

New version of NeatIBP

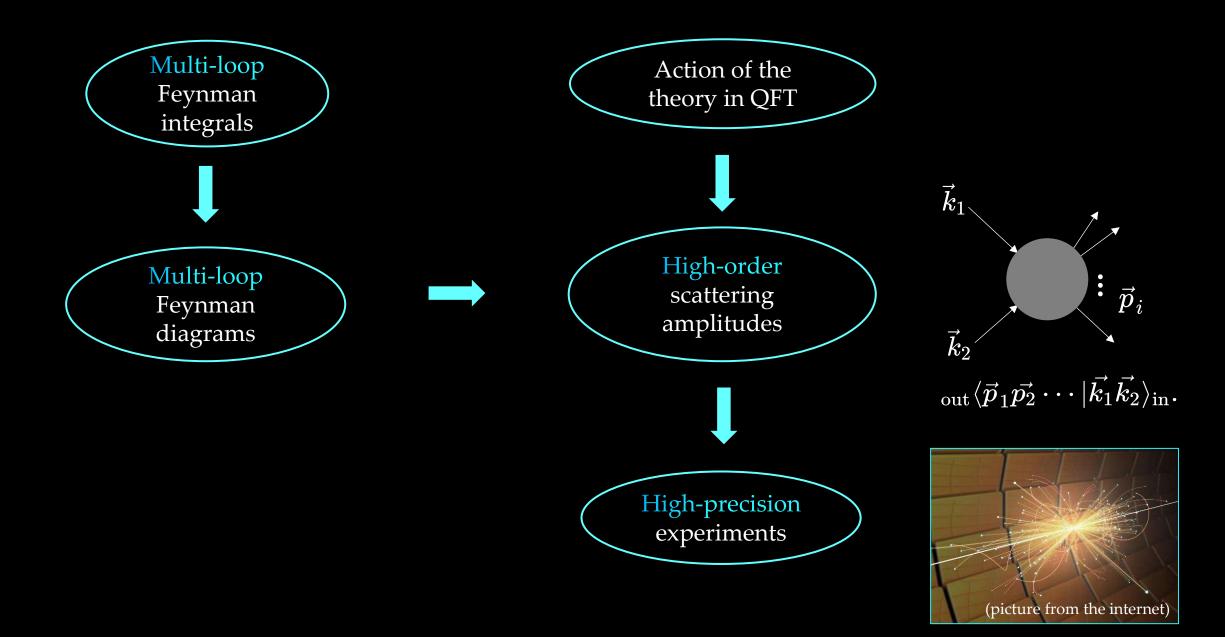
A novel tool for Feynman integral computation

Zihao Wu

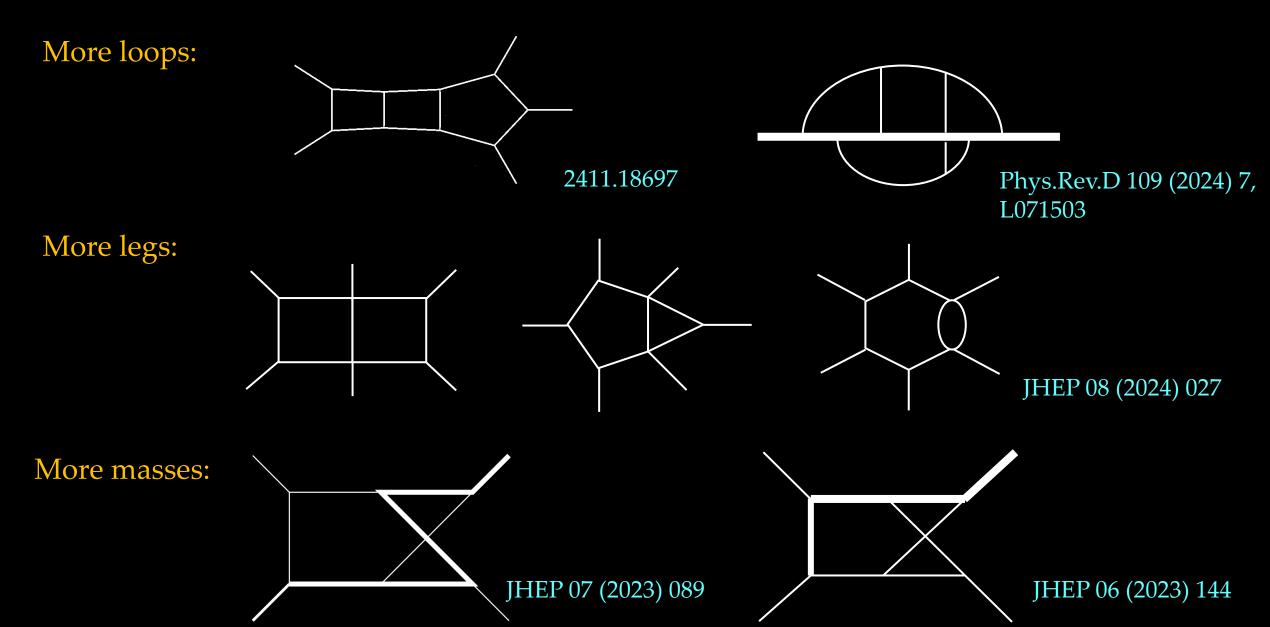
Based on:

NeatIBP 1.1: ZW, Janko Boehm, Rourou Ma, Johann Usovitsch, Yingxuan Xu, Yang Zhang, arXiv: 2502.20778 NeatIBP 1.0: ZW, Janko Boehm, Rourou Ma, Hefeng Xu, Yang Zhang, Comput.Phys.Commun. 295 (2024) 108999

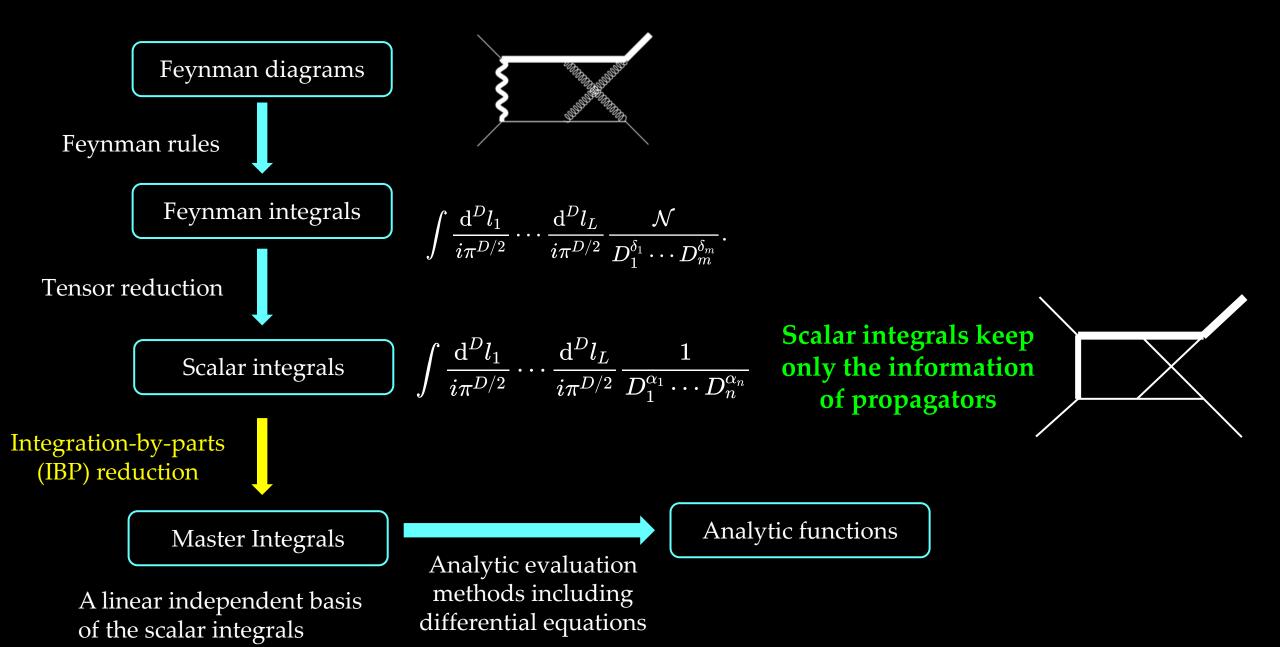
Multi-loop Feynman integrals in particle physics



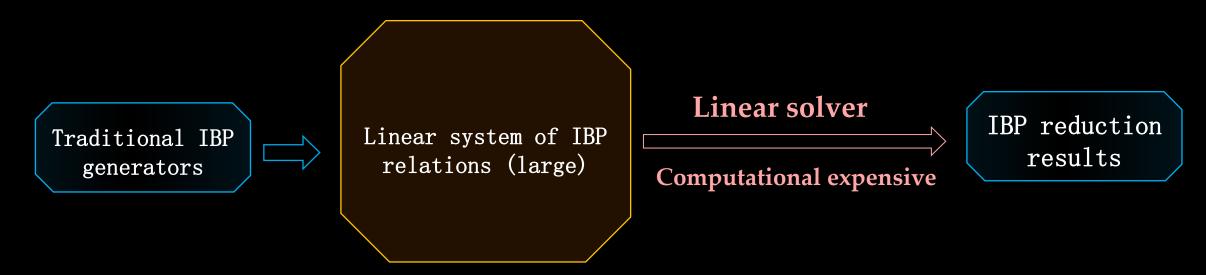
Multi-loop Feynman integrals, frontiers



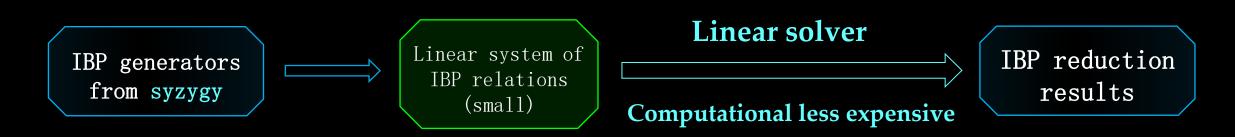
Feynman integral reduction



Traditional IBP algorithm

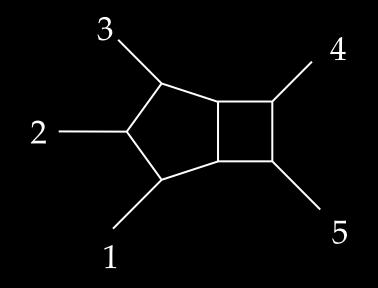


NeatIBP:



Performance of NeatIBP

2L5P Example



Target integrals: Max numerator degree: 5 Max denominator power: 1 Quantity: 2483

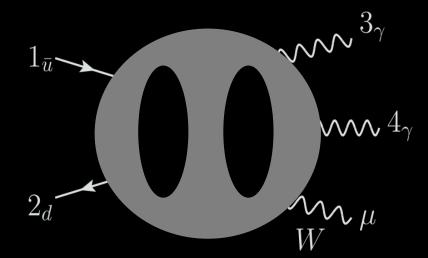
of IBP (FIRE6): **11207942**

of IBP (NeatIBP): **14120**

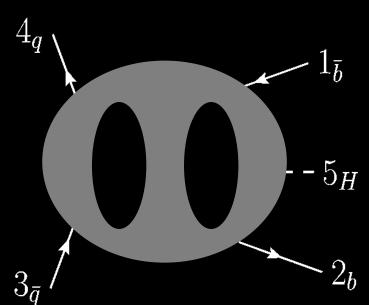
Time used: 27m at

CPU threads: 20 RAM: 128GB

Application of NeatIBP: Two-loop-five-point diagrams in phenomenology processes

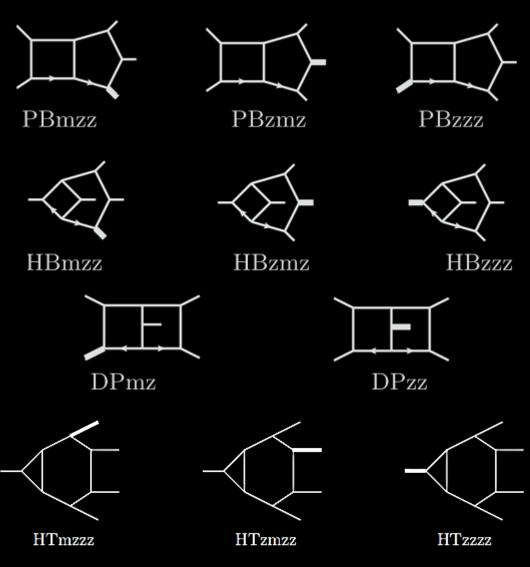


Simon Badger, Heribertus Bayu Hartanto, ZW, Yang Zhang and Simone Zoia, JHEP 03 (2025) 066



Simon Badger, Heribertus Bayu Hartanto, Rene Poncelet, ZW, Yang Zhang and Simone Zoia, *JHEP* 12 (2025) 221

Relevant Feynman diagrams



NeatIBP generated IBP relations within hours for each diagram

JHEP 03 (2025) 066:

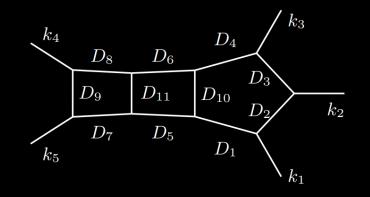
"This (using NeatIBP) improves the evaluation of the solution to the IBP relations, resulting in both a speed up in the finite-field sampling of the rational coefficients of the amplitudes and in a reduction of its memory footprint (by around 8 times and 3 times, respectively, for the leading colour two-loop five-particle amplitudes)."

Application of NeatIBP: Three-loop-five-point diagrams

Yuanche Liu, Antonela Matija`si' c, Julian Miczajka, Yingxuan Xu, Yongqun Xu, Yang Zhang, 2411.18697

Analytic evaluation of the master integrals for the Pentagon-box-box diagram via differential equations

Target integrals: integrals needed for DE of master integrals



"On a laptop, NeatIBP finds about 85000 IBP identities in full kinematics dependence within several hours. These relations are sufficient to derive the differential equation. As a comparison, standard IBP tools would generate three orders of magnitude more IBP relations, which make the reduction computation impossible."

See also Yongqun Xu's talk

NeatIBP applications

Studies that used NeatIBP	Reference	Date
Two-loop QCD helicity amplitudes for $g \ g \rightarrow g \ t \ \overline{t}$ at leading color	JHEP 03 (2025) 070	2025.3.11
Full-color double-virtual amplitudes for $q \ \overline{q} \rightarrow b \ \overline{b} H$	JHEP 03 (2025) 066	2025.3.11
Three-loop five-point pentagon-box-box Feynman diagram	arXiv: 2411.18697	2024.11.27
Two-loop QCD corrections for $p \ p \rightarrow t \ \overline{t} \ j$	arXiv: 2411.10856	2024.11.16
Two-loop amplitudes for $W \gamma \gamma$ production at LHC	JHEP 12 (2025) 221	2024.12.30
NLO corrections to $J/\Psi c \bar{c}$ photoproduction	Phys.Rev.D 110 (2024) 9, 094047	2024.11.11
Two-loop five-point two-mass planar integrals	JHEP 10 (2024) 167	2024.10.23
Two-loop integrals for $t \bar{t} j$ production at hadron colliders in the leading color approximation	JHEP 07 (2024) 073	2024.7.9

You may also try NeatIBP in your projects

https://github.com/yzhphy/NeatIBP

Contents

Algorithms and features in NeatIBP 1.0

Main new features in the NeatIBP 1.1

1. The Kira+NeatIBP interface

2. The spanning cuts method

3. Algorithm of syzygy vector simplification

Integration by parts reduction

Feynman integral family

$$I[lpha_1,\cdots,lpha_n] = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}}\cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}}rac{1}{D_1^{lpha_1}\cdots D_n^{lpha_n}}$$

IBP relations

$$0 = \int \frac{\mathrm{d}^{D} l_{1}}{i\pi^{D/2}} \cdots \frac{\mathrm{d}^{D} l_{L}}{i\pi^{D/2}} \frac{\partial}{\partial l_{k}^{\mu}} \frac{v^{\mu}}{D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}} \qquad 0 = \sum_{\{\alpha_{i}\}} c_{\alpha_{1} \cdots \alpha_{n}}^{i} I[\alpha_{1}, \cdots, \alpha_{n}]$$
IBP reduction
Gaussian
Elimination
I[\alpha_{1}, \cdots, \alpha_{n}] = \sum_{i=1}^{N} c_{i} I_{i}
Coefficients

IBP relations in with multiple propagators

Target integrals $G[1, 1, 1, \dots, 1, -1, -4]$ $G[1, 1, 1, \dots, 1, -5, 0]$...

$$\begin{array}{c} \text{IBP-Related integrals} \\ G[1,1,0,\cdots,1,-1,-2] & G[0,1,1,\cdots,2,0,-1] \\ G[2,1,0,\cdots,1,-1,-1] & G[0,1,1,\cdots,0,0,-2] \\ G[1,1,0,\cdots,1,-3,-1] & G[1,2,0,\cdots,1,-3,0] \\ \dots \end{array}$$

 $egin{array}{c} Master integrals \ G[1,1,1,\cdots,1,-1,0] \ G[1,1,1,\cdots,1,0,0] \ \ldots \end{array}$

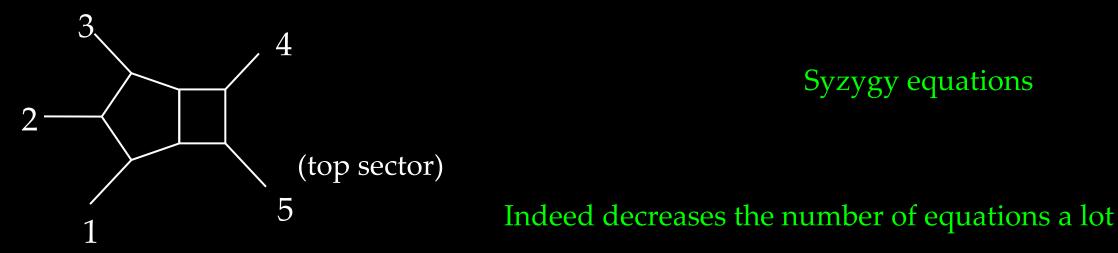
Contains **redundant integrals** with denominator indices lifted

$$0 = \int \frac{\mathrm{d}^{D} l_{1}}{i\pi^{D/2}} \cdots \frac{\mathrm{d}^{D} l_{L}}{i\pi^{D/2}} \frac{\partial}{\partial l_{k}^{\mu}} \frac{v^{\mu}}{D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}} = \int \frac{\mathrm{d}^{D} l_{1}}{i\pi^{D/2}} \cdots \frac{\mathrm{d}^{D} l_{L}}{i\pi^{D/2}} \frac{\frac{\partial v^{\mu}}{\partial l_{k}^{\mu}} - v^{\mu} \sum_{i=1}^{n} \frac{\partial D_{i}}{\partial l_{k}^{\mu}} \frac{\alpha_{k}}{D_{i}}}{D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}}$$
Introducing multiple propagators

IBP relations from syzygy method

$$0 = \int \frac{\mathrm{d}^{D} l_{1}}{i\pi^{D/2}} \cdots \frac{\mathrm{d}^{D} l_{L}}{i\pi^{D/2}} \frac{\partial}{\partial l_{k}^{\mu}} \frac{v^{\mu}}{D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}} = \int \frac{\mathrm{d}^{D} l_{1}}{i\pi^{D/2}} \cdots \frac{\mathrm{d}^{D} l_{L}}{i\pi^{D/2}} \frac{\frac{\partial v^{\mu}}{\partial l_{k}^{\mu}} - v^{\mu} \sum_{i=1}^{n} \frac{\partial D_{i}}{\partial l_{k}^{\mu}} \frac{\alpha_{k}}{D_{i}}}{D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}}$$
Introducing multiple propagators

Janusz Gluza, Krzysztof Kajda, David A. Kosower, Phys.Rev.D 83 (2011) 045012 What if we find a good combination of *v* such that the additional *Di* cancels?



NeatIBP: syzygy method in Baikov representation

Feynman integrals in momentum space:

$$I[lpha_1, \cdots, lpha_n] = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{1}{D_1^{lpha_1} \cdots D_n^{lpha_n}}$$
 $\int \int \mathrm{Variable\ transformation}$

Baikov representation: integrates directly over propagators *zi*

$$I[lpha_1,\cdots,lpha_n]=C\int\mathrm{d} z_1\cdots\mathrm{d} z_nP(z)^lpharac{1}{z_1^{lpha_1}\cdots z_n^{lpha_n}}$$

IBP relations in Baikov representation

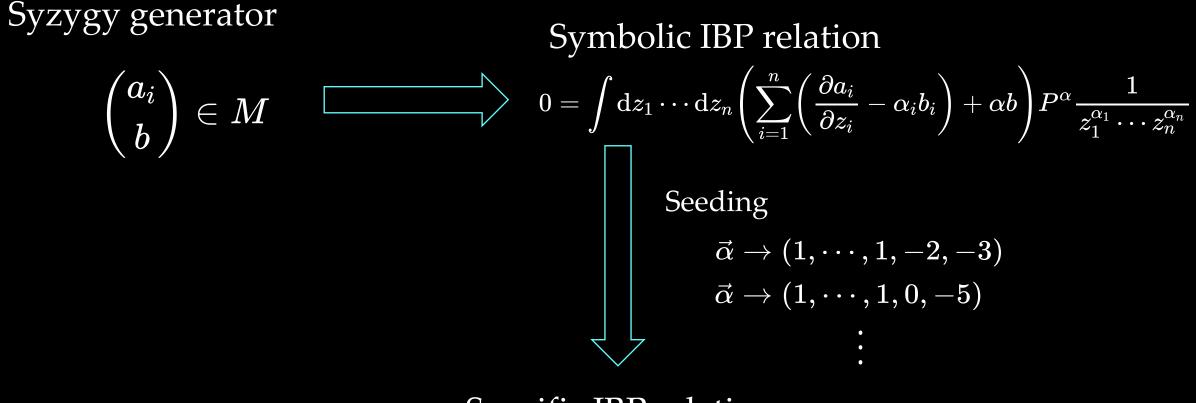
Polynomial equations in Baikov IBP relations

$$\left(\sum_{i=1}^n a_i(z) rac{\partial P}{\partial z_i}
ight) + b(z)P = 0$$

$$a_i(z)=b_i(z)z_i \ \ ext{for} \ i\in \{j|lpha_j>0\}$$

Generators of the solution module

$$egin{pmatrix} a_i \ b \end{pmatrix} \in M \ = < f_1, f_2, \cdots >$$



Specific IBP relation

(# generators) × (# seeds) = (# IBP relations)

IBP relation selection

An enough IBP system $0 = \sum_{j} c_{ij} I_j$ Column reduction (numeric + finite field)

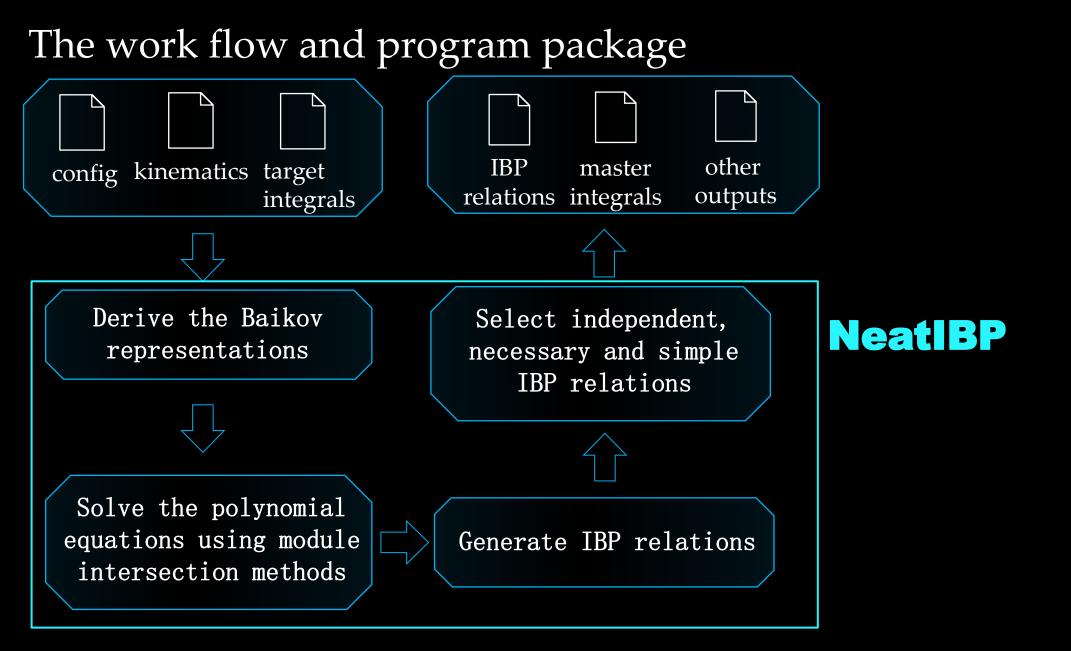
Linearly independent system

$$0=\sum_j { ilde c}_{ij} I_j$$

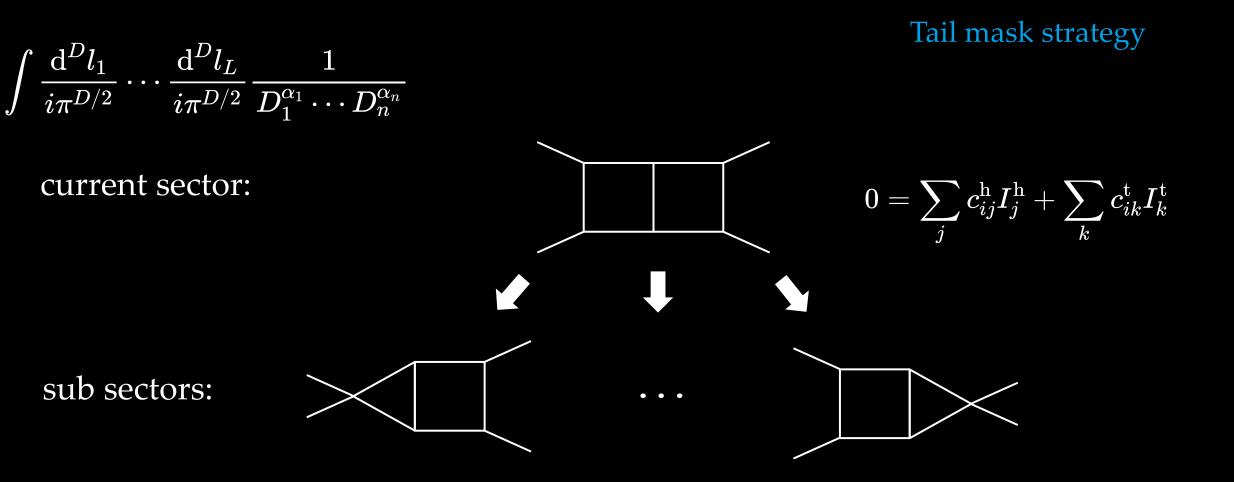
Row reduction (numeric + finite field) $R_{ik} = L_{ij} \tilde{c}_{jk}$

Remove the unneeded relations for reducing the targets

Small-size IBP system minimally needed



Parallelization between sectors



Contents

Algorithms and features in NeatIBP 1.0

Main new features in the NeatIBP 1.1

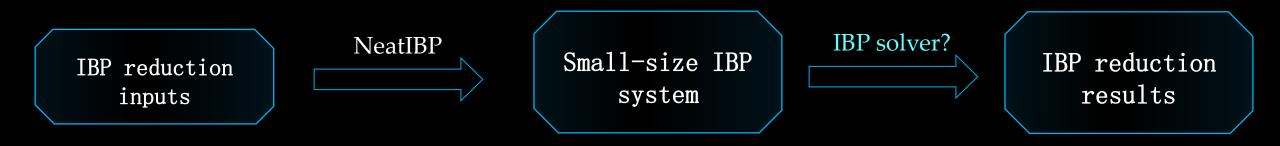
2025.02

1. The Kira+NeatIBP interface

2. The spanning cuts method

3. Algorithm of syzygy vector simplification

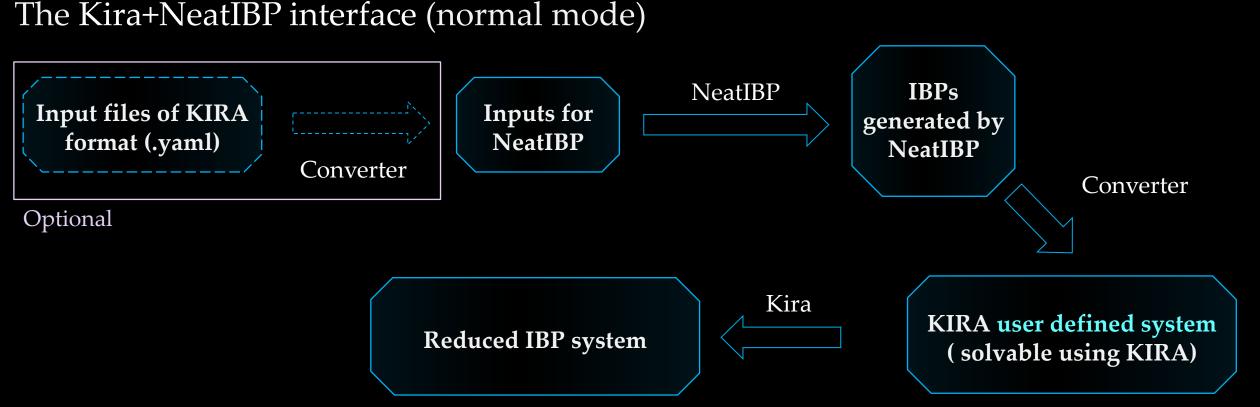
Currently, NeatIBP itself dose not perform IBP reduction



KIRA Comput.Phys.Commun. 230 (2018) 99-112, Comput.Phys.Commun. 266 (2021) 108024, etc. as a popular integral reduction software, is a very nice IBP solver for NeatIBP output.

Kira allows user to feed in linear systems of IBP relations (called user defined system) and then reduce them .

The Kira+NeatIBP interface is included in NeatIBP 1.1



In NeatIBP 1.1, to use Kira to reduce the IBP generated by NeatIBP, add the following commands into NeatIBP "config.txt"

PerformIBPReduction=True; IBPReductionMethod="Kira"; KiraCommand="/some/path/kira" FermatPath="/some/path/fer64"

Contents

Algorithms and features in NeatIBP 1.0

Main new features in the NeatIBP 1.1

1. The Kira+NeatIBP interface

2. The spanning cuts method

3. Algorithm of syzygy vector simplification

Generalized unitarity cuts in Baikov representation

$$I_{lpha_1,\cdots,lpha_n}|_{\mathcal{C}- ext{cut}} \propto \oint_0 \prod_{i\in\mathcal{C}} \mathrm{d} z_i \int \prod_{i
otin\mathcal{C}} \mathrm{d} z_i P^lpha rac{1}{z_1^{lpha_1}\cdots z_n^{lpha_n}}$$

Cuts change the integrals but preserve IBP relations

$$\sum_i c_i I_i = 0 \quad \longrightarrow \quad \sum_i c_i (I_i|_{\mathcal{C}- ext{cut}}) = 0$$

Cuts increases the number of *zero sectors* in a family

$$\mathcal{C}
ot \subseteq S \Rightarrow I|_{\mathcal{C}- ext{cut}} = 0, orall I \in ext{Sector } S$$

Spanning cuts method

A spanning cuts $\{C_i\}$ is defined so that for all nonzero sector S in a family, $\exists C_i$, such that $C_i \subseteq S$ $\{1,3\} - \operatorname{cut} \{2,4\} - \operatorname{cut}$

Step 1: Run NeatIBP on each cut

Current version of NeatIBP avoids cutting multiple propagators. Thus, for integrals such that $lpha_i=1, i\in \mathcal{C}$, $\mathcal{C} ext{-cut}$ means

 $|P
ightarrow P|_{z_i
ightarrow 0, i \in \mathcal{C}}$

Step 2: Reduce the IBP system on each cut Kira

Step 3: Merge the reduced IBP system of all cuts

Benefit:1. Split a difficult problem intosimpler pieces2. Parallelizable

Merging the spanning cut systems

$$\begin{split} I|_{\{1,3\}\text{-cut}} &= \sum_{i} c_{\{1,3\},i}^{1234} I_{i}^{1234}|_{\{1,3\}\text{-cut}} + \sum_{i} c_{\{1,3\},i}^{13} I_{i}^{13}|_{\{1,3\}\text{-cut}} \\ I|_{\{2,4\}\text{-cut}} &= \sum_{i} c_{\{2,4\},i}^{1234} I_{i}^{1234}|_{\{2,4\}\text{-cut}} + \sum_{i} c_{\{2,4\},i}^{24} I_{i}^{24}|_{\{2,4\}\text{-cut}} \\ & \swarrow \\ & \swarrow \\ & \text{merge} \end{split}$$

$$I = \sum_i c_i^{1234} I_i^{1234} + \sum_i c_i^{13} I_i^{13} + \sum_i c_i^{24} I_i^{24}$$

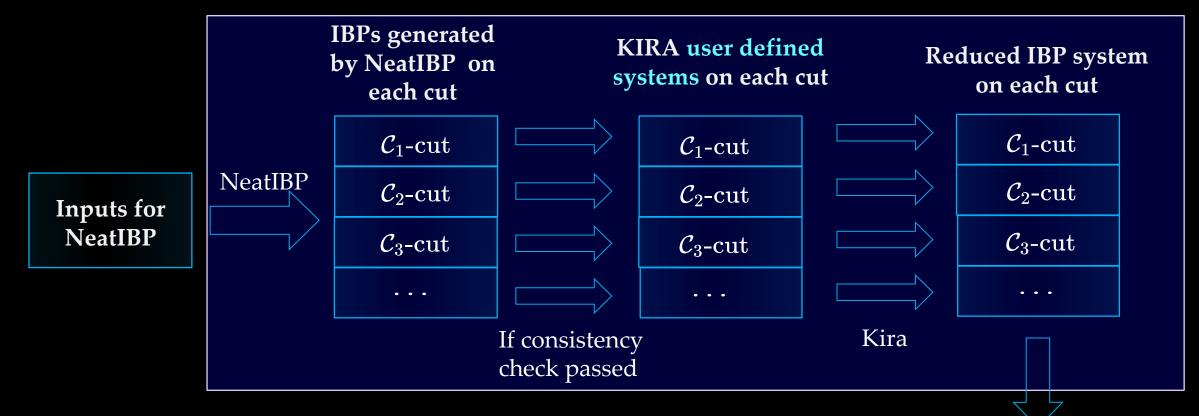
Currently, NeatIBP uses a "direct" merging strategy:

$$\left\{ egin{array}{ll} c_i^{13} = c_{\{1,3\},i}^{13} \ c_i^{24} = c_{\{2,4\},i}^{24} & ext{Consistency condition} \ c_i^{1234} = c_{\{1,3\},i}^{1234} = c_{\{2,4\},i}^{1234} \end{array}
ight.$$

NeatIBP checks consistency conditions before merging the spanning cut systems. This step cannot be omitted because the condition is NOT always guaranteed according to our observation. Inconsistency often observed in integrals with massive propagators.

The Kira+NeatIBP interface (spanning cuts mode)

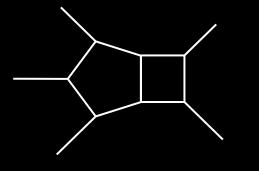
Parallelized by default

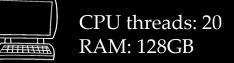


Config settings

PerformIBPReduction = True; IBPReductionMethod = "Kira"; KiraCommand = "/some/path/kira"; FermatPath = "/some/path/fer64"; SpanningCutsMode = True; Merged reduced IBP system A baby example of Kira+NeatIBP performance (with spanning cuts)

Two-loop five-point, with numerator degree 4





Running NeatIBP + Kira in spanning cuts mode:

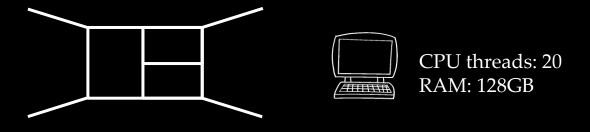
- 1. NeatIBP: Generates equations on 10 spanning cuts, time used: 8m
- 2. Number of equations: vary from 310 ~ 1583, on different cuts
- 3. Kira reduction time used: 5h

Running NeatIBP + Kira in normal mode:

- 1. NeatIBP: Generates 3708 equations spanning cuts, using 18m
- 2. Kira reduction time used: 24h

Another example of Kira+NeatIBP performance (with spanning cuts)

Three-loop four-point, with numerator degree 5



Running NeatIBP + Kira in spanning cuts mode:

- 1. NeatIBP: Generates equations on 22 spanning cuts, time used: 1h22m
- 2. Number of equations: $2k \sim 10k+$ or so, at most 35k, on different cuts
- 3. Kira reduction time used : 35m

Running NeatIBP + Kira in normal mode:

- 1. NeatIBP: Generates 113k equations spanning cuts, using 13h
- 2. Kira reduction time used: 2h30m

Contents

Algorithms and features in NeatIBP 1.0

Main new features in the NeatIBP 1.1

1. The Kira+NeatIBP interface

2. The spanning cuts method

3. Algorithm of syzygy vector simplification

Generator vector of the solution module of the syzygy equations

Symbolic IBP relation

$$egin{aligned} egin{aligned} egin{aligned} a_i \ b \end{pmatrix} \in M \end{aligned} egin{aligned} & 0 = \int \mathrm{d} z_1 \cdots \mathrm{d} z_n igg(\sum_{i=1}^n igg(rac{\partial a_i}{\partial z_i} - lpha_i b_i igg) + lpha b igg) P^lpha rac{1}{z_1^{lpha_1} \cdots z_n^{lpha_n}} & & \ & \ & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & \ & \ & \ & \ & & \ & \ & & \ & & \ & & \ & \ & \ & \ & & \$$

Specific IBP relation

(# generators) \times (# seeds) = (# IBP relations)

Generator vector of the solution module of the syzygy equations

Symbolic IBP relation

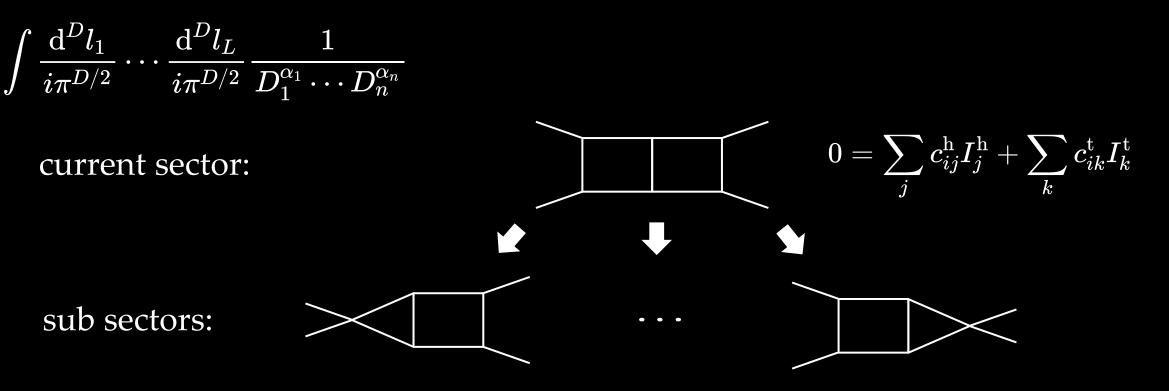
Specific IBP relation

(# generators) \times (# seeds) = (# IBP relations)

~ hundreds large combinatorial numbers

Seeding cost ↑

Idea of the algorithm (taking no-dot integrals as example)



Treating tail integrals as zeros:

- 1. IBP relations containing only sub sector integrals will be discarded
- 2. This is equivalent to maximal cut (mc):

$$ext{ for } I \in ext{ sector } S$$
 , $\left. I
ight|_{ ext{mc}} := I
ight|_{S ext{-cut}}$

Simplification of syzygy generators via maximal cut

Delete generators that dose not change the "maximal cut" module $M|_{mc}$ defined as

$$M|_{\mathrm{mc}}:=\langle f_1|_{\mathrm{mc}},f_2|_{\mathrm{mc}},\cdots
angle \hspace{1.5cm} ext{for}\hspace{1.5cm}M=\langle f_1,f_2,\cdots
angle$$

Step 1: Using "maximal cut" Groebner basis

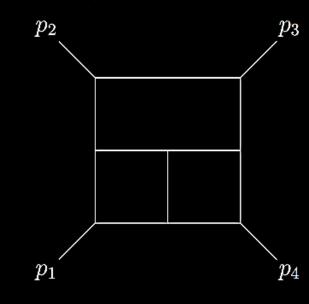
$$\left| G
ight|_{
m mc} := {
m GB}(M|_{
m mc}) = \langle g_1, g_2, \cdots
angle \qquad ext{ lifting } g_i = \sum_j c_{ij} f_i |_{
m mc}$$

Delete f_j in generators of M if $c_{ij} = 0, \forall i$ Because this means $f_j|_{
m mc}$ does not contribute to $M|_{
m mc}$

Step 2: Scanning

After step 1, sort the remaining generators from complex to simple $M' = \langle f'_1, \dots, f'_n \rangle$ Scanning *i* from 1 to *n*, if deleting f'_i does not change the GB of maximal cut module, then delete it.

Example



Degree-5 targets

	without syzygy simplification			with syzygy simplification		
sector	# gen	time used	memory used	#gen	time used	memory used
1023	666	$1 \mathrm{h8m}$	20.2G	16	15m	$6.7\mathrm{G}$
1022	665	4h4m	31.2G	39	1h4m	18.8G
1021	536	1h21m	22.0G	25	13m	$4.0\mathrm{G}$
1019	541	$50\mathrm{m}$	14.6G	30	$9\mathrm{m}$	$2.9\mathrm{G}$
1015	654	1h17m	16.9G	21	16m	$5.0\mathrm{G}$
1013	602	2h1m	$17.1\mathrm{G}$	32	$37\mathrm{m}$	11.3G
981	432	2h24m	11.8G	61	$47 \mathrm{m}$	9.2G
949	520	2h1m	13.6G	514	3h37m	20.1G
719	404	56m	$5.3\mathrm{G}$	398	1h19m	5.6G
511	721	38m	10.8G	31	13m	4.4G
379	657	$39\mathrm{m}$	8.4G	657	1h44m	$8.9\mathrm{G}$
351	778	2h13m	$13.4\mathrm{G}$	778	2h33m	14.0G
251	510	46m	$6.8 \mathrm{G}$	35	14m	4.1G
•••	• • •		• • •	• • •	• • •	••••

Summary

The integration-by-parts (IBP) reduction is one of the bottle-neck steps in the evaluation of multiloop Feynman integrals.

NeatIBP is an automated program generating small-size IBP system. It helps to reduce the computation cost of IBP reduction.

NeatIBP has been successfully applied to frontier problems, including two-loop amplitude computation in phenomenology and three-loop five-point Feynman diagrams.

We have displayed some new features of NeatIBP of the new version. They include:

1. The spanning cuts method :

Splitting the hard problem into simpler pieces.

- 2. The Kira interface:
 - Providing automated IBP solver.
- 3. Simplification algorithm of syzygy generators