





## **Unified Interpretation of Muon g-2 Anomaly, 95 GeV Excesses and Dark Matter in SUSY Models**

2025粒子物理标准模型及新物理精细计算研讨会

河北大学@保定 2025年04月30日

Based on: *Physical Review D* 2024, 110(11):115039, *Physical Review D* 2024, 109(07): 075001, with Prof. Junjie Cao and Dr. Xinglong Jia

1/26 连经伟 HIST & HNU

Jingwei Lian (连经伟) 河南科技学院河南师范大学理论物理中心 @新乡

# Outline • Motivation • DM, $(g - 2)_{\mu}$ and 95.4 GeV excesses General NMSSM • Sampling Strategy • Numerical results Conclusion

## **BSM New physics must exist**

#### **Motivation:** > Dark matter and Dark energy > Matter-Antimatter asymmetry > Neutrino mass > Hierarchy problem > Strong CP problem > Unification of forces . . . . . .

#### **Other important hints:**

- muon g-2 anomaly
- Higgs searches

. . . . . .





 $\Delta m_h^2 = -\frac{Y_f^2}{8\pi^2} [\Lambda^2 + ...],$ 



### **DM candidates**

# Some properties of DM are known we but the mass known poorly!

- > Primordial black holes
- > Super heavy particles
- > Asymmetric DM
- ➤ Hidden sector DM



Some properties of DM are known well, {e.g., abundance, weakly coupled, cold},



## Muon anomalous magnetic moment

dipole moment  $\overrightarrow{\mu}$  aligned with its spin  $\overrightarrow{s}$ :

$$\mu = (1+a)\frac{q\hbar}{2n}$$

**QED** 







A charged elementary particle with half-integer intrinsic spin has a magnetic

### Muon anomalous magnetic moment



### **95.4 GeV Excesses at colliders**



#### CMS-PAS-HIG-20-002

Combined result:  $\mu_{\gamma\gamma}^{exp} \equiv \mu_{\gamma\gamma}^{ATLAS+CMS} =$ 







C. Arcangeletti, LHC Seminar, 7th of June, 2023

$$= \frac{\sigma(pp \to \phi \to \gamma\gamma)}{\sigma_{\rm SM}(pp \to H_{\rm SM} \to \gamma\gamma)} = 0.24^{+0.09}_{-0.08} (3.1\sigma)$$

Phys.Rev.D 109 (2024) 3, 035005

#### **95.4 GeV Excesses at colliders**



Phys.Lett.B565:61-75,2003

## LEP $e^+e^- \rightarrow Z\phi \rightarrow Z(b\bar{b})$ : background-only, $\sqrt{s} = 189 \text{ GeV} - 209 \text{ GeV}$ $\mu_{b\bar{b}}^{exp} = 0.117 \pm 0.057 \ (2.3\sigma)$ at 98 GeV



#### The infamous 95 GeV $b\bar{b}$ excess at LEP: two b or not two b? P. Janot JHEP10(2024)223

Sadly, two background fluctuations in very different mass ranges do not make a new physics signal. It is therefore high time to stop using these fluctuations in support of any signal interpretation of the  $3\sigma$  excess observed around 95 GeV by CMS in their diphoton mass distribution. Altogether, the 1999-2000 LEP data strongly disfavour the production of a new 95 GeV Higgs boson with a signal strength of 0.117, as well as any other new physics interpretation in the 95–100 GeV mass range of the  $2.3\sigma$  excess observed in the 1998 data .





#### **95.4 GeV Excesses at colliders**





JHEP 07 (2023) 073 Eur. Phys. J. C 83 (2023) 1138

$$\mu_{\tau\bar{\tau}}^{\exp} = 1.38^{+0.69}_{-0.55}$$

For a CP-even scalar, expluded at  $1\sigma$  level by ATLAS  $t\bar{t} + \tau\bar{\tau}$  search Eur. Phys. J. C 82, 1053 (2022)

model-independently ruled out by  $t\bar{t}\phi$  search Phys. Rev. D 108 (2023) 075011 Phys. Rev. D 110 (2024) 012013

0.010





## Supersymmetry

超对称变换: Q| 玻色子 $\rangle = |$  费米子 $\rangle$ , Q|费米子 $\rangle = |$ 玻色子 $\rangle$ 

引入旋量生成元:  $Q_a^i$ 及其厄米共轭 $Q_a^{\dagger i}$ , N=1构成超庞加莱代数

定义超势:  $W = L^i d$ 

手征超场相互作用:

 $\mathscr{L}_{int} = -$ 

C

H

#### **Standard Model of Elementary Particles**



$$\phi_i + \frac{1}{2}M^{ij}\phi_i\phi_j + \frac{1}{6}y^{ijk}\phi_i\phi_j\phi_k,$$

$$-\frac{1}{2}\frac{\delta^2 W}{\delta\phi_i\delta\phi_j}\psi_i\psi_j+\frac{\delta W}{\delta\phi_i}F_i+c.c,$$

$$\mathscr{L}_{s} = -\lambda_{s} |H|^{2} |S|^{2}$$
$$\delta m_{h}^{2}|_{s} = \frac{\lambda_{s}}{16\pi^{2}} [\Lambda^{2} + \dots]$$





## Stringent constraints on WIMPs in $(\mathbb{Z}_3 - N)MSSM$

• **Bino-like DM:** LZ Experiments: Higgsino mass  $\mu \gtrsim 380 \,\text{GeV}$ ,  $LZ + LHC + a_{\mu}$ :  $\mu \gtrsim 500 \,\mathrm{GeV},$ A tuning of 1% in EWSB; • Singlino-like DM:  $2|\kappa|/\lambda < 1,$ LZ Experiments:  $\lambda < 0.1$ , Bayesian evidence is heavily suppressed  $\rightarrow$  A fine-tuning theory!



### **General Next-to-Minimal Supersymmetric** Standard Model (GNMSSM)

| • | Chiral | Su       | oerfie | ld |
|---|--------|----------|--------|----|
| • | • ••   | $\sim$ - |        |    |

| SF          | Spin 0          | Spin $\frac{1}{2}$ | Generations | $ $ (U(1) $\otimes$ SU(2) $\otimes$ SU(3)   |
|-------------|-----------------|--------------------|-------------|---------------------------------------------|
| $\hat{q}$   | ilde q          | q                  | 3           | $\left(rac{1}{6}, 2, 3 ight)$              |
| $\hat{l}$   | $ $ $\tilde{l}$ | l                  | 3           | $\left(-rac{1}{2}, 2, 1 ight)$             |
| $\hat{H}_d$ | $H_d$           | $	ilde{H}_d$       | 1           | $\left(-rac{1}{2}, 2, 1 ight)$             |
| $\hat{H}_u$ | $H_u$           | $	ilde{H}_u$       | 1           | $(\frac{1}{2}, 2, 1)$                       |
| $\hat{d}$   | $	ilde{d}_R^*$  | $d_R^*$            | 3           | $\left(\frac{1}{3}, 1, \overline{3}\right)$ |
| $\hat{u}$   | $	ilde{u}_R^*$  | $u_R^*$            | 3           | $\left(-\frac{2}{3},1,\overline{3} ight)$   |
| $\hat{e}$   | $	ilde{e}_R^*$  | $e_R^*$            | 3           | (1, <b>1</b> , <b>1</b> )                   |
| ŝ           | S               | $	ilde{S}$         | 1           | (0, <b>1</b> , <b>1</b> )                   |

Superpotential — no ad hoc symmetry!  $W = W_{Yukawa} + \lambda \hat{S}\hat{H}$ 

- Solve domain wall and tapole problem in  $\mathbb{Z}_3$  NMSSM.
- $\mathbb{Z}_3$ -violating terms originate from unified theories with  $\mathbb{Z}_4^R$ .
- The  $\xi \hat{S}$  term can be eliminated by field redefinitions.

$$\hat{H}_{u} \cdot \hat{H}_{d} + \frac{1}{3}\kappa\hat{s}^{3} + \mu\hat{H}_{u} \cdot \hat{H}_{d} + \frac{1}{2}\mu'\hat{s}^{2} + \xi\hat{S}$$



#### **A** Neutralino mass matrix in the base $\psi \equiv (\tilde{B}, \tilde{W}, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S})$

$$\mathcal{M} = \begin{pmatrix} M_1 & 0 & -m_Z \sin \theta_W \cos \theta_$$

with 
$$\mu_{tot} \equiv \lambda v_s / \sqrt{2} + \mu$$
,  $m_N \equiv \sqrt{2} \kappa v_s + \mu' \circ$ 

**Diagonalizing**  $\mathcal{M}$  gives five mass eigenstates:

$$\tilde{\chi}_i^0 = N_{i1}\psi_1^0 + N_{i2}\psi_2^0 + N_{i3}\psi_3^0 + N_{i4}\psi_4^0 + N_{$$

## --- Singlino-dominated DM

 $\begin{array}{ll} \cos\beta & m_Z \sin\theta_W \sin\beta & 0 \\ \sin\beta & -m_Z \cos\theta_W \sin\beta & 0 \end{array}$  $\begin{array}{ll} -\mu_{tot} & -\frac{1}{\sqrt{2}}\lambda v\sin\beta \\ 0 & -\frac{1}{\sqrt{2}}\lambda v\cos\beta \\ & m_N \end{array}$ 

 $N_{i5}\psi_5^0$ 

DM candidate:  $\tilde{S}$ -dominated  $\tilde{\chi}_1^0$  LSP,  $m_{\tilde{\chi}_1^0} \simeq m_N$ Relic abundance:  $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow h_s A_s, h_s h_s, A_s A_s, \dots$ S - H coannihilation



$$\sigma_{\tilde{\chi}_{1}^{0}-N}^{\text{SI}} \simeq 5 \times 10^{-45} \text{cm}^{2} \times (\frac{V_{h}^{\text{SM}} C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} h} + V_{h_{s}}^{\text{SM}} C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} h_{s}}}{0.1})^{2}, \quad \sigma_{\tilde{\chi}_{1}^{0}-N}^{\text{SD}} \simeq 10^{-39} \text{cm}^{2} \times (\frac{C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} Z}}{0.1})^{2},$$

$$C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h_{i}} \simeq \frac{\sqrt{2}\mu_{\text{tot}}}{\nu} \left(\frac{\lambda\nu}{\mu_{\text{tot}}}\right)^{2} \frac{V_{h_{i}}^{\text{SM}}(m_{\tilde{\chi}_{1}^{0}}/\mu_{\text{tot}} - \sin 2\beta)}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu_{\text{tot}})^{2}} + \dots, \quad C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z} \simeq \frac{m_{Z}}{\sqrt{2}\nu} \left(\frac{\lambda\nu}{\mu_{\text{tot}}}\right)^{2} \frac{\cos 2\beta}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu_{\text{tot}})^{2}}$$

DM properties are described by five independent parameters:  $\tan\beta$ ,  $\lambda$ ,  $\kappa$ ,  $\mu_{tot}$ , and  $m_{\tilde{\chi}_1^0}$ 

Note that,

## - Singlino-dominated DM

#### **Different from** $\mathbb{Z}_3$ -**NMSSM**, $\lambda$ , $\kappa$ , and $m_{\tilde{\chi}_1^0}$ are disentangled here!





$$-\mathscr{L}_{soft} = \left[ \lambda A_{\lambda} S H_{u} \cdot H_{d} + \frac{1}{3} \kappa A_{\kappa} S^{3} + m_{3}^{2} H_{u} \cdot H_{d} + \frac{1}{2} m_{S}^{\prime 2} S^{2} + \xi^{\prime} S + h \cdot c \right]$$

 $+m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2$ ,



$$\mathcal{M}_{S,13}^2 = -\frac{m}{\sqrt{2}}(A_{\lambda} + m_N)\cos 2\beta, \quad \mathcal{M}_{S,22}^2 =$$

$$\mathscr{M}_{S,23}^2 = \frac{\lambda v}{\sqrt{2}} \left[ 2\mu_{tot} - (A_\lambda + m_N) \sin 2\beta \right], \quad \mathscr{M}$$

 $h_i = V_{h_i}^{\text{NSM}} H_{\text{NSM}} + V_{h_i}^{\text{SM}} H_{\text{SM}} + V_{h_i}^{\text{S}} \text{Re}[S]$ 



# **CP-even Squared Mass Matrix, in the base** $(H_{\text{NSM}}, H_{\text{SM}}, \text{Re}[S])$ : $\chi^2_{S,22} = m_Z^2 \cos^2 2\beta + \frac{1}{2}\lambda^2 v^2 \sin^2 2\beta,$

 $\mathscr{M}^2_{S,33} = m^2_B,$ 

3 CP-even Scalar:  $h_s$ , h, H; 2 CP-odd Scalar:  $A_S, A_H$ ; Charged Higgs:  $H^{\pm}$ 







$$\gamma = \frac{1}{\sigma_{\rm SM}(pp \to h_s)} \times \frac{1}{{\rm Br}_{\rm SM}(h_s \to \gamma)}$$

#### Normalized *bb* signal strength

$$\mu_{b\bar{b}} = \frac{\sigma_{\rm SUSY}(e^+e^- \to Zh_s)}{\sigma_{\rm SM}(e^+e^- \to Zh_s)} \times \frac{{\rm Br}_{\rm SUSY}(h_s)}{{\rm Br}_{\rm SM}(h_s)}$$

#### -95.4 GeV CP-even Scalar

 $\mu_{\gamma\gamma} = \frac{\sigma_{\rm SUSY}(pp \to h_s)}{\sigma_{\rm SUSY}(np \to h_s)} \times \frac{{\rm Br}_{\rm SUSY}(h_s \to \gamma\gamma)}{{\rm Br}_{\rm SUSY}(h_s \to \gamma\gamma)} \simeq |C_{h_sgg}|^2 \times |C_{h_s\gamma\gamma}|^2 \times \frac{1}{{\rm R}_{\rm Width}},$ 

 $\frac{h_s \to bb}{\to b\bar{b}} \simeq \left| C_{h_s VV} \right|^2 \times \left| C_{h_s b\bar{b}} \right|^2 \times \frac{1}{R_{Width}},$ 

 $\mathbf{R}_{\text{Width}} \simeq 0.801 \times |C_{h_s b\bar{b}}|^2 + 0.083 \times |C_{h_s \tau \bar{\tau}}|^2 + 0.041 \times |C_{h_s c\bar{c}}|^2 + 0.067 \times |C_{h_s g\bar{g}}|^2 + \dots$ 



$$C_{h_{s}t\bar{t}} = V_{h_{s}}^{\text{SM}} + V_{h_{s}}^{\text{NSM}} \cot \beta \simeq V_{h_{s}}^{\text{SM}}, \quad C_{h_{s}b\bar{b}} = V_{h_{s}}^{\text{SM}} - V_{h_{s}}^{\text{NSM}} \tan \beta, \quad C_{h_{s}VV} = V_{h_{s}}^{\text{SM}},$$

$$C_{h_{s}c\bar{c}} = C_{h_{s}t\bar{t}}, \quad C_{h_{s}c\bar{\tau}} = C_{h_{s}b\bar{b}}, \quad C_{h_{s}gg} \simeq C_{h_{s}t\bar{t}}, \quad C_{h_{s}\gamma\gamma} \simeq V_{h_{s}}^{\text{SM}},$$
Considering loop mediated by quarks and squarks:
$$C_{h_{s}gg} \text{ and } C_{h_{s}\gamma\gamma} \text{ deviates from } C_{h_{s}t\bar{t}} \text{ by } 4\% \text{ and } 11\%;$$
Central values of  $\mu_{\gamma\gamma}$  and  $\mu_{b\bar{b}}$  corresponds to:
$$V^{\text{SM}} = 0.25 \quad (V^{\text{SM}} - V^{\text{NSM}} + v^{\text{CM}}) = 0.91 \times V^{\text{SM}} = 0.29$$

 $V_{h_s}^{\text{SIM}} \simeq 0.35, \ (V_{h_s}^{\text{SIM}} - V_{h_s}^{\text{INSIM}} \tan \beta) \simeq 0.81 \times V_{h_s}^{\text{SIM}} \simeq 0.28$ 

 $Br_{SUSY}(h_s \rightarrow \gamma \gamma) \simeq 1.77 \times Br_{SM}(h_s \rightarrow \gamma)$ 

 $Br_{SUSY}(h_s \rightarrow b\bar{b}) \simeq 0.95 \times Br_{SM}(h_s \rightarrow b\bar{b})$ 

### **GNMSSM** — 95.4 GeV CP-even Scalar

$$(\gamma\gamma) \simeq 2.5 \times 10^{-3}$$

$$b\bar{b}) \simeq 76.1\%$$





#### Using eigenstate equation, one can obatain:

$$V_{h_s}^{\text{NSM}} \simeq \frac{V_{h_s}^S}{\sqrt{2}} \times \frac{\lambda v \bar{A}_\lambda \cos 2\beta}{m_A^2}, \quad \lambda \left(\mu_{tot} - \bar{A}_\lambda \sin \beta \cos \beta\right) \simeq \frac{V_{h_s}^{\text{SM}} V_{h_s}^S}{\sqrt{2}} \times \frac{m_{h_s}^2 - m_h^2}{v},$$
$$m_B^2 \simeq m_{h_s}^2 |V_{h_s}^S|^2 + m_h^2 |V_{h_s}^{\text{SM}}|^2, \quad \mathcal{M}_{S,22}^2 \simeq m_h^2 |V_{h_s}^S|^2 + m_{h_s}^2 |V_{h_s}^{\text{SM}}|^2,$$

with  $A_{\lambda} \equiv A_{\lambda} + m_N$ . This implies that  $\lambda \simeq 0.06 \times \left(\frac{V_{h_s}^{\text{SM}}}{0.35}\right) \times \left(\frac{\mu_{tot} - \bar{A}_{\lambda} \sin\beta\cos\beta}{100 \text{ Gev}}\right)^{-1},$  $\lambda \gtrsim 0.017 \times \frac{1}{|\cos 2\beta|} \times \left(\frac{\tan \beta}{50}\right)^{-1} \times \left(\frac{\bar{A}_{\lambda}}{2 \text{ TeV}}\right)^{-1} \times \left(\frac{m_A}{2 \text{ TeV}}\right)^2,$ 

### -95.4 GeV CP-even Scalar



$$\begin{aligned} a_{\mu,\text{WHL}}^{\text{SUSY}} &= \frac{\alpha_2}{8\pi} \frac{m_{\mu}^2 M_2 \mu \tan \beta}{m_{\tilde{\nu}_{\mu}}^4} \left\{ 2f_C \left( \frac{M_2^2}{m_{\tilde{\nu}_{\mu}}^2}, \frac{\mu^2}{m_{\tilde{\nu}_{\mu}}^2} \right) \right. \\ a_{\mu,\text{BHL}}^{\text{SUSY}} &= \frac{\alpha_Y}{8\pi} \frac{m_{\mu}^2 M_1 \mu \tan \beta}{M_{\tilde{\mu}_L}^4} f_N \left( \frac{M_1^2}{M_{\tilde{\mu}_L}^2}, \frac{\mu^2}{M_{\tilde{\mu}_L}^2} \right) \\ a_{\mu,\text{BHR}}^{\text{SUSY}} &= -\frac{\alpha_Y}{4\pi} \frac{m_{\mu}^2 M_1 \mu \tan \beta}{M_{\tilde{\mu}_R}^4} f_N \left( \frac{M_1^2}{M_{\tilde{\mu}_R}^2}, \frac{\mu^2}{M_{\tilde{\mu}_R}^2} \right) \\ a_{\mu,\text{BLR}}^{\text{SUSY}} &= \frac{\alpha_Y}{4\pi} \frac{m_{\mu}^2 M_1 \mu \tan \beta}{M_1^4} f_N \left( \frac{M_{\mu}^2}{M_1^2}, \frac{M_{\mu}^2}{M_1^2} \right) \end{aligned}$$

•  $a_u^{\text{SUSY}} \propto m_u^2 \tan \beta / M_{\text{SUSY}}^2$ , favor a larger  $\tan \beta$  and low SUSY scale

- $a_{\mu,\text{WHL}}^{\text{SUSY}}$  dominates when  $\mu \lesssim 1$  TeV and  $\tilde{\mu}_L$  is not much heavier than  $\tilde{\mu}_R$





•  $a_{\mu,\text{BLR}}^{\text{SUSY}}$  linearly relies on  $\mu$ , especially,  $\mu \gtrsim 30$  TeV is capable of predicting  $\Delta a_{\mu}$ 

## **Sampling Strategy**

$$\mathscr{L}_{\Delta a_{\mu}} = \exp\left[-\frac{1}{2}\left(\frac{a_{\mu}^{\mathrm{SUSY}} - 2.49 \times 10^{-9}}{4.8 \times 10^{-10}}\right)^{2}\right], \quad \mathscr{L}_{\gamma\gamma+b\bar{b}} = \exp\left[-\frac{1}{2}\left(\frac{\mu_{\gamma\gamma} - 0.24}{0.08}\right)^{2} - \frac{1}{2}\left(\frac{\mu_{b\bar{b}} - 0.117}{0.057}\right)^{2}\right]_{m_{h_{s}} \simeq 9566}$$

- ✓ Masses of Higgs bosons: m<sub>h<sub>s</sub></sub> ~ 95.4 GeV
   ✓ Higgs data fit using *HiggsSignals-2.6.2* ✓ Extra Higgs searches using *HiggsBounds* ✓ DM relic density: 20% uncertainties of Ω
   ✓ LZ SI and SD DM-nucleon scattering cross
   ✓ B physics observables: B<sub>s</sub> → μ<sup>+</sup>μ<sup>-</sup> and B
- Vacuum stability using *Vevacious*++

| $jeV, m_h \sim 125 \text{ GeV}$                   |                             |       |                   |
|---------------------------------------------------|-----------------------------|-------|-------------------|
| · 11                                              | Parameter                   | Prior | Range             |
| 5.2                                               | $\lambda$                   | Flat  | $0.001 \sim 0.03$ |
| . –                                               | aneta                       | Flat  | $5\sim 60$        |
| inds-5.10.2                                       | $\mu_{ m tot}/{ m TeV}$     | Flat  | $0.4 \sim 1.0$    |
|                                                   | $A_t/{ m TeV}$              | Flat  | $1.0\sim 3.0$     |
| - 12 - 120                                        | $M_1/{ m TeV}$              | Flat  | $-1.0 \sim -0.2$  |
| $DI  \Omega 2n^{-} = 0.120$                       | $M_{	ilde{\mu}_L}/{ m TeV}$ | Flat  | $0.2\sim 1.0$     |
|                                                   | $\kappa$                    | Flat  | $-0.2\sim 0.2$    |
| cross sections                                    | $m_B/{ m GeV}$              | Flat  | $90 \sim 120$     |
| )                                                 | $m_N/{ m TeV}$              | Flat  | $-1.0 \sim 1.0$   |
| $\mathbf{A} \mathbf{D} \to \mathbf{V} \mathbf{u}$ | $A_{\lambda}/{ m TeV}$      | Flat  | $1.0\sim 3.0$     |
| $\Pi D \to \Lambda_{S} \gamma$                    | $M_2/{ m TeV}$              | Flat  | $0.3 \sim 1.0$    |
|                                                   | $M_{	ilde{\mu}_R}/{ m TeV}$ | Flat  | $0.2 \sim 1.0$    |





21/26 连经伟 HIST & HNU

- Scan yields > 92000 points,
- about 50000 samples explains the anomalies at  $2\sigma$ .
- Bayesian evidence:

 $\tilde{S}$ -like  $\tilde{\chi}_1^0$ , coannihilating with  $\tilde{H}$ , 74%  $\tilde{B}$ -like  $\tilde{\chi}_1^0$ , coannihilating with  $\tilde{W}$ , 26%

• Best points:

$$\chi^2_{\gamma\gamma+b\bar{b}} + \chi^2_{\Delta a_{\mu}} = 0.20$$
 for  $\tilde{B}$  case

$$\chi^2_{\gamma\gamma+b\bar{b}} + \chi^2_{\Delta a_{\mu}} = 0.04$$
 for  $\tilde{S}$  case.

| Number Constraints | $DM(\Omega h^2 + LZ)$ | $DM + \mu_{95}$ | $DM + \mu_{95} + ($ |
|--------------------|-----------------------|-----------------|---------------------|
| Scenario           | Grey                  | Green           | Dark Gr             |
| Bino-DM            | 17368                 | 14416           | 8408                |
| Singlino-DM        | 59038                 | 38731           | 20851               |







23/26 连经伟 HIST & HNU

- $|C_{h_sgg}|, |C_{h_s\gamma\gamma}| > |C_{h_st\bar{t}}|,$
- $|C_{h,b\bar{b}}|$  suppressed
- $Br_{SUSY}(h_s \to \gamma\gamma), Br_{SUSY}(h_s \to b\bar{b})$  strongly correlate
- $|C_{h,b\bar{b}}|, |C_{h,t\bar{t}}|$  loosely correlate Bino-DM case:

 $|C_{h,t\bar{t}}| \simeq |C_{h,VV}| \simeq 0.37, |C_{h,b\bar{b}}| \simeq 0.33, |C_{h,gg}| \simeq 0.38,$  $|C_{h_s\gamma\gamma}| \simeq 0.41, \operatorname{Br}_{SUSY}(h_s \to \gamma\gamma) \simeq 0.25\%,$  $Br_{SUSY}(h_s \to b\bar{b}) \simeq 81 \%, \mu_{\gamma\gamma} = 0.22, \mu_{b\bar{b}} = 0.13$ Singlino-DM case:  $|C_{h,t\bar{t}}| \simeq |C_{h,VV}| \simeq 0.35, |C_{h,b\bar{b}}| \simeq 0.29, |C_{h,gg}| \simeq 0.37,$  $|C_{h_s\gamma\gamma}| \simeq 0.39, \operatorname{Br}_{\operatorname{SUSY}}(h_s \to \gamma\gamma) \simeq 0.28\%,$  $Br_{SUSY}(h_s \to b\bar{b}) \simeq 79\%, \mu_{\gamma\gamma} = 0.24, \mu_{b\bar{b}} = 0.12$ 









- $|C_{hb\bar{b}}|, |C_{h_s\gamma\gamma}| > |C_{h_st\bar{t}}|,$
- $Br_{SUSY}(h \to \gamma\gamma), Br_{SUSY}(h \to b\bar{b})$  loosely correlate
- $Br_{SUSY}(h \rightarrow b\bar{b}): 55.8\%-59.5\% \text{ (SM } 57.7 \pm 1.8\%)$
- $Br_{SUSY}(h \to \gamma \gamma)$ : 2.95 × 10<sup>-3</sup> 3.13 × 10<sup>-3</sup>,  $(SM (2.28 \pm 0.11) \times 10^{-3})$ , because  $C_{hgg} < 1$









### Conclusion

- searches SUSY particles.

- Future colliders experiments, e.g. HL-LHC, CEPC, are worth looking forward to.

• The GNMSSM can simultaneously account for the  $(g - 2)_{\mu}$  anomaly and the  $\gamma\gamma$  and bb excesses at a  $1\sigma$  level, without conflicting with constraints from Higgs data fit, B-physics, the Planck and LZ experiments, the vacuum stability considerations, as well as the LHC's

• DM physics significantly influences the unified explanation through the crucial parameter  $\mu_{\text{tot}}$ .  $\tilde{B}$ -case and  $\tilde{S}$ -case co-annihilate with  $\tilde{W}$  and  $\tilde{H}$  respectively, contributing to 26% and 74% of the total Bayesian evidence, featuring  $\mu_{tot} \gtrsim 600$  GeV and  $\mu_{tot} \gtrsim 400$  GeV.

• The explanation of the 95 GeV excesses favor moderately large  $V_{h_s}^{\text{SM}}$  and suppressed  $C_{h_s b \bar{b}}$ .

• Further work involving cosmological phase transition and stochastic GW are carrying out.











# Backup **Bino DM** (same as MSSM and $Z_3$ -NMSSM) $\hat{\chi}_1^0$ 与核子的自旋无关(SI)和自旋相关(SD)散射截面:

$$\sigma_{\tilde{\chi}_{1}^{0}-N}^{\text{SI}} \simeq 5 \times 10^{-45} \text{cm}^{2} \left(\frac{C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}h}}{0.1}\right)^{2} \left(\frac{m_{h}}{125 \text{GeV}}\right)^{2}, \qquad \sigma_{\tilde{\chi}_{1}^{0}-N}^{\text{SD}} \simeq C_{N} \times \left(\frac{C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}Z}}{0.1}\right)^{2}, \quad C_{N} \simeq 2.3 \times 10^{-41} \text{cm}^{2}$$

$$C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}h} \simeq e \tan \theta_{W} \frac{m_{Z}}{\mu_{\text{tot}}(1 - m_{\tilde{\chi}_{1}^{0}}^{2}/\mu_{\text{tot}}^{2})} \left(\sin 2\beta + \frac{m_{\tilde{\chi}_{1}^{0}}}{\mu_{\text{tot}}}\right), \qquad C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}Z} \simeq \frac{e \tan \theta_{W} \cos 2\beta}{2} \frac{m_{Z}^{2}}{\mu_{\text{tot}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}},$$

• Conservative bounds on Higgsino mass: LZ Experiment:  $\mu \gtrsim 380$  GeV,  $LZ + LHC + a_{\mu}$ :  $\mu \gtrsim 500$  GeV. • Higgsino mass is related with electroweak symmetry breaking!  $m_Z^2 = 2(m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta) / (\tan^2 \beta - 1) - 2\mu^2.$ 



A tuning of about 1%

## Backup

#### Parameter space scanned by *MultiNest*:



$$\mathscr{L}_{\Delta a_{\mu}} = \exp$$

#### Likelihood function:

 $\mathscr{L}_{\gamma\gamma+b\bar{b}} = \exp$ 

$$\mathscr{L} \equiv \mathscr{L}_{\Delta a_{\mu}}$$

|   | р.    |                   |                             |       |                 |
|---|-------|-------------------|-----------------------------|-------|-----------------|
|   | Prior | Range             | Parameter                   | Prior | Range           |
|   | Flat  | $0.001 \sim 0.03$ | $\kappa$                    | Flat  | $-0.2\sim 0.2$  |
|   | Flat  | $5\sim 60$        | $m_B/{ m GeV}$              | Flat  | $90 \sim 120$   |
|   | Flat  | $0.4 \sim 1.0$    | $m_N/{ m TeV}$              | Flat  | $-1.0 \sim 1.0$ |
|   | Flat  | $1.0\sim 3.0$     | $A_\lambda/{ m TeV}$        | Flat  | $1.0\sim 3.0$   |
|   | Flat  | $-1.0\sim-0.2$    | $M_2/{ m TeV}$              | Flat  | $0.3 \sim 1.0$  |
| • | Flat  | $0.2 \sim 1.0$    | $M_{	ilde{\mu}_R}/{ m TeV}$ | Flat  | $0.2 \sim 1.0$  |

$$\begin{bmatrix} -\frac{\chi_{\Delta a_{\mu}}^{2}}{2} \end{bmatrix} = \exp\left[-\frac{1}{2}\left(\frac{a_{\mu}^{\text{SUSY}} - 2.49 \times 10^{-9}}{4.8 \times 10^{-10}}\right)^{2}\right]$$
$$\begin{bmatrix} -\frac{\chi_{\gamma\gamma+b\bar{b}}^{2}}{2} \end{bmatrix} = \exp\left[-\frac{1}{2}\left(\frac{\mu_{\gamma\gamma} - 0.24}{0.08}\right)^{2} - \frac{1}{2}\left(\frac{\mu_{b\bar{b}} - 0.117}{0.057}\right)^{2}\right]_{m_{h_{s}}^{2}}$$

 $_{a_{\mu}} \times \mathscr{L}_{\gamma\gamma+b\bar{b}} \times \mathscr{L}_{\text{Res}}$ 



≥95GeV