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Outline
4 Introduction

4+ Simulate hadronic structure from quantum computing
= parton distribution in hadron
= partonic scatterings
= hadronization

4+ Chiral condensate from quantum computing

4+ Summary and outlook



Two scientific pillars in high energy nuclear physics

4+ QCD confinement: nucleon/nucleus partonic structure
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Two scientific pillars in high energy nuclear physics

4+ QCD confinement: QCD phase diagram
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Main reasons make classical computations hard

4+ Complicated initial and final state, i.e. proton, heavy ions, hadrons, etc.

4+ Notorious sign problem for simulating real time dynamics and finite
density system using classical Monte-Carlo calculations
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Main reasons make classical computations hard

4+ Complicated initial and final state, i.e. proton, heavy ions, hadrons, etc.

4+ Notorious sign problem for simulating real time dynamics and finite
density system using classical Monte-Carlo calculations

[Dp(x) 191 p(HP(t) «— multidimensional
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Quantum computing

4+ A bit history

Algorithms for Quantum Computation:
Discrete Logarithms and Factoring

The Computer as a Physical System: A Microscopic Simulating Physics with Computers

Quantum Mechanical Hamiltonian Model of Computers
as Represented by Turing Machines

RiChar d P. Feynman Peter W. Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Paul Benioff 2 Department of Physics, California Institute of Technology, Pasadena, California 91107
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In this paper a microscopic quantum mechanical model of computers as
represented by Turing machines is constructed. It is shown that for each
number N and Turing machine Q there exists a Hamiltonian H,° and a class
of appropriate initial states such that if ¥o¥(0) is such an initial state, then
¥o¥(1) = exp(—iHy®t) Wo¥(0) correctly describes at times s, fg,..., fay
model states that correspond to the completion of the first, second,..., Nth
computation step of Q. The model parameters can be adjusted so that for an
arbitrary time interval A around 7s, fs,..., f3x, the “machine” part of ¥o¥(¢)
is stationary.

KEY WORDS: Computer as a physical system; microscopic Hamiltonian
models of computers; Schrodinger equation description of Turing machines;
Coleman model approximation; closed conservative system; quantum spin
lattices.
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1. INTRODUCTION

On the program it says this is a keynote speech—and I don’t know
what a keynote speech is. I do not intend in any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. I have
my own things to say and to talk about and there’s no implication that
anybody needs to talk about the same thing or anything like it. So what I
want to talk about is what Mike Dertouzos suggested that nobody would
talk about. I want to talk about the problem of simulating physics with
computers and I mean that in a specific way which I am going to explain.

R. Feynman, 1981
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Abstract

A computer is generally considered to be a universal
computational device; i.e., it is believed able to simulate
any physical computational device with a cost in com-
putation time of at most a polynomial factor. It is not
clear whether this is still true when quantum mechanics
is taken into consideration. Several researchers, starting
with David Deutsch, have developed models for quantum
mechanical computers and have investigated their compu-
tational properties. This paper gives Las Vegas algorithms
for finding discrete logarithms and factoring integers on
a quantum computer that take a number of steps which is
polynomial in the input size, e.g., the number of digits of the
integer to be factored. These two problems are generally
considered hard on a classical computer and have been
used as the basis of several proposed cryptosystems. (We
thus give the first examples of quantum cryptanalysis.)

[1, 2]. Although he did not ask whether quantum mechan-
ics conferred extra power to computation, he did show that
a Turing machine could be simulated by the reversible uni-
tary evolution of a quantum process, which is a necessary
prerequisite for quantum computation. Deutsch [9, 10] was
the first to give an explicit model of quantum computation.
He defined both quantum Turing machines and quantum
circuits and investigated some of their properties.

The next part of this paper discusses how quantum com-
putation relates to classical complexity classes. We will
thus first give a brief intuitive discussion of complexity
classes for those readers who do not have this background.
There are generally two resources which limit the ability
of computers to solve large problems: time and space (i.c.,
memory). The field of analysis of algorithms considers
the asymptotic demands that algorithms make for these
resources as a function of the problem size. Theoretical
computer scientists generally classify algorithms as effi-
cient when the number of steps of the algorithms erows as

P.Shor,

IBM Q System One (2019), the first
circuit-based commercial quantum
computer

... and 1f you want to make a simulation of nature, you’d better make
it quantum mechanical, ...

— Feynman



Quantum simulation for nuclear and high energy physics

High Energy Physics

Astro-particle physics Early universe Quantum realm

Gravitational
wave Dark matter halo Entangled

, . quark pairs
Sun__ Al %

_—_—

Parton shower

First-order Quark-Gluon Protons and and Hadronization

Cosmic neutrino Phase transition? Plasma neutrons

background 5 A 2 2 2
HN Hg == Hf(/,.-l- H¢

) Ny - 152
- E . — : e
P — -7 - P =

Distributed sensing Entangled qubit sensors | 111

a \_ e .

7) 1H P _@%}_ E —rQ t %:(m'n)

- B : uantum : assica

Yy 4 H T D _ - :|m>_algorithms a " optimizer
q - v, S A
T O S—— — . :
9 - H Quantum computer 3 update

Quantum computing

Quantum sensing and algorithms

Quantum Information Science

Y. Fang et al., Quantum Frontiers in High Energy Physics, 2411.11294



Increasing interest in HEP and NP using guantum computing

Solving a Higgs optimization problem with quantum
annealing for machine learning

Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar & Maria Spiropulu

Nature 550, 375-379 (2017) | Cite this article
9683 Accesses \ 53 Citations | 180 Altmetric | Metrics

Abstract

The discovery of Higgs-boson decays in a background of standard-model processes was
assisted by machine learning methods2. The classifiers used to separate signals such as
these from background are trained using highly unerring but not completely perfect
simulations of the physical processes involved, often resulting in incorrect labelling of
background processes or signals (label noise) and systematic errors. Here we use
quantum?>%°-¢ and classical’-8 annealing (probabilistic techniques for approximating the
global maximum or minimum of a given function) to solve a Higgs-signal-versus-
background machine learning optimization problem, mapped to a problem of finding the
ground state of a corresponding Ising spin model. We build a set of weak classifiers based on
the kinematic observables of the Higgs decay photons, which we then use to constructa

Quantum Algorithm for High Energy Physics Simulations

Benjamin Nachman, Davide Provasoli, Wibe A. de Jong, and Christian W. Bauer
Phys. Rev. Lett. 126, 062001 — Published 10 February 2021

Supplemental Material ﬂ HTML m

Article References Citing Articles (6)

Simulating quantum field theories is a flagship application of quantum computing. However,
calculating experimentally relevant high energy scattering amplitudes entirely on a quantum
computer is prohibitively difficult. It is well known that such high energy scattering processes can be
factored into pieces that can be computed using well established perturbative techniques, and
pieces which currently have to be simulated using classical Markov chain algorithms. These classical
Markov chain simulation approaches work well to capture many of the salient features, but cannot
capture all quantum effects. To exploit quantum resources in the most efficient way, we introduce a
new paradigm for quantum algorithms in field theories. This approach uses quantum computers only
for those parts of the problem which are not computable using existing techniques. In particular, we
develop a polynomial time quantum final state shower that accurately models the effects of
intermediate spin states similar to those present in high energy electroweak showers with a global
evolution variable. The algorithm is explicitly demonstrated for a simplified quantum field theory on a
quantum computer.

Access by S

Cloud Quantum Computing of an Atomic Nucleus

E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G.R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean,
and P. Lougovski
Phys. Rev. Lett. 120, 210501 — Published 23 May 2018

Ph)/SICS See Viewpoint: Cloud Quantum Computing Tackles Simple Nucleus

Citing Articles (127) m HTML

Article References

We report a quantum simulation of the deuteron binding energy on quantum processors accessed via
cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a
low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver
algorithm, and compute the binding energy to within a few percent. Our work is the first step towards
scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on
how to map scientific computing applications onto nascent quantum devices.

Access by South

Quantum simulation of open quantum systems in heavy-ion
collisions

Wibe A. de Jong, Mekena Metcalf, James Mulligan, Mateusz Ptoskon, Felix Ringer, and Xiaojun Yao
Phys. Rev. D 104, LO51501 — Published 7 September 2021

Supplemental Material ﬂ HTML Export Citati

Article References No Citing Articles

We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a
hot, strongly coupled quark-gluon plasma (QGP) on a quantum computer. Hard probes in the QGP
can be treated as open quantum systems governed in the Markovian limit by the Lindblad equation.
However, due to large computational costs, most current phenomenological calculations of hard
probes evolving in the QGP use semiclassical approximations of the quantum evolution. Quantum
computation can mitigate these costs and offers the potential for a fully quantum treatment with
exponential speed-up over classical techniques. We report a simplified demonstration of our
framework on IBM Q quantum devices and apply the random identity insertion method to account for
cNoT depolarization noise, in addition to measurement error mitigation. Our work demonstrates the
feasibility of simulating open quantum systems on current and near-term quantum devices, which is
of broad relevance to applications in nuclear physics, quantum information, and other fields.
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QUANTUM COMPUTING
FOR THEORETICAL
NUCLEAR PHYSICS

A White Paper prepared for the U.S. Department of
Energy, Office of Science, Office of Nuclear Physics

a I‘X]_V > quant-ph > arXiv:2209.14839 Help | Advanced

Quantum Physics

[Submitted on 29 Sep 2022]

Report of the Snowmass 2021 Theory
Frontier Topical Group on Quantum
Information Science

Simon Catterall, Roni Harnik, Veronika E. Hubeny, Christian W.
Bauer, Asher Berlin, Zohreh Davoudi, Thomas Faulkner, Thomas
Hartman, Matthew Headrick, Yonatan F. Kahn, Henry Lamm,
Yannick Meurice, Surjeet Rajendran, Mukund Rangamani, Brian
Swingle

Community-wide efforts

Opportunities for
Nuclear-Physics &
Quantum Information Science

= I'X]_V > quant-ph > arXiv:2307.03236 Help | Advanced

Quantum Physics

[Submitted on 6 Jul 2023]

Quantum Computing for High-Energy
Physics: State of the Art and Challenges.
Summary of the QC4HEP Working Group

Alberto Di Meglio, Karl Jansen, Ivano Tavernelli, Constantia
Alexandrou, Srinivasan Arunachalam, Christian W. Bauer, Kerstin
Borras, Stefano Carrazza, Arianna Crippa, Vincent Croft, Roland de
Putter, Andrea Delgado, Vedran Dunjko, Daniel J. Egger, Elias
Fernandez-Combarro, Elina Fuchs, Lena Funcke, Daniel Gonzalez-
Cuadra, Michele Grossi, Jad C. Halimeh, Zoe Holmes, Stefan Kuhn,

QUANTUM
TECHNOLOGY
INITIATIVE

Quantum support vector machines for
Higgs boson classification

a I‘X]_V > nucl-ex > arXiv:2303.00113 Help || Advanced

Nuclear Experiment

[Submitted on 28 Feb 2023]

Quantum Information Science and
Technology for Nuclear Physics. Input
into U.S. Long-Range Planning, 2023

Douglas Beck, Joseph Carlson, Zohreh Davoudi, Joseph Formaggio,
Sofia Quaglioni, Martin Savage, Joao Barata, Tanmoy Bhattacharya,
Michael Bishof, lan Cloet, Andrea Delgado, Michael DeMarco,
Caleb Fink, Adrien Florio, Marianne Francois, Dorota Grabowska,
Shannon Hoogerheide, Mengyao Huang, Kazuki lkeda, Marc llla,
Kyungseon Joo, Dmitri Kharzeev, Karol Kowalski, Wai Kin Lai, Kyle

Leach, Ben Loer, lan Low, Joshua Martin, David Moore, Thomas
T ———————=

11



Different approaches in guantum simulation

Analog Hybrid Digital
Degreed of Bosons, fermions, Bosons, fermions, Biibite
freedom qubits, qudits, etc. qubits, qudits, etc.
Time evolution Continuous Digitized Digitized
(gate based) (gate based)
Hardware No No Yes (hence
agnostic universal)
Simulation Hamiltonian Gate Gate
challenge engineering decomposition decomposition
Theoretical Imper.fec:t Imperfect Imperfect
error effective diaitalization digitalization
Hamiltonian J
Error y o)
———— Not known Possible N

/. Davoudi, TASI lecture 12



Hamiltonian vs. Lagrangian formulation of LGTs

Hamiltonian

Path integral (Lagrangian)

Degrees of
freedom

Spacetime
signature

Starting
point

Hilbert
space

Expectation
values

Dynamical
quantities

Computational
methods

Computational
challenge

Fields and their
derivatives

Often Euclidean

L[, 0¢]

Not explicitly
constructed/relevant

1
E/DQO 6_80

Sometimes accessible with
indirect methods, e.g.,
Luescher method.

Monte Carlo, etc.

Sign and signal-to-noise problem
for real-time quantities and finite-
density systems.

Fields and their
conjugate variables

Minkowski

Built out of I:In|V&C.>*
*|vac.) = |empty state)

(1| O|9)

In principle accessible:

($le* O™ )

Classical Hamiltonian methods
like exact diag., tensor networks/

quantum simulation

Exponential scaling of the Hilbert
space with the number of DOF.

/. Davoudi, TASI lecture
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Quantum computing

Quantum circuit https://qiskit.org/
|0000)
. ' '
Qo — H H
10010) |01o|:)001> 11000) . . _H
_—4 > a - E — i
[1001) = ——=|1010) R —— e —
10011) e —11100) 4 G &
e s - |
|0101) *7-|1611) —————"10110) Jd; —u E : H |10110)
|o111>. T11o1> Q4 _E_ H
S —z_ e - : 4} . l v 0 v 1 v 2 ﬁ3 7/2
j1111) '
eau)o 6\090
3x/2 31/2
Superposition of . : : .
Computation driven interference Solution

all possibilities
4+ Building blocks of qguantum computing

* Qubit: takes infinitely many different values %) := «[0) + B[1) = (;)

 Quantum gate: unitary operators (X. Y. Z. CNOT)

N el N . 0)+[1) X) X)
0) +811) —[X— B10) +al1) 0) —{H}- 2] V) —o Iy x)

e Measurements: Hermitian

14



What we usually do on quantum machine?

Prepare the
initial state

Evolve with

Measure

e—th

Nontrivial specially in
strongly-interacting
theories like quantum

chromodynamics (QCD).
Thermal states possible.

Depends on the mode of
the simulator.

The choice of formulation
and basis states impacts
the implementation.

observables

May require non-trivial
circuits given the
observable

Exponentially large
number of amplitudes to
be measured. Efficient but
approximate protocols are
being developed.

Z. Davoudi, TASI lecture

15



High energy hadron/nucleus collisions

the highest collision energy
in the world!

" | Final state |

 hadronization |

| Intermediate state |
| partonic scatterings




First principle calculation on lattice

4+ Electron-proton collisions
2
[{(X(T)|U(T, —=T)|ep (=T))]|
4+ Key steps

electron

electron

* Prepare initial states from the distance past (— 1)

—HW)T

« Evolve these states from the distance pasttotime 7, U(T, — T) — e

e Perform measurement in final state

However, the Hilbert space in quantum field theory is infinite ...

17



First principle calculation on lattice

4+ Digitize field @ at discrete points x

[(X(T)|U(T, = T)|ep (=T)) | # ¢

 Hilbert space dimension: 1, = (n¢)”Ld * Energy range can be described by lattice

n¢:
nL:

d :

# of digitized field values

(nLa)_l SES a~!

|

Full energy range of LHC: 100MeV < E < 13TeV

of lattice points per dimension 0P ~ 1013

of dimensions Assume 5 bit digitization: n,, = 2° = 32

15
Dimension of Hilbert space: n,; = 32197 ~ oo

18



First principle calculation on lattice

L ] . . = SCience Currentissue  First release papers  Archive  About v @
4+ Digitize field ¢ at discrete points x |

Quantum Algorithms for Quantum Field Theories

STEPHEN P. JORDAN , KEITH S. M. LEE, AND JOHN PRESKILL Authors Info & Affiliations

SCIENCE - 1Jun2012 - Vol 336, Issue 6085 - pp.1130-1133 - DOI: 10.1126/science.1217069

[(X(T)|U(T, = T)|ep (=T)) |

¥ 1,061 99 251 ‘ l:

Quantum Leap?

Quantum computers are expected to be able to solve some of the most difficult prob-

. Hilbert space dimension: 71,, = (1,)""
p " H ¢ lems in mathematics and physics. It is not known, however, whether quantum field

theories (QFTs) can be simulated efficiently with a quantum computer. QFTs are used

Q U ant um com p Utl N g en COd | N g | N q U b I-t S in particle and condensed matter physics and have an infinite number of degrees of

freedom; discretization is necessary to simulate them digitally. Jordan et al. (p. 1130;

D see the Pers ' ' iCi ' '
— — pective by Hauke et al.) present an algorithm for the efficient simulation
n, = lIn,ny =n; In,n,

of a particular kind of QFT (with quartic interactions) and estimate the error caused

by discretization. Even for the most difficult case of strong interactions, the run time

: 15
For LH C . n g — 5 X 1 O of the algorithm was polynomial (rather than exponential) in parameters such as the
number of particles, their energy, and the prescribed precision, making it much more

efficient than the best classical algorithms.

Quantum computing run time was polynomial in # of particles
|

| Way belond NISQ era in cop

S — e ——— ——— _— 19




Quantum simulation using effective field theory

 For the hadron

100MeV < E < 1GeV

of qubits: n, = 5% 10°

ny

~ 103

|
L

Promisi

ng in NISQ era in

PHYSICAL REVIEW LETTERS

Highlights

Recent Accepted Collections Authors Referees Search Press About Editoria

Simulating Collider Physics on Quantum Computers Using Effective
Field Theories

Christian W. Bauer, Benjamin Nachman, and Marat Freytsis
Phys. Rev. Lett. 127, 212001 — Published 18 November 2021

Article

References Citing Articles (35) Supplemental Material ﬂ

ABSTRACT -

Simulating the full dynamics of a quantum field theory over a wide range of energies requires
exceptionally large quantum computing resources. Yet for many observables in particle physics,
perturbative techniques are sufficient to accurately model all but a constrained range of energies
within the validity of the theory. We demonstrate that effective field theories (EFTs) provide an efficient
mechanism to separate the high energy dynamics that is easily calculated by traditional perturbation
theory from the dynamics at low energy and show how quantum algorithms can be used to simulate
the dynamics of the low energy EFT from first principles. As an explicit example we calculate the
expectation values of vacuum-to-vacuum and vacuum-to-one-particle transitions in the presence of a
time-ordered product of two Wilson lines in scalar field theory, an object closely related to those
arising in EFTs of the standard model of particle physics. Calculations are performed using simulations
of a quantum computer as well as measurements using the IBMQ Manhattan machine.

_ __ _

quantum

20



Initial state ;

P



Simulate hadron partonic structure on quantum computer

4+ Nucleon structure - 1D parton distribution function

dy~ Yy

JANEY :[ 2—7[6“1’ 7y (ph//(O)—W(O,y w7 p)

= (f—}’3)/\/5

real time correlation function

4 Lattice calculation: moments, LaMET ...

4+ QC can naturally simulate real-time dynamics.

4+ We are far from QCD Quantum Supremacy, start from a toy model
for proof of concept study

22



Simulate hadron partonic structure on quantum computer

4+ A toy model - 1+1D NJL (Gross, Neveu, 1974), no gauge field
L= ";a (i’Yuau — ma)wa T g("poﬂba)z

) = | dee M (1 0) 1) = [ demem < Gh e

4+ Challenges in quantum computing -
» Jordan-Wigner: map QFT to qubits+gates
 VQE: prepare the external hadronic state ‘
* Evaluate the real-time dynamical correlation funion

e Measurement of final observable



Simulate hadron partonic structure on quantum computer

4+ Quantum field to qubits+gates £ = w(id — m)y + g(y)?

» Discretization: staggered fermion, put different
fermion components, flavors on different sites

. 41 R ¢2n
v ¥2 Do+

e Jordan-Wigner transformation

b= || zx+iv),

I<n

e Discretized PDF:
1 . . ]
f()C) N Z Z 4—ﬂ€_ZXMhZ<h ‘ elHZ¢j22+ie—lHZ¢j ‘ h)
l,] 2

1
H = H1 +H2 + H3 + H4 Hl — Z Z [XnYn+1 o Yan+1]

n=even 24



Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation - VQE

® Hadron states are the eigenstates of the Hamiltonian with certain
quantum numbers.

® Prepare the state by variational quantum eigensolver (VQE)
e \VVQE is a hybrid method involves both classical and quantum computers

Nature 549, 242 (2017)

2103.08505 + ...

Potential energy surfaces

0.4 T 1 1 -6.6 r r r 40r -12 , . ' :
100
40
I I
0.2 8 68!° 1 4125 % I
i 50 20 20
or || ._ . _. 0 7H N 0 - -13 ¢ @ l N 0
02 ! -' 0 4 & -' S s [_\\ -- |
E li ~— % 7.2+ ~ % T \
L ' H H | X I
® -0.6 1 O (@)
\
k= ,‘ & 6l | @ -14.5
0.8+ | '
-1+t x" .u.".,‘ - * -7.8 ¢ i
"\-‘ :,"-
.- a '155
1.2 I ' 1 ' -8 ' ' - ' ' ' - ' ' '
1 2 3 4 1 2 3 4 5 1 2 3 4 5

Interatomic distance (Angstrom)

Interatomic distance (Angstrom)

Interatomic distance (Angstrom)

show its power in quantum chemistry
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Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation - VQE Li et al (QuNu), PRD (letter, 2022)

1. For a giving quantum number [ and

first k excited states, construct a trial

hadronic state |y, )

(O IZINININ
NOILVYZIWILHdO

26



Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation - VQE Li et al (QuNu), PRD (letter, 2022)

1. For a giving quantum number [ and

first k excited states, construct a trial

hadronic state |y, )
— e
Hg
fa

J 1

=

=
PREPARE |h)

B
P n
U© = [ [ [expti0,H) ) I

i=1 j=1

(O IZINININ
NOILVYZIWILHdO
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Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation - VQE Li et al (QuNu), PRD (letter, 2022)

1. For a giving quantum number [ and

first k excited states, construct a trial
hadronic state |y;;) *

N~
2. Divide H = H, + H, + Hy + H A
UO) = HHexp(i 0,H) 7 . 8 m
i=1 j=1 '

(O IZINININ
NOILVYZIWILHdO

3. Generate the trial state: |y, (6)) = U(O) | yy,)
PREPARE |h)

t:tz

28



Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation - VQE

1. For a giving quantum number [ and
first k excited states, construct a trial
hadronic state |y,)

2. Divide H = Hl + H2 + H3 + H4
P n
Uf) = HHexp(i 0,H)

i=1 j=1

| w;)

3. Generate the trial state: |y, (6)) = U(O) | yy,)

4. I\/Ieasur? the loss function:

E(0) = ) wi(wi(0) | H|y,(0))
=1

Li et al (QuNu), PRD (letter, 2022)

(O IZINININ
NOILVYZIWILHdO

PREPARE |h)

29



Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation - VQE

1. For a giving quantum number [ and
first k excited states, construct a trial
hadronic state |y,)

2. DlVldeH: Hl +H2 +H3 +H4

P n
U©) = [ [ ] | expti6,H) )

i=1 j=1
3. Generate the trial state: |y, (6)) = U(O) | yy,)

4. I\/Ieasur? the loss function:

E(0) = ) wi(wi(0) | H|y,(0))
=1

Li et al (QuNu), PRD (letter, 2022)

VARY PARAMETERS ¢ ‘

(1

0)q EIZIWINIW
OILYZINWILdO

m
(
-

PREPARE |h)

5. Optimize the parameters 6* on classical machine

30



Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation - VQE Li et al (QuNu), PRD (letter, 2022)

1. For a giving quantum number [ and

first k excited states, construct a trial
P

hadronic state |y, )

2. Divide H = H, + H, + H, + H AH < o
p a2 _ -EI i

U@ = [ [ exvti0;t5) we . |§ “

: . 5 = m -

=1 j=I1 N

3. Generate the trial state: |y;,(0)) = U(O) | y;.) fic 32

4. I\/Ieasur? the loss function: PREPARE |h)
E(0) = ) wilwi0) | H |y (0))

i=1
5. Optimize the parameters 6* on classical machine

6. Generate the hadron state |h) = U(0%) | y;)

31



Simulate hadron partonic structure on quantum computer

4+ Evaluate the real-time dynamical correlation function
(t) — <h ‘ elHt'—G —lHt'—3 ‘h>

PDFs can be written as a sum of such correlation functions

4+ Measure the observable with one auxiliary qubit

0)

QUANTUM CIRCUIT FOR S,

Measure the ancillary qubit on X (Y) basis to get the real (imaginary) part of S, ()
Pedernales et al, PRL. 113,020505 (2014)



Simulate hadron partonic structure on quantum computer

4 Quantum circuits for PDFs

VARY PARAMETERS# |
N 1| 0) @ QUBIT N
0 QUBIT 0
i N
> = , QUBIT 1
S z = N = | ;
|V’1) . o = N o) . : QUBIT 7
. e m > ll . . |
. 3 o QUBIT m
¥ I I ﬁ
= O :
2z : QUBITN -1
PREPARE |h) QUANTUM CIRCUIT FOR §,,(!)

\——

Hadron state preparation Measure correlation functions

33



Numerical results from qguantum computing

4 Measurement of hadron mass M, = (h|H|h) — (Q|H| Q)

g 0.2 (04 |0.6 (0.8 [1.0
My, gca |1.002(1.810(2.674|3.534 |4.352
Mh,NUMa 1.001{1.801|2.659|3.509(4.342| ma = 0.2

N=12

e Considering the current limitations of using real quantum devices,
the results are generated using a classical simulation of the
quantum circuit

e Measure the mass of the lowest-lying ud-like hadron in NJL model
with 2 flavors, QAOA has good accuracy

® For small quark mass, the dominant contribution comes from the
Interaction rather than the quark masses

e For ma = 0.8, the quark masses are dominant
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Numerical results from qguantum computing

4+ quark PDF of the lowest-lying zero-charge hadron

e quark PDF in position space 01

ma = ()8 N = 18 nf = ] 0.05—

® The real part is consistent with0 = -,

£,(0) = f,(x) = — f,(=x)

—0.05+

® [he bound state behavior
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Numerical results from qguantum computing

| Li et al (QuNu), PRD (letter, 2022)
4+ quark PDF of the lowest-lying zero-charge hadron
L. l

® Good agreement between quantum :
computing and numerical 05— 5 N

diagonalization T / i

S

- _ _ _ =< 0 Pshepef—torhe oA

® [he non-vanishing contributions in / :

the x > 1 are partly due to the finite |\ *  __\,_0s & ace-0s

volume effect : NUM, g = 1.0 QC, g = 1.0 :

e \\e observe the expected peak &

around x = 0.5 and qualitative
agreement with pion PDFs

JAM Collaboration, PRL, 2021

001 01 0305 07 09 36



1+1D QED - Schwinger model

Li et al (QuNu), in preparation
4+ QED PDF of the lowest-lying zero-charge bound state

4,0 T T T

: mh/g=2
3.0F
2.0F
1.0F & &
= 0.0F = =
= 1.0
2.0F
: -6 | '
-3.0 -1 (§) 0.5 1
-4.0 | | | | | | | | | E -EF N =72; x=50; N/\/x=~10 - +- m/g= 2.8209
o s e e s -x- N = 100;x = 100; N/\/x = 10 - %- m/g= 5.6419
2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 - N =200 = 100N /5 = 20 ‘o m/g=112838

X

Tensor network: Banuls et al, 2409.16996



Simulate SU(2) hadron on guantum computer

e Global fitting with quantum circuit at initial scale

G 7 N ot agtN=l
SU(2) Hamiltonian: Z (gb U,$,., +H. C) + ng:jl (—1)"¢, ¢, nZ:jl L

Zaln 1

a Spatial lattice and qubit encoding

B\ (%
5i) \o

a VQE circuit to prepare baryon and vacuum states

2

VQE preparation of the baryon mass

N=42 62002200

| o Baryon mass (VQE)

| — Exact baryon mass

@ - "I"7 e
/ - l—’—ﬂ;’-.?’—ly’-l!-
'!—J—‘—F <
- s—if——if

o pp—L—L

Toab
5

Atas et al, Nature Commun. 2021
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Alternative approach

e Global fitting with quantum circuit at initial scale

quantum parametrization:

variational quantum circuit:

Stage 1
Quantum Circuit
i = Loss
PDF data
* Ansatz
Optimization Tuning
No
Convergence?
Yes
Stage 2 Stage 3

Quantum Hardware <«—— qPDF fit from data

qPDFl (X, QO ’ 9)

Salinas et al, PRD 2021

U9, x)|0)*" = [w (6,
0) —
1 + Zi(g, X) 0) —
Zl.(H, x) — <w(6’, x) |Z1|W(9, )C)> i UE Classical Optimizer
gat 1.7 GeV
3.0 1 - :PNIIDDII;I(:zélc(IIGI-Sl_lcj?+10)
2.5 -
,>.<\ 2.0 -
2
1.5 -
1.0 -
107> 1074 103 10~° 1071 10°
X
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Alternative approach

® Global fitting based hadronic tensor NuQS, PRR 2020

Hadronic tensor: WH(q) = Re/ddx e (P|T{J*(x)J" (0)}|P)

Collinear factorization: WH"¥ = Zfi QP @WH
L, ]

® A test from exact diagonalization of Hamiltonian in Thirring model
0.2 r

15.9=00
114G =04

0.15 |
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Quantum computing for scattering amplitude

+ Computing scattering amplitudes for strongly-coupled QFT

1. State (wave-packet) preparation 2. Time evolution: scattering 3. Measurement of the final state

By =
AN I | N A a N A
T ) e [0 P —p ) P

e—itH

Adiabatic evolution
Interacting theory

Jordan, Lee, Preskill, Science 336, 1130-1133 (2012)
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Quantum computing for scattering amplitude

+ Computing scattering amplitudes for strongly-coupled QFT

1. State (wave-packet) preparation 2. Time evolution: scattering 3. Measurement of the final state

~ ~
AA A A N A a AN~
OE, = W)E,  —— [ @yt &
& ] ]

Interacting theory

Adiabatic evolution

1. Incoming particles are widely separated wave packets

L>d;> 1/|p;| —> requires large lattice

2. Adiabatically turn on coupling, interactions happen
Long time span of evolution, broadening of wave packet

3. Adiabatically turned off coupling, measure final states
43



Quantum computing for scattering amplitudes

4+ A new proposal - LSZ reduction formula Li et al (QuNu), PRD 2024

 Lehmann-Symanzik-Zimmermann (LSZ) reduction formula
M = R™/? lim ({pi},{k lltK (pr) ) ( T K1 Kis ) \ / hp
Pl {}{}(H ];[1 (s) \ /2

k;" — m? _

e connected n-point function iIn momentum space

h

out Nin—1
({pZ} {k } (H/d4$z L ) ( H /d4yj eikj.yj) p”out
X <Q|T{¢ 1131 o '¢(xnout)¢T(yl) ¢T(ynn—1 ¢T } ‘Q con
* two-point function in momentum space (propagator)
K(p) = [ d'ac(@IT{#(z)8' 0)}12)

e field normalization

R = [(Q|¢(0)|h(p = 0))|?
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Quantum computing for scattering amplitudes

4+ A new proposal - LSZ reduction formula

* Lehmann-Symanzik-Zimmermann (LSZ) reduction formula ]"k1 hp1
Nout Nin h
iM=RY? lim {pi}, {k K~ pr)( K1 ks) kz\ / hp
Pl {}{}(H ];[1 (ks) \ /2
k?—)mz _
» connected n-point function in momentum space / \
ot 0= (I fesen) (IL foweso) e .
=1

A1) O )¢ ) ¢ W -1)8 O} Do ™ pole singularities cancel on
» two-point function in momentum space (propagator) | mass-shell, giving finite

- scattering amplitude g
K (p) :/d43362p'm(Q|T{(/§(x)¢T(O)}\Q) —— B et —

e field normalization

R = [(Q|¢(0)|h(p = 0))|?

> |QAOA for | Q) and | /)
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Quantum computing for scattering amplitudes

4+ A new proposal - LSZ reduction formula

Lehmann-Symanzik-Zimmermann (LSZ) reduction formula

iM=R"?lim  G({pi}, {k;}) (HK pr) (ﬁK‘l(ks))

p,,;—>m
k?-—)m

No preparation of incoming wave packets, smaller lattice is
allowed.

No adiabatic turn on and turn off of coupling constants, no
associated extra time evolution

Bound-states are allowed as incoming and outgoing particles

Complexity scales exponentially in particle number n, ideal for
exclusive scattering process, e.g. 2 — 2 scattering. JLP
formalism scales polynomially with n.

hy,

SN
a

h

p Nout
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Quantum computing for scattering amplitudes

4 LSZ reduction formula - 1+1 NJL

+ Fermion propagator Ky(p) = / & 7% (QT {4 (2)d(0)}|)

Lowest lying quark state

Lowest lying bound state
(2g+gbar)

4j_' [ '|' o I C I ~
3 .
= /\ —-\ i
2-_ // \\ // —
- /
£ / \ /
3 / \ / i
S 1_ / II \ ]
i !
0__// I(p \\~_
I \ /
1 \ / _]
) Re \ / ]
i \ / _
L / _
_2; Im ' / _
: ED mass - :
N | : | . | L o |
—~3 —Z —J. 0 1 2 3

Li et al (QuNu), PRD 2024

* propagator of composite operator
Ko(p) = / 22 ¢ (QT{O(2)0(0)}Deon

O(z) = ¥(2)()

k 1 I 1 1 1 1 I 1 LI I lllllllllllllllllllll
- Re
5L --- Inm _
[ s ED mass Pt
i " 4
\ /
- \ / _
1 1 ;
\ /
\ /
\ /
A " !
\
\ / \ /
\ / \ !
\ / \ /
\ / \ /
1L \ / \ d _
\ / \ /
/ /
\\/ \\/
I i IE - - I | s s Lol I
~4 ~ -1 0 1 2 3
pla



Quantum computing for scattering amplitudes

4 LSZ reduction formula - 1+1 NJL

‘Our quantum algorlthm succeeds in recoverlng
* Four point correlation function ‘the expected pole structure, which is crucial to |

the implementation of LSZ formula |

Lowest lying quark state |

| —__ Lowest lying bound state
(2g+qgbar)

GV (p1,p2. ki)

kia

FIG. 2. Real part (solid line) and imaginary part (dashed line) of

GP(p,, py k;) in the one-flavor Gross-Neveu model as a
function of koa with k; = (k(l),O),pl = (0,0), p, = (k(l),yz/a),
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Quantum computing for scattering amplitudes

4+ Simulate the quantum interference effect in parton shower

L= f1@+m)f1+ f2(id + my)fr+ (0,¢)

+ 91110 + o fof2@0 + g2l f1f2 + fof1l@ Nachman et al, PRL 2021
(01,92, €) = (2,1,1073) (D)
05 | | | | | | |
¢ — ff excluded x  Classical MCMC
04F 4 steps simulation (g1 = 0) -
- \ 4 x . . .
S 03l v simulation (g1> = 1) _
§ ' A A Y :EmQ (912 = (1)), corrected
> 0.2k A t A Q (912 = 1), corrected
~~
— \ 4 \ 4
0.1F 2 -
A
: E O O | | | | v | |
8 3 | | | | | | |
5 S A ‘ -
7 NS FS e Lttt seene.
C_U G O [ | | | ' | | |
O 0 1 2 3 4 5 6

Number of emissions (n)
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' hadron fragmentation |

Final state
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Quantum computing for exclusive hadronization

4+ LCDA - light cone distribution amplitude, describes the formation/decay of a
hadron

4+ LCDA is an essential ingredient in exclusive high-energy QCD processes, €.g.

form factor in the process y*y — 7"
1 “L .
F(Q°) =fﬂ[ dx Ty(x, Q% (s 1) + O(Adyep/ Q%) b 2
0 y
1 —i(x—1)n-Pz - + o b
P(x) = ? Idze (| yp(zn)y "y (0) | h(P)) i Tp

4+ The current knowledge on LCDA is limited, mainly on models and lattice
calculations

4+ First try using quantum computing
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Quantum computing for exclusive hadronization

4+ Quantum circuit Li et al (QuNu), SCPMA (2023)

(12)10) +0]h)| 1))

V2 N

[ ¢7) =

Q,1
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Quantum computing for exclusive hadronization

4 Numerical results

dn(x)

1.4¢
1.2¢
1.0¢

0.8
0.6
0.4
0.2
0.0
-0.2

- —— ED,g=0.05 |
3 ED,g=0.1 PoX

[ —— ED,g=0.15 ¢
- —— ED,g=1 <P

asymptotic

1.2

0.0

—— ED,my=1.

[ O0Cm=13a"" "
ED,m,=1.5a"" OC,m,=15a"" .
[ — ED,mh=ﬁ_.7a—1 /E\\ (I) QC,mhz}_ja_l
f B\F\'
2 /f Q%M |
N Rl | A R
-2 1 0 1 2 3
X

* peak gets narrower with decreasing coupling constant or increasing
hadron mass

 Converges to asymptotic result in weak coupling limit

53



4+ Global fitting - the only reliable way to extract hadron fragmentation functions

QED

Quantum computing for inclusive hadronization

Hard
Scattering

qq |

QCD

//

*\p'

il
-

Decay
Fragmentation

& L3 " v 0] o oK)

T T

r  —— this work DJ

NNFF D7

|
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Tt
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- NNFF D~

—
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NNFF DK

[ ——- DSS DK*

i 1
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Gao, Liu, Shen, HX, Zhao, PRL, 2024

Gao, Liu, Shen, HX, Zhao, arXiv: 2407.04422, PRD Editor’s suggestion
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Challenges in lattice QCD for FFs

Collins, Rogers, PRD 2024

orphans

Ay~ ..
D!(z) = ZHJ 4yﬂ e ’ZTI”{ (Qlw(y7) ) |h.X)(h.X \1/7(0)|Q>7/+}
X

1. Real-time dynamical quantity -> sign problem

2. Unidentified X -> exponentially increasing complexity

55



Quantum circuit for FFs

10) [1) Q; b VARY Q — :
(2) —"O ) o (b) PARTERSH KT%\“ * VQE U | Il ) | Ql>

(h ]

Labels of qubits  2i—2 .. 20 2+1 .. 2i+3 .
1G;) é% ” UlIg) — |qi>
Sg YES % !
{3 1"y = |h
= Ul i) = | i)

MEASURE

= v * O€Mi-inclusive hadronic operator

QUBIT 0

QUBIT 2i ‘h’L)X{j#z} ‘h’Z)X{j#z}>

yA
07i11

| — QUBIT 2i+1
5 > - QUBIT -2y + u
—— QUBIT —2j + v Vb3 ¥ & b —Id
i QUBITNil Z‘ >< ‘
\—Y—I
;
Hi=UTrgz ‘hZ’X{H’éZ <h%’X{J#z U

=U|I}) (I} ®IdgjnUT,

|€2)
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FFs from guantum simulation
Li, HX, Zhang, arXiv:2406.05683

1. 5 LI LA BLNLILEN NI NLELELE UL NUNLELES NLELEL BLELELE L
i N=10 o N=18 - 2. 017
1.OF a N=14 5. o N=22- : N=10 -
: i on d I —— N=14 -
E@ T o % 8 ..@,....0: =
‘3‘ OO:_ 2 . 1 :@" - E@l 0
v ! g B - b
—0. 9 "o O B
B 7 W . 0.5
-1.0F .
1. b 0.0 ,
- 0. 2 0.4 0.6 0.8 1.0
L.OE A - Z
— a A - D.-J. Yang Phys. Rev. D (2020).
5 ok P .o PP |
S 0 O:_@ ..... & 8 & g N < = | : :
- I o 03 = e before matching !
P i 8 ' === after matching ]
—0. 5 F S — X 0.6 averaged
1. 0F " - S 04
I T A A R BTN AT AR B AN A A : 'o'
=H =4 =3 =2 =] O 1 2 5 4 5 0.2:- :-'
Y 0.0-

Converges with the increase of qubit number N 00 02 04 -

e consistent with analytical calculations .



Chiral condensate in SU(2)

4+ Spontaneous chiral symmetry breaking

One of the key features of QCD

Origin of mass

Chiral magnetic effect, chiral vortical effect...
Non-perturbative, high baryon chemical potential

Challenging for traditional methods

Chiral condensate: 6 = (yy)

\. " ‘ ;‘ *

RHIC-BES > Quark-Gluon »
a8
Critical / '* Plasma - N .
point? SPS P o * & . .

| \,,_\ NICA ' *. v

& % t'a”sl'tion
i >

Nuclotron-M

Temperature T [MeV]

e bl . s
Quarkyonic phase #

' \Color Super-
stars conductor

. ‘ J .‘x
. <SS .
o 1 e baryon density n/ n.
N\ Compac No=0.16 fm—3
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Chiral condensate in SU(2)

Li, HX, Zhang, arXiv:2411.18869

* 1+1D SU(2) model: simplest non-Abelian model
1 )
H = — iy (0, + igAUt" YWy + mpy + py'y + > D (L)
* Discritization: Staggered fermion

y(x) — ¢2n’ Wr(X) = Py
N-=2 » N=2

H= = 3 (#iUnsr +1.C. +m2< i, +ﬂ2€“¢ = 2L
* Taking advantage of Gauss’s law: L — RZ_1 = ¢Tt“¢ - L, = Z o7
H=- NEZ (#n¢us +H.C.) + Am Z( D™, + Au Z A 2g2 NE Z Q;
2 1m0 k<n
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algorithm workflow

Gibbs state F'=E—-15= ZPi Ei+ T InP)|
' MC in thermal state construction

pla) = Y P(BU@)|i)i| U'(a) i |

Choose parameters Optimize U(O) at a Construct density Calculate
m, i, g certain T matrix p observables Tr(Op)

variational method T

Choose another T

MC optimization

* The variational method is only used once for all different temperatures.

* Many part of the calculation is analytical.
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* 12 qubits, 1000 (left) and 2000 (right) states.

* Required number of sampling increases only

as power law of number of qubits.

* 2000 VS. 4000 is already effective.

8 qubits, 1000 states for each sampling




Results: simulation on real IBM guantum machine

S0 v —
§ =90 1" g
|\5~/ 'l — 10—2 .
—2.5 4 4
! .
—3.0 : ]0—3_
¢
-354 | 5 OF '
—4
a0 1 == Hxact 10 E
0 20 40 60 80 100 6 Sb 1 60 ] 50 260 250
T/g State

* § qubits, results from IBM’s quantum hardware
* QOur algorithm can achieve good precision on real QC

* Promising to apply to larger systems



Summary and outlook

e Systematic computing of hadronic scatterings

1. Use NJL model as a proof of concept study

2. Include both parton distribution function, scattering amplitude
and fragmentation functions

* Quantum simulation for chiral condensate, many topics are
not covered, such as jet quenching, quantum machine
learning for data analysis ...

* The field is still at its infant age, many more need to be done
1. Simulation of real QCD

2. Extend to higher dimensions and spin dependent processes
3. Consider noises

Thanks for your attention!
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.: Now - Noisy Intermediate Scale Quantum (NISQ) era By YYLi

more than 50 well controlled qubits, not error-corrected yet

IBM Quantum

176 qubits 54 qubits 1121 qubits

| access to 156 qubits ) \_

( superconducting processor \ f multi—chjp quantum processor\

80 qubits

[ trapped ion qubits )

Jiuzhang - 255 qubits J 22 qubits )

48 logical
qubits
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Development Roadmap

Data Scientist

Researchers

Quantum
Physicist

2016-2019 @

Run quantum circuits

on the IBM Quantum Platform

1BM Quantum Experience

Early

Albatross
16 qubits

Canary
5 qubits

Innovation Roadmap

Software
Innovation

Hardware
[nnovation

@ cxecuted by IBM

@ On target

IBM
Quantum
Experience

Early

Penguin
20 qubits

Canary
5 qubits

Albatross
16 qubits

Prototype
53 qubits

Penguin
20 qubits

Qiskit

Circuit and operator
API with compilation

to multiple targets

Falcon

Demonstrate sc

Prototype
53 qubits

2020 @

Release multi-
dimensional

roadmap publicly
with initial aim
focused on scaling

Falcon

Jenchmarking
27 qubnts

Application @

modules

‘Modules for domain

specific application
and algorithm
workflows

Hummingbird

Demonstrate scaling

2021 @

Enhancing quantum
execution speed by
100x with Qiskit
Runtime

Qiskit Runtime

QASM3

Qiskit
Runtime

Performance and
abstract through
Pnmitives

2022 @

Bring dynamic
circuits to unlock
more computations

Dynamic circuits

Eagle

Benchmarking
127 qubits

Serverless @

Demonstrate

concepts of
quantum centric-
supercomputing

Osprey

Enabling scaling

2023 @

Enhancing quantum
execution speed by
5x with quantum
serverless and
Execution modes

Quantum
Serverless

Execution Modes

Al enhanced @
quantum

Prototype
demonstrations of Al
enhanced circuit
transpilation

Condor

Single system
scaling and fnidge
capacity

Heron

Architecture
based on tunable-

couplers

2024

Improving quantum
circuit quality and
speed to allow 5K
gates with
parametric circuits

Code assistant )

Transpiler Service

Heron (5K
Error Mitigation

5k gates
133 qubits

~

Classical modular

399 quints

Resource @
management
System partitioning to

enable parallel
execution

»

- N
Flamingo @
Demonstrate scaling

with modular
connectors

»

Crossbill 2

m- coupler

2025

Enhancing quantum
execution speed and
parallelization with
partitioning and
quantum modularity

Resource

Management

Scalable circuit
knitting
:;".""."""“" 2
reconstruction at HPC
scale

Kookaburra

]

2026

Improving quantum
circuit quality to
allow 7.5K gates

arcunt Kntting x P

Demonstration of a
quantum system with

real-time error

2027

Improving quantum
circuit quality to
allow 10K gates

I'n . P
intethigent Orchestrahor

2028

Improving quantum
circuit quality to
allow 15K gates

Starling

Demonstrate path to
improved quality

with logical gates

2029

Improving quantum
circuit quality to
allow 100M gates

Starling (100M)

Error correction

100M gates
200 qubits

Error corrected
modularity

IBM Quantum

2033+

Beyond 2033, quantum-
centric supercomputers
will include 1000’s of
logical qubits unlocking
the full power of

quantum computing

General purpose

Circunt hbranes

Blue Jay (1B)

Error correction

1B gates
2000 qubits

Error corrected
modularity
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Postselection and noise extrapolation

e(p) = —plp+ g(axpox + o°po’ + o°po”)

Physical states have fixed quantum numbers, such as particle numbe¢  0-0005r

If these quantities changed, it must be due to noise. A

So results with inaccurate quantum numbers are excluded.

Effectively, only even number of x and y flips are allowed.

I+03)/2>

Any final measurement can be viewed as a function of noise probabilit

O = O(p)

\%

0. 0001
By measuring at different p and choosing a proper extrapolation methc

theoretically one can get O(0) 0. 000"

Richardson zero noise extrapolation of A order:

A
0* = ) 1,0(c,p)
=0
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Eliminating gauge field

* Finite temperature: the Gibbs state

1
= ——e M, Z(B) = Tr(e
p(p) Z(5) € 2 re™™) Eigenstate of H

pla) =) Pl(ﬂ m/lndependent of

i

Analytically solvable

(2 6‘“)
* Variational method

* Parametrization

pla) = Y P(PU@)|i)i| U'(a)



Algorithm: Monte-Carlo

* Monte-Carlo in thermal state construction
e Start from |i) such that U |i) is the ground state.
« Randomly flip one qubit of |i) to get a new state |j)

» Calculate the energy expectation value Ei| U "HU | i)

» If E; < E;, accept the new state, otherwise, accept it with the probability e~ E—ENT

* If the new state is rejected, the old state is added into the mixed state again.

* Repeat until number of states reaches a predetermined limit.



