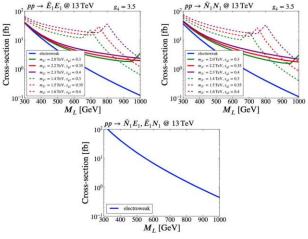
- They are produced through Electroweak interactions or pair produced with a Z', also required to exist due to UV completion
- Coupling to SM fermions through the leptoquark U₁ resulting in a **3-body decay**

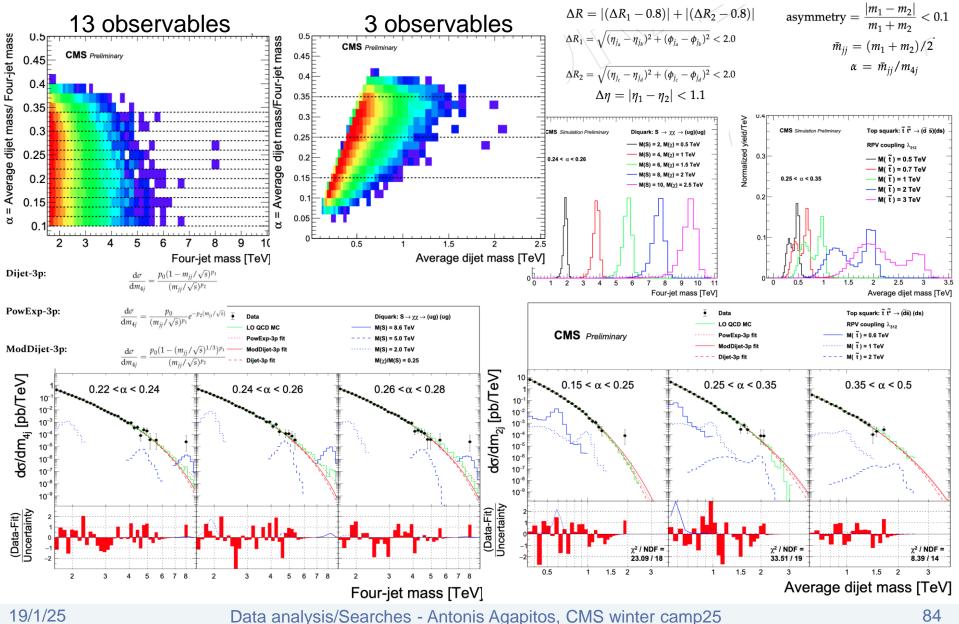
The VLL is a multiplet with a neutral (\mathbf{N}) and charged (\mathbf{E}) components

- We will focus on second generation VLLs coupling to third generation fermions
- In the resolved case, all final states contain at least 4
 b jets and a varying number of taus, neutrinos, and light jets from top decays




Figure 1: Left and centre: example Feynman diagrams showing production of VLL pairs through s-channel bosons, as expected at the LHC. In these diagrams L represents either the neutral VLL, N, or the charged VLL, E. Right: vector-like lepton decays proceed through their interactions with the vector leptoquark, U, and are primarily to third generation leptons and quarks.

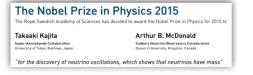



Table 1: Illustrative contributions from different VLL production and decay modes to the 0-, 1-, and 2- τ signal regions. The decay products in parentheses represent the objects coming from the intermediate vector leptoquark, U, in the decay. For brevity, no distinction is made between particles and antiparticles, the multiplicities of each decay mode are not shown, and the impacts of object misidentification are not considered in the table.

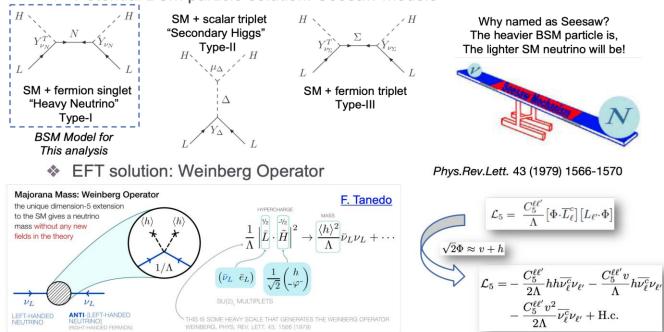
tau multiplicity	production + decay mode	final state
0τ	$EE \rightarrow b(t\nu_{\tau})b(t\nu_{\tau})$	$4b + 4j + 2\nu_{\tau}$
	$EN \rightarrow b(t\nu_{\tau})t(t\nu_{\tau})$	$4b + 6j + 2\nu_{\tau}$
	$NN \rightarrow t(t\nu_{\tau})t(t\nu_{\tau})$	$4b + 8j + 2\nu_{\tau}$
1 τ	$EE \rightarrow b(b\tau)b(t\nu_{\tau})$	$4b + 2j + \tau + \nu_{\tau}$
	$EN \rightarrow b(t\nu_{\tau})t(b\tau)$	$4b + 4j + \tau + \nu_{\tau}$
	$EN \rightarrow b(b\tau)t(t\nu_{\tau})$	$4b + 4j + \tau + \nu_{\tau}$
	$NN \rightarrow t(b\tau)t(t\nu_{\tau})$	$4b + 6j + \tau + v_{\tau}$
2 τ	$EE \rightarrow b(b\tau)b(b\tau)$	$4b + 2\tau$
	$EN \rightarrow b(b\tau)t(b\tau)$	$4b + 2j + 2\tau$
	$NN \rightarrow t(b\tau)t(b\tau)$	$4b+4j+2\tau$

$(Y) \rightarrow XX \rightarrow (jj)(jj)$ paired di-jets

CMS


Majorana Neutrinos & Weinberg Op. Probe

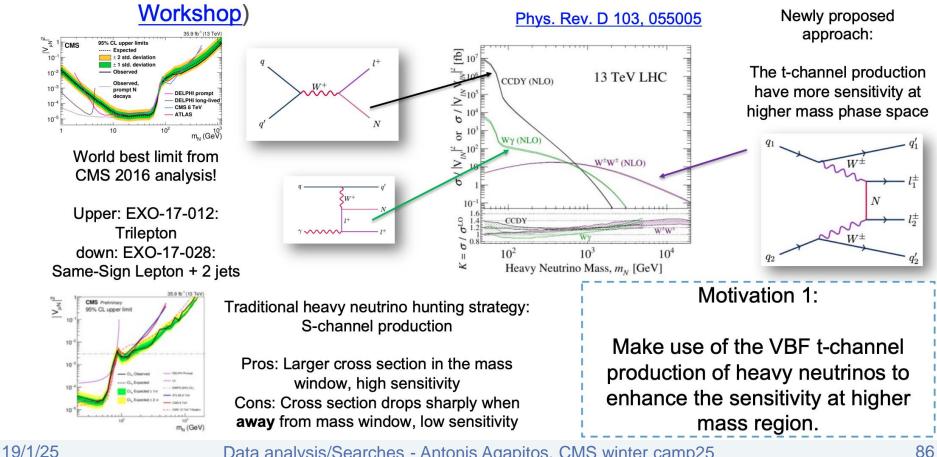
Introduction: Physics Background


- Confirmed by neutrino oscillation experiments
- Not included in the SM
- → Why no neutrino mass mechanism in the SM?

- $U(2)_L \times U(1)_Y$ EW symmetry & only Dimension-4 operators in Lagrangian
- Economical particle content:
 - Only left-hand neutrinos, Dirac mass is thus forbidden.

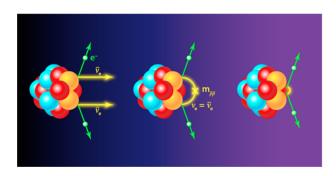
→ To generate neutrino masses, one must go beyond the SM:

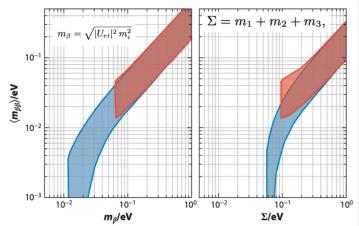
Potential BSM particle solution: Seesaw models



Experimental perspective of Seesaw Type-I

- → Type-I Seesaw model & Heavy neutrinos has been widely probed in different collider facilities
 - In CMS there are joint efforts in the past ten years. (Sihyun @ EXO





Experimental perspective of Weinberg Operator

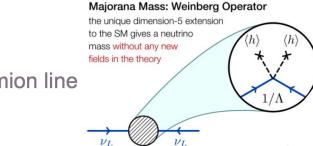
- → Weinberg Operator (WO) has been applied as the theoretical background of neutrino experiments in the context of nuclear physics.
 - Weinberg operator offers Majorana mass to SM neutrinos, thus is suitable for neutrino less double beta decay $(0\nu\beta\beta)$ experiments
 - Stringent limits are obtained for electron channel

Red: inverted hierarchy Blue: normal hierarchy

Annu. Rev. Nucl. Part. Sci. 2019. 69:219-51

However, bounded by typical energy scale, nuclear experiments cannot provide hints for 2 or 3 generations. <u>Must turn to collider experiment for</u> <u>help</u>! Majorana Neutrinos & Weinberg Op. Probe
 Apprimental perspective of Weinberg Operator
 Here lies the abyss: Monte Carlo issue for WO simulation
 Head-on neutrino lines appears and makes it hard for Monte Carlo

Newly proposed solution: <u>Phys. Rev. D 103, 115014</u>

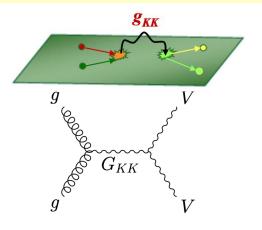

generation;

Approximate head-on lines with a Majorana fermion line

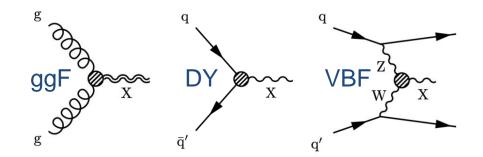
 $\underbrace{\overset{\nu_{\ell}(p)}{\xrightarrow{}}}_{p} \underbrace{\overset{\nu_{\ell'}(-p)}{\xrightarrow{}}}_{p} = \frac{ip}{p^2} \frac{-iC_5^{\ell\ell'}v^2}{\Lambda} \frac{ip}{p^2} = \frac{im_{\ell\ell'}}{p^2}$

→ Thus, collider search for WO becomes achievable

Typical process: VBF same-sign muon production Wilson Coefficients SM Higgs Doublet Motivation 2: $|\Phi \cdot L_{\ell}^{\circ}| |L_{\ell'} \cdot \Phi| + \text{H.c.}$ SM Lepton High order terms Probing Weinberg Operator with VBF **EFT Scale** same-sign di-muon production $v = \sqrt{2} \langle \Phi \rangle \approx 246 \,\, {
m GeV} \,\,$ Higgs vev Put limits to EFT Wilson Coefficient and $m_{\ell\ell'} = C_5^{\ell\ell'} v^2 / \Lambda$ thus effective neutrino mass q_2' Effective Majorana Mass 19/1/25 88 Data analysis/Searches - Antonis Agapitos, CMS winter camp25

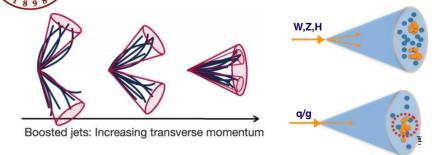


Motivation for a Diboson search

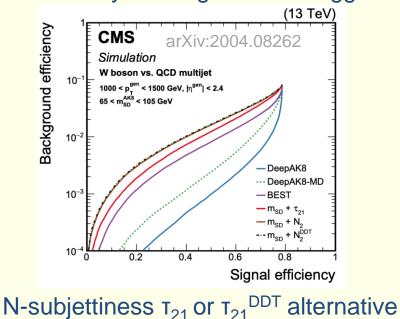

- SM shortcomings indicate some kind of New Physics (Hierarchy, Unific. DM, DE)
- 1. (Bulk RS) Warped ED, spin-0 Radion ($krc\pi = 35$, $\Lambda_R = 3 T eV$) spin-2 Bulk Graviton ($\sim k = 0.5, 1.0, ...$)

- Predict heavy bosons at TeV
- 3 production modes:
- Decay modes include VV, VH

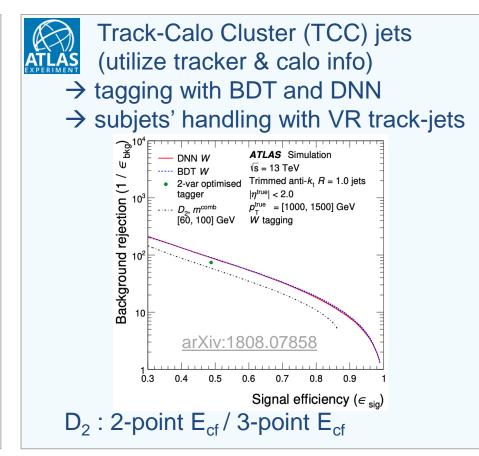
2. Heavy vector triplet (HVT) spin-1 Z',W', coupling with SM \rightarrow Models A, B, C


- 3. Little Higgs models
- 4. Two Higgs doublets models (MSSM)
- 5. Extended WED models ($V_{KK} \rightarrow RV$)
- 6. Technicolor models

Data analysis/Searches - Antonis Agapitos, CMS winter camp25 V/V


V/H

Boson tagging as boosted jets



Various substructure techniques Most advanced available: deep-AK8 \rightarrow classification to 17 jet categories \rightarrow flexibility forming modular taggers

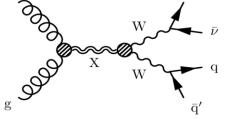
- 1. Use large-R (radius param.) jets
- 2. Clustering with anti- k_{T} ;
- soft-drop or trimmed jet mass 3.
- 4. substructure, energy-flow, jet shape observables

19/1/25

$X \rightarrow WV, WH \rightarrow Iv qq/bb$

Х

~90 500


CMS

Preliminar

137 fb⁻¹ (13 TeV)

μ, HP, nobb, LDy

- 2D fit to the m_{Jet} , M_{WV} masses
- V/H-tagging: T₂₁^{DDT}, double-b tagger
- W_{Iv}, J, back-to-back

CMS

Preliminary

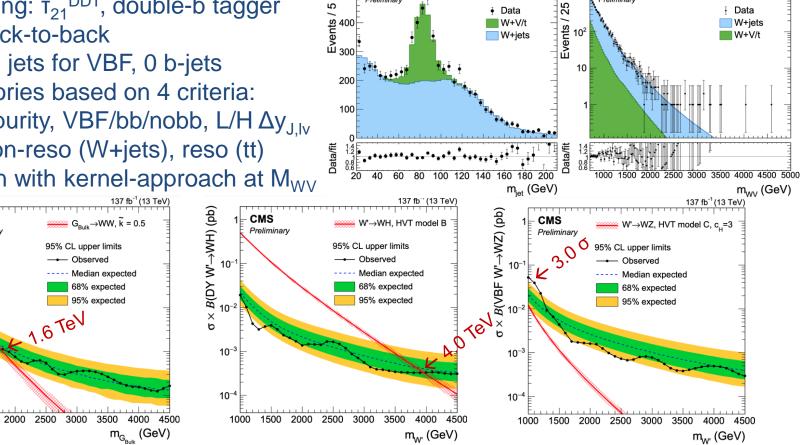
(dq) (WW↔

σ × B(ggF G → ν ⊔, ______

 10^{-3}

10-4

19/1/25


1000

1500

2 forward jets for VBF, 0 b-jets

1.6 TeV

- 24 categories based on 4 criteria: e/μ , L/H purity, VBF/bb/nobb, L/H Δy_{LV}
- BKGs: non-reso (W+jets), reso (tt) Prediction with kernel-approach at M_{WV}

137 fb⁻¹ (13 TeV)

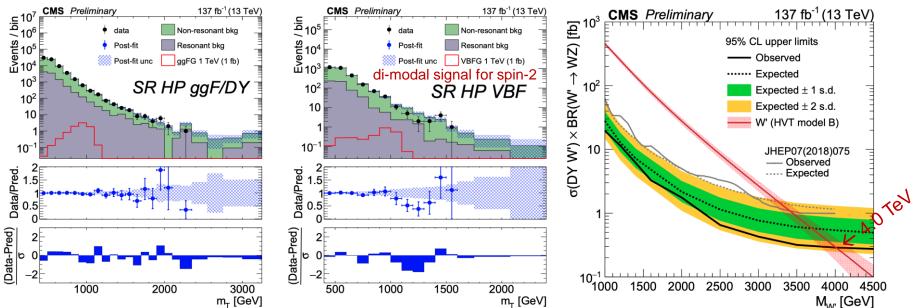
μ, HP, nobb, LDy

0 10³

CMS

Preliminarv

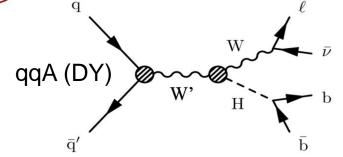
G, R


$X \rightarrow ZV \rightarrow vv qq$

• Use $M_T(J,p_T^{miss})$ as observable; T_{21} for V-tagging; veto b, I, T_h , γ , $p_T^{miss} \parallel j$ events

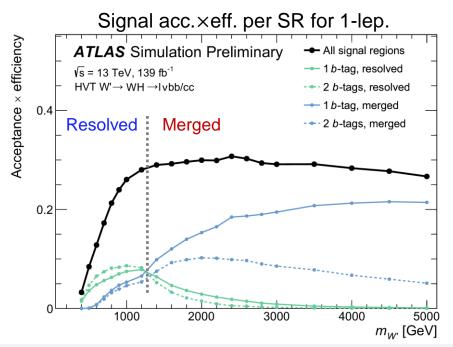
W

- Categorization to 4 sample: VBF, ggF/DY topology |Δη_{ij}|<4, η₁η₂<0,m_{jj}>500 GeV T₂₁ High/Low purity T₂₁<0.35, 0.35<T₂₁<0.75
- SR: 65<m_J<105 GeV; CR: m_J sideband (m_J: 30-65, 135-300 GeV)
- Dominant BKG: W/Z+jets, estimated from the data in CR per M_T bin



19/1/25

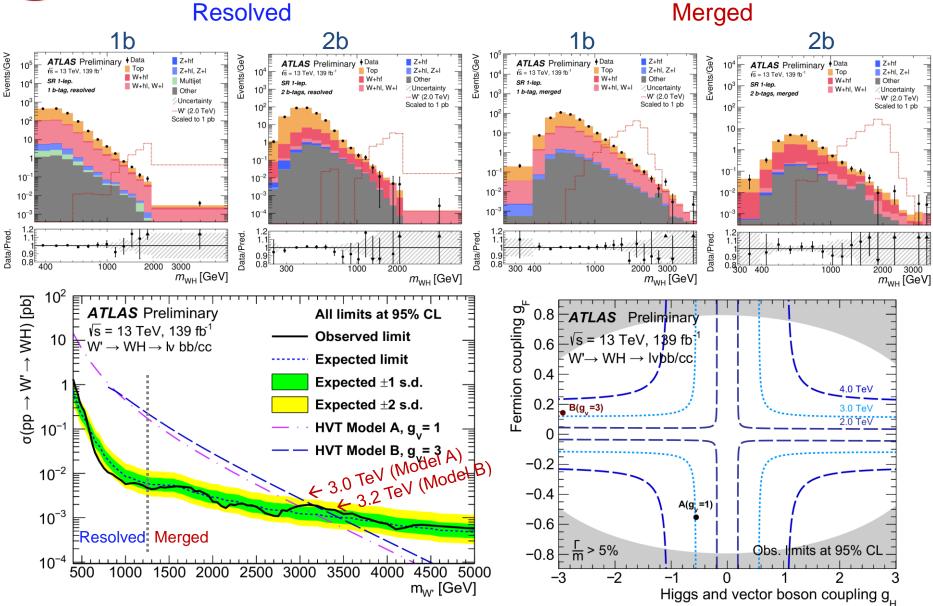
$W' \rightarrow WH \rightarrow Iv bb$



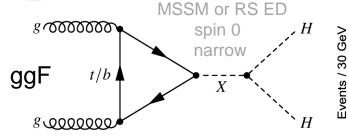
- 1-lep: e/µ, E_T^{miss}
 W→Iv reconstructed by M_W=80 GeV constraint
- Higgs reconstructed: 2 small-R jets or 1 large-R jet
- Observable: M_{WH}
- BKG rejection with various mass dependent kinematic selections on: E_T^{miss}, M_T, p_{T,W} and more

BKG: (flavor decomposition)

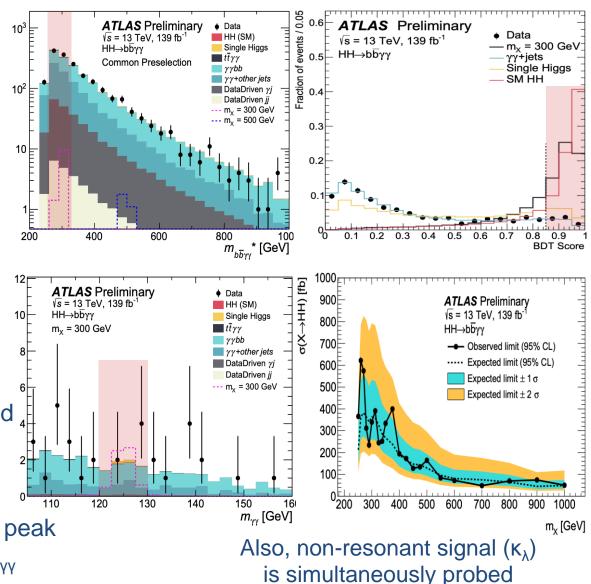
4 categories:


- Resolved H: 2 small-R jets (R=0.4)
 1 or 2 b-tagged jets (MV2c10)
 m_{ii}: 110-140 GeV → SR; sidebands → CR
- Merged H: 1 large-R TCC jet (R=1.0)
 1 or 2 b-tagged VR track-jets
 m_J: 75-145 GeV → SR; sidebands → CR
- 4 SRs & 4 CRs in total

$W' \rightarrow WH \rightarrow Iv bb; Results$

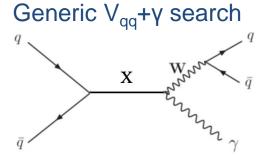


19/1/25



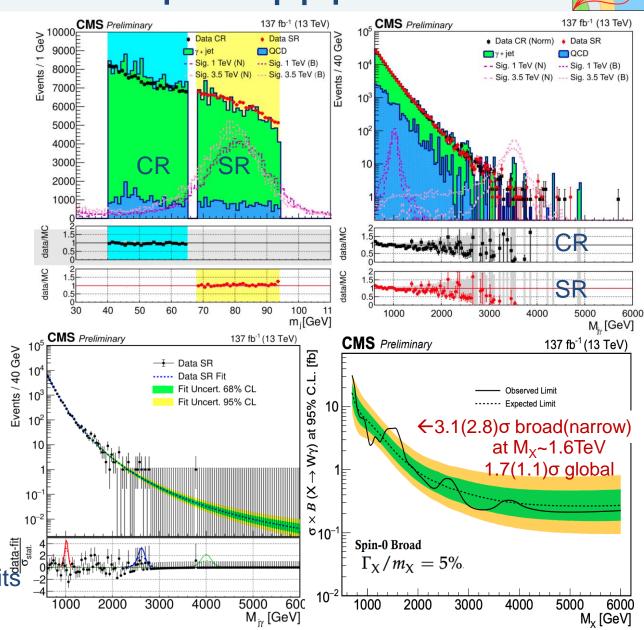
$X \rightarrow HH \rightarrow bb \gamma\gamma$ (Resolved)

- 2 small-R b-jets (R=0.4) (tagger: DL1r, eff.~77%)
- 2γ, m_{γγ}: 120-130 GeV SR sideband → CR for fit
- 4-body mass: $m_{b\bar{b}\gamma\gamma}^* = m_{b\bar{b}\gamma\gamma} - m_{b\bar{b}} - m_{\gamma\gamma} + 250 \text{ GeV}$ (Canceling detector resolution effects)
- 2 BDTs are combined weighted (for γγ+jets, single-H BKGs)
- Search by:
 - \rightarrow slicing m^{*}_{bbyy} around signal peak
 - \rightarrow fitting analytic function at m_{yy}



19/1/25

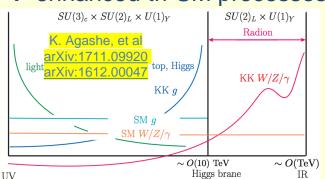
$X \rightarrow W\gamma \rightarrow qq \gamma$

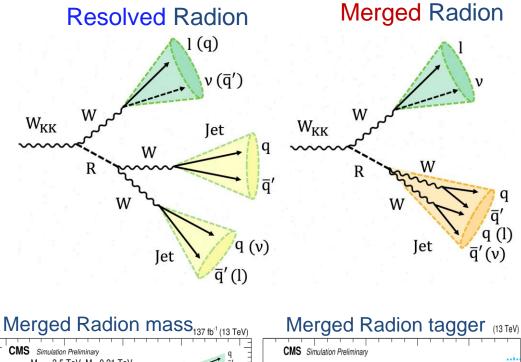


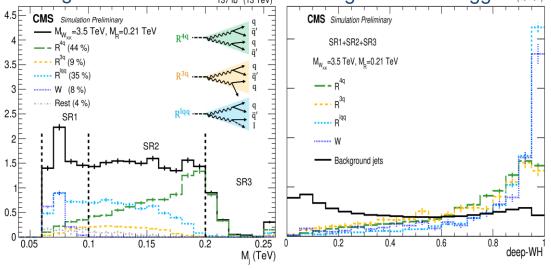
- W→qq merged (R=0.8) jet
- W-tagging with T_{21} , m_J^{SD}
- Central γ

19/1/25

- Main BKG: γ+jets
- Low m_J^{SD} as CR
- BKG estimate: fitting analytic function to M_{Jγ}
- Best limits to date on: $\sigma_{pp \rightarrow X} \times Br(X \rightarrow Wqq\gamma)$
- Model (in)dependent limits spin 0&1, narrow/broad

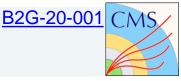



$X \rightarrow RW \rightarrow WWW \rightarrow Iv jets^{B20}$



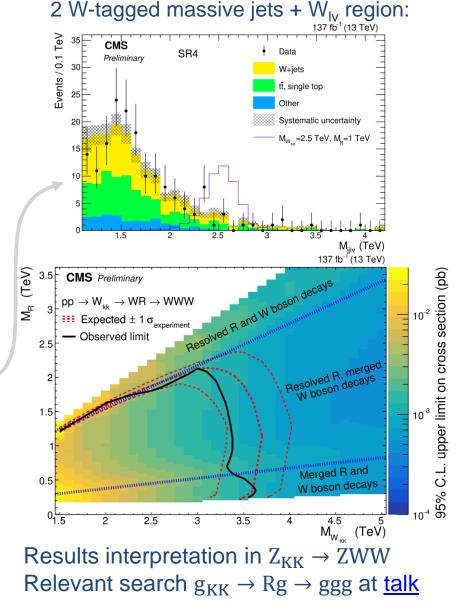
- First tri-boson search
- New model: Extended Warped ED
 → suppressed di-SM processes
 → enhanced tri-SM processes

- Only EW in extended bulk dominant: $V_{KK} \rightarrow R V \rightarrow VVV$ Di-resonant
- W→Iv: reconstruction
- 1 or 2 AK8 massive jets, 0 b-jet
- deep-AK8 taggers for W & R
- Radion tagging with $H_{4q} \& W_{qq}$
- Calibration with SM-proxy jets: top for R^{3q,4q}, W for R^{lqq}

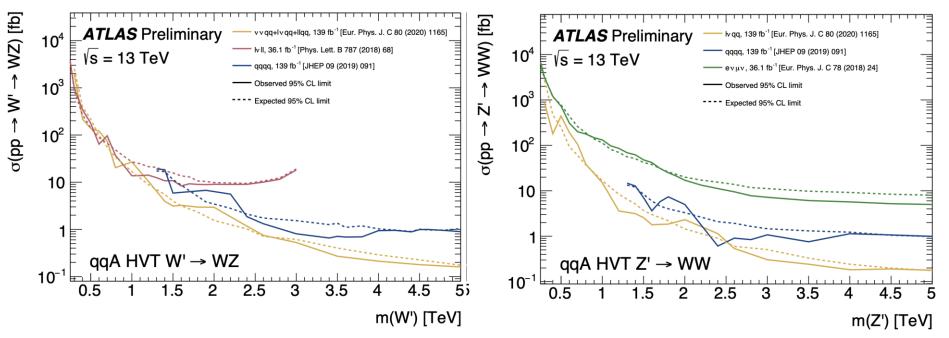

19/1/25

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

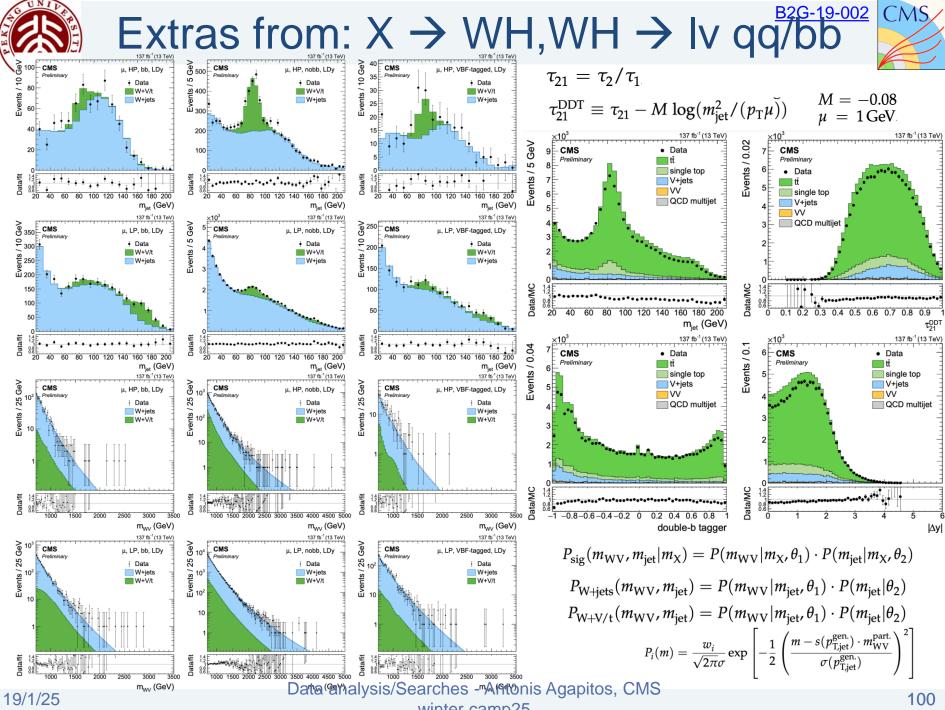
0.0


Triboson results

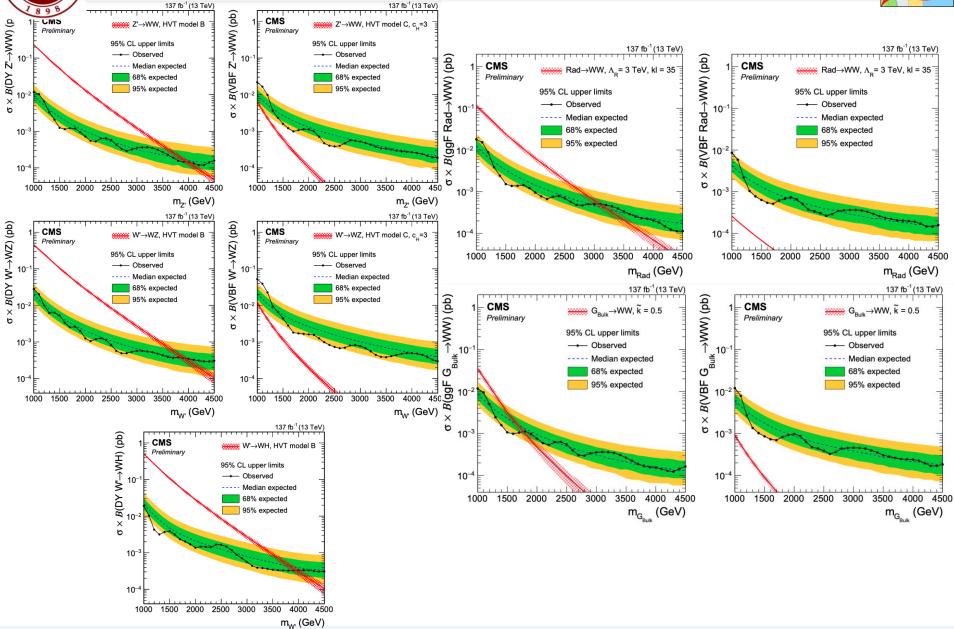
- Probe simultaneously merged & resolved
- Categorize to 6 SRs: SR1-3 → 1 jets (merged) → M_{Ivj} SR4-6 → 2 jets (resolved)→ M_{Ivjj}



• First limits on $\sigma(W_{KK} \rightarrow RW \rightarrow WWW)$ and on $[M_{WKK}, M_R]$ space


Summary Results & Conclusions

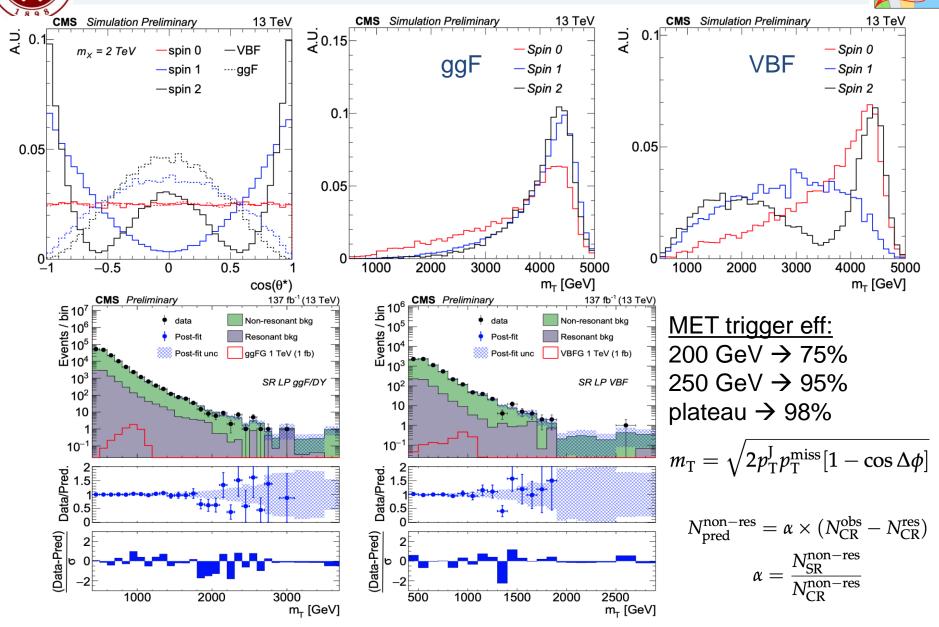
Summary of results (11 ATLAS searches) upper limits on $\sigma \times BR$ (limits superimposed)


- DNN techniques are exploited to probe very rare events:
 BKG suppression; Identify V/H in hadronic modes; b-tagging;
- Many analysis/channels are ongoing and more results will come soon
- The TeV-scale exploration is in the beginning (~5% of the LHC lumi. delivered)
- We have long way ahead, with potential surprises and a lot of fun stay tuned!

19/1/25

winter camp25

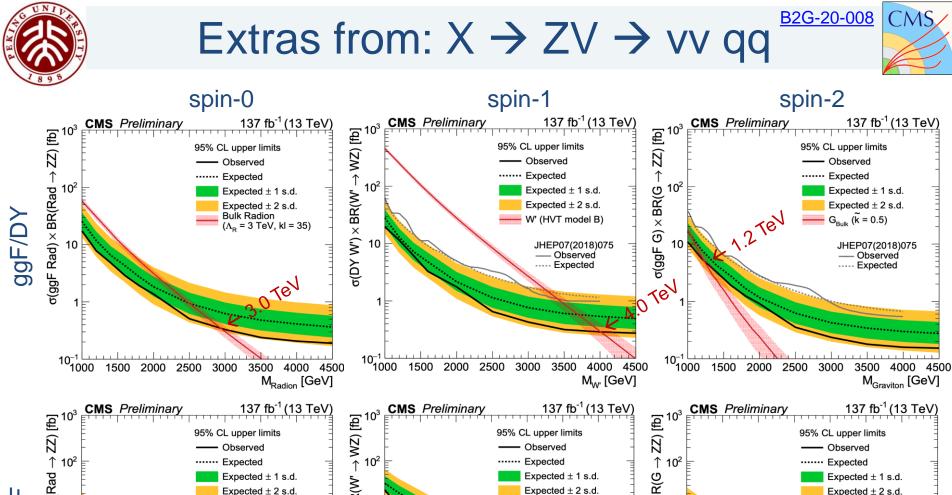
Extras from: $X \rightarrow WH, WH \rightarrow Iv qq^{\frac{B2G-19-002}{/bb}}$



Data analysis/Searches - Antonis Agapitos, CMS winter camp25

19/1/25

CMS


Extras from: $X \rightarrow ZV \rightarrow vv qq^{\frac{B2G-20-008}{2}}$

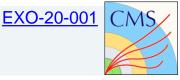
19/1/25

Data analysis/Searches - Antonis Agapitos, CMS winter camp25

CMS

 $\sigma(\text{VBF Rad}) \times \text{BR}(\text{Rad} \rightarrow \text{ZZ})$ [fb] 1 0 0 0 0 $\sigma(VBF G) \times BR(G$ $\sigma(VBF W') \times BR(W'$ Bulk Radion G_{Bulk} ($\tilde{k} = 0.5$) W' (HVT model C) 10 10 (Λ_D = 3 TeV, kl = 35) 10-1 10⁻¹ 10⁻¹ 10^{-2} 10^{-2} 10^{-2} 1000 1500 2000 2500 4000 4500 1000 1500 2000 2500 3000 3500 4000 4500 3000 3500 1000 1500 2000 2500 3000 4000 3500 M_{Radion} [GeV] M_{w'} [GeV] M_{Graviton} [GeV]

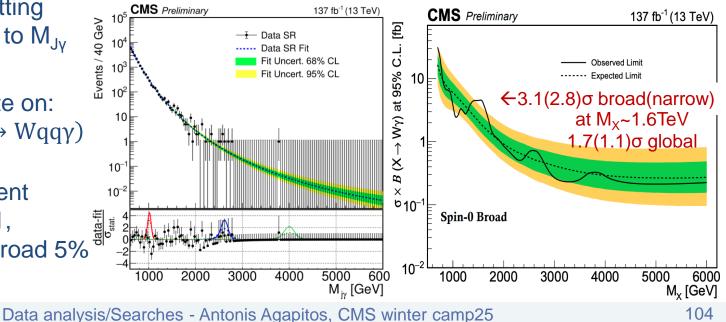
19/1/25


Data analysis/Searches - Antonis Agapitos, CMS winter camp25

4500

$X \rightarrow W\gamma \rightarrow qq \gamma$

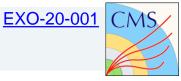
W±



- Generic search for $V_{qq} + \gamma$
- W→qq AK8 jet
- tagging with T₂₁<0.35
- $p_{Tj(\gamma)} > 225 \text{ GeV}, |\eta_{j(\gamma)}| < 2(1.44)$ $\Delta R_{J\gamma} > 1.1, p_{T\gamma}/m_{J\gamma} > 0.37, \cos\theta^* < 0.6$
- Main BKG: γ+jets
- Calibration from low m_j CR
- BKG estimate: fitting analytic function to M_{Jγ}
- Best limits to date on: $\sigma_{pp \rightarrow X} \times Br(X \rightarrow Wqq\gamma)$

 Model independent limits for spin 0,1, narrow 0.01%, broad 5% Theory motivation:

- Triplet pseudo-Goldstone bosons π_3 (https://arxiv.org/pdf/1608.01675.pdf)
- Scalar or pseudoscalar $SU(2)_L \ \Phi^\alpha$ coupling via anomaly-induced interaction
- Two Higgs doublet (H+) MSSM
- Technicolor
- HVT


JER: 15%, 8%, 4% for 10, 100, 1000 GeV

19/1/25

Extras from: $X \rightarrow W_Y \rightarrow qq \gamma$

Observed Limit

Expected Limit

4000

Observed Limit

Expected Limit, 68% CL

Expected Limit, 95% CL

----- Expected Limit

4000

Observed Limit

Expected Limit, 68% CL

Expected Limit, 95% CL

6000

-- Expected Limit

5000

137 fb⁻¹ (13 TeV)

6000

M_x [GeV]

2000

2000

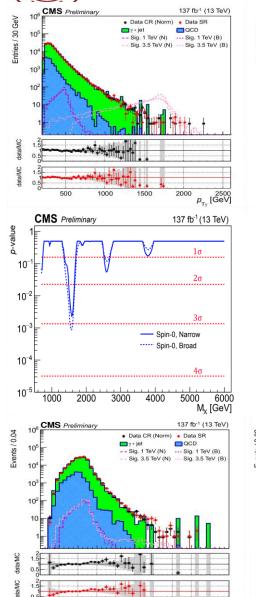
4000

5000

3000

3000

Expected Limit, 68% CL

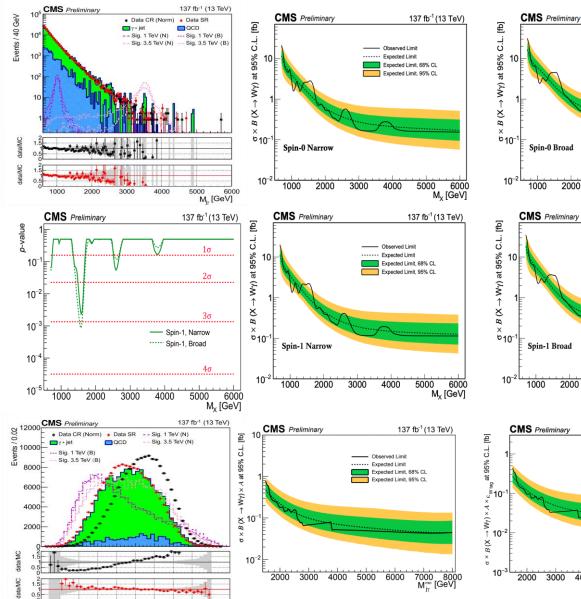

Expected Limit, 95% CL

137 fb⁻¹ (13 TeV)

5000 6000

137 fb⁻¹ (13 TeV)

M_x [GeV]



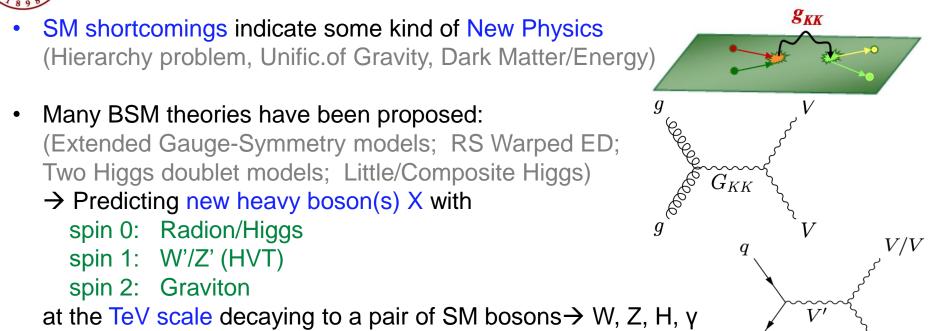
1 1.2 1.4 1.6 1.8 2 P_{Tv}/M

0.2 0.4

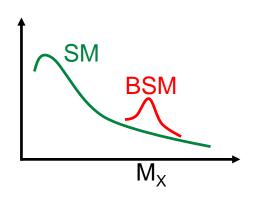
19/1/25

0.6 0.8

Data analysis/Searches - Antonis Agapitos, CMS winter camp25


0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1


7000 8000 M^{min}_{iv} [GeV]

Motivation for a Diboson search

• Therefore we can search for BSM Physics in Dibosons FSs

19/1/25

→ HOW TO... search?

Probing Diboson FS at TeV-scale is a challenge to reconstruct boosted & merged V/H reveling substructure

- Selection based on V-like objects suppressing BKG
- Predict in a Data-Driven way the SM BKG
- Look for a peak-structure at M_{VV} tails

V/H