

Inclusive charm decays

Qin Qin

Huazhong University of Science and Technology

2502.05901, collaborating with K.K.Shao, C.Huang

2025粒子物理标准模型及新物理精细计算研讨会 河北大学,2025年03月28-4月1日

Semi-inclusive charm decays

Experimental detection of partial final state particles $\Rightarrow D \rightarrow e^+ X (D \rightarrow e^+ \nu_{\rho} X)$, only e^+ is detected) Sum of a group of exclusive channels $\Rightarrow D^0 \to e^+ X_c = D \to e^+ \nu_{\rho} K^-, e^+ \nu_{\rho} K^- \pi^0, e^+ \nu_{\rho} \bar{K}^0 \pi^-, \dots$ $\Rightarrow D^0 \rightarrow e^+ X_d = D \rightarrow e^+ \nu_{\rho} \pi^-, e^+ \nu_{\rho} \pi^- \pi^0, e^+ \nu_{\rho} \pi^- \pi^+ \pi^-, \dots$

- As weak decays of heavy hadrons
 - Probe new physics
 - Understand QCD
- Compared to exclusive decays
 - **Better theoretical control**
- Compared to beauty decays
 - Special to new dynamics attached with up-type quarks
 - More sensitive to power corrections

 \star Determination by charm, application in beauty.

- Resolve (or at least give hints to) current flavor puzzles/anomalies
 - Puzzles in charmed hadron lifetimes: theory vs experiment
 - \blacktriangleright V_{cb} , V_{ub} puzzles: inclusive vs exclusive
 - $\Rightarrow b \rightarrow s$ anomalies: P'_5 in $B \rightarrow K^* \ell \ell$

• Flavor puzzle 1. Charmed hadron lifetimes: theory vs experiment

- large/unknown uncertainties
- and application to lifetime

 $\mathcal{O}(1/m_c^3) \Rightarrow \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0),$ Solution: Extraction in the inclusive decay spectrum $\mathcal{O}(1/m_c^4) \Rightarrow \tau(\Omega_c^0) > \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0),$ $\mathcal{O}(1/m_c^4)$ with $\alpha \Rightarrow \tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0).$ Dependence on identical hadronic HQET parameters, $\langle H_c | O_i | H_c \rangle$ [Cheng, '21]

Again a more precise experimental determination of μ_{π}^2 from fits to semileptonic D^+ , D^0 and D_s^+ meson decays – as it was done for the B^+ and B^0 decays – would be very desirable. [Lenz et al, '22]

- Flavor puzzle 2. V_{cb} , V_{ub} : inclusive vs exclusive
- **Key issue:** Systematic uncertainties from theoretical inclusive and exclusive frameworks
- Give hints:
 - Test V_{cd} , V_{cs} : inclusive vs exclusive

- Flavor puzzle 3. $b \to s$ anomalies: P'_5 in $B \to K^* \ell \ell$
- **Key issue:** $B \rightarrow K^*$ form factor receive large longdistance quark loop contributions, whose firstprinciple calculation is still missing
- Give hints:
 - Test the $c \to u$ transition, by angular distribution in inclusive $D \to X_u \ell \ell$

Theoretical framework

• Optical theorem

$\sum \langle D | H | X \rangle \langle X | H | D \rangle \propto \operatorname{Im} \int d^4 x \langle D | T \{ H(x) H(0) \} | D \rangle$

- Operator product expansion (OPE)
 - Short distance $x \sim 1/m_c$
 - \blacksquare Dynamical fluctuation in D meson $~\sim \Lambda_{\rm QCD}$

$$T\{H(x)H(0)\} = \sum_{n} C_n(x)C_$$

Systematic OPE in HQET.

Theoretical framework

Heavy quark effective theory

$$L \ni \bar{h}_{v} iv \cdot Dh_{v}$$
$$-\bar{h}_{v} \frac{D_{\perp}^{2}}{2m_{c}} h_{v} -$$

Similar to –

$$v - c(x)$$
 $v = (1,0,0,0)$

Subtract the big intrinsic momentum, Leave only ~ Λ_{QCD} degrees of freedom.

$$a(\mu)g\bar{h}_{v}\frac{\sigma\cdot G}{4m_{c}}h_{v}+\dots$$

$$\frac{m}{\sqrt{1-v^{2}}}=m+\frac{1}{2}mv^{2}+\dots$$

Theoretical framework

N

OPE lacksquare

- $T\{H(x)H(0)\} =$
- $C_n(x)$ \approx LO: $\alpha_{\rm s}^0(m_c)$ \approx NLO: $\alpha_{s}(m_{c})$ ×...

- Contribute to inclusive decay rate and also lifetime
 - Matrix elements of the same operators
 - Only different short-distance coeffi

Question:

$$\sum C_n(x)O_n(0)$$

 $O_{n}(0)$

convergent expansion

of $\alpha_s(m_c)$ and $\Lambda_{\rm OCD}/m_c$?

 \Rightarrow Dim-3: $\bar{h}_{\nu}h_{\nu}$ ($\bar{c}\gamma^{\mu}c$) \rightarrow partonic decay rate. $\stackrel{\checkmark}{\simeq}$ Dim-5: $\bar{h}_{\nu}D_{\perp}^{2}h_{\nu}$, $g\bar{h}_{\nu}\sigma \cdot Gh_{\nu}$. \simeq Dim-6: $\bar{h}_v D_\mu (v \cdot D) D^\mu h_v$, $(\bar{h}_v \Gamma_1 q) (\bar{q} \Gamma_2 h_v)$, ... 🔆 ...

$$\lambda_1 \equiv \frac{1}{4m_D} \langle D | \bar{h}_v (iD)^2 h_v | D \rangle = -\mu_\pi^2$$
$$\lambda_2 \equiv \frac{1}{16(s_c \cdot s_q)} \frac{1}{2m_D} \langle D | \bar{h}_v g \sigma \cdot G h_v | D \rangle =$$

Analytical differential decay rate \bullet

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dy} = 12(1-y)y^2\theta(1-y) + \frac{2\mu_\pi^2}{m_c^2} \Big[-10y^3\theta(1-y) + \frac{2\mu_\pi^2}{m_c^2} \Big[-10y^3\theta(1-y) + \frac{2\mu_G^2}{3m_c^2} \Big] \Big]$$

- - Observables require integration over final states

$$\Gamma = \int \frac{d\Gamma}{dy} dy , \ \langle E_{\ell}^n \rangle = \frac{1}{\Gamma} \int \frac{d\Gamma}{dy} E_{\ell}^n dy$$
(n=

• Up to finite power, the obtained differential decay rate is **NOT** the experimental spectrum

=1,2,3,4)

 W^+

С

 W^+

С

Theoretical results

NLO analytical integration

$$\Gamma_{D_{i}} = \sum_{q=d,s} \hat{\Gamma}_{0} |V_{cq}|^{2} m_{c}^{5} \Big\{ 1 + \left(\frac{\alpha_{s}}{\pi} \frac{2}{3} \left(\frac{25}{4} - \pi^{2}\right) + \frac{\alpha_{s}^{2}}{\pi^{2}} \left[\frac{\beta_{0}}{4} \frac{2}{3} \left(\frac{25}{4} - \pi^{2}\right) \log\left(\frac{\mu^{2}}{m_{c}^{2}}\right) + 2.14690n_{l} - 29.88317\right] - 8\rho\delta_{sq} - \frac{1}{2} \frac{\mu_{\pi}^{2}(D_{i})}{m_{c}^{2}} - \frac{3}{2} \frac{\mu_{G}^{2}(D_{i})}{m_{c}^{2}} + 6 \frac{\rho_{D}^{3}(D_{i})}{m_{c}^{3}} + \dots \Big\}, \qquad \text{[Chen, Chen, Guan, Ma, Dim-5, } \Lambda^{2} / m^{2} - \frac{m^{2}}{2} - \frac{m^{2}}{2$$

DIM-5, $\Lambda_{\text{QCD}}^{-}/m_{c}^{-}$ DIM-6, $\Lambda_{\text{QCD}}^{-}/m_{c}^{-}$

• Analytical results for total decay rate and energy moments (NNLO & $\Lambda_{
m OCD}^3/m_c^3$)

NNLO numerical results provided by Long Chen

Mass scheme

• Pole mass scheme

 $\Gamma/\Gamma_{\rm LO} = 1 - 0.768104 \alpha_{\rm s} - 2.37521 \alpha_{\rm s}^2 \approx 1 - 30\% - 36\%$

• MS mass scheme

 $\Gamma/\Gamma_{LO} = 1 + 1.35\alpha_s + 3.02\alpha_s^2 \approx 1 + 52\% + 46\%$

$$\Gamma = m_c^5 (\Gamma^{(0)} + \alpha_s \Gamma^{(1)} + \alpha_s^2 \Gamma^{(2)}) = \left(\overline{m}_c (1 + \alpha_s m^{(1)} + \alpha_s^2 m^{(2)}) \right)^5 (\Gamma^{(0)} + \alpha_s \Gamma^{(1)} + \alpha_s^2 \Gamma^{(2)})$$

• 1S mass scheme (half of J/ψ mass) $\Gamma/\Gamma_{\rm LO} \approx 1 - 13\% - 5\%$

Become negative at NNNLO!

Very slow convergence!

Theoretical results

$$\begin{split} \langle E_e \rangle_{D_i} &= \frac{\hat{\Gamma}_0}{\Gamma_{D_i}} \sum_{q=d,s} |V_{cq}|^2 \, m_c^6 \left[\frac{3}{10} + \frac{\alpha_s}{\pi} a_1^{(1)} + \frac{\alpha_s^2}{\pi^2} a_1^{(2)} - 3\rho \delta_{sq} - \frac{1}{2} \frac{\mu_G^2(D_i)}{m_c^2} + \frac{139}{30} \frac{\rho_D^3(D_i)}{m_c^3} + \frac{3}{10} \frac{\rho_{LS}^3(D_i)}{m_c^3} + \dots \right], \\ \langle E_e^2 \rangle_{D_i} &= \frac{\hat{\Gamma}_0}{\Gamma_{D_i}} \sum_{q=d,s} |V_{cq}|^2 \, m_c^7 \left[\frac{1}{10} + \frac{\alpha_s}{\pi} a_2^{(1)} + \frac{\alpha_s^2}{\pi^2} a_2^{(2)} - \frac{6}{5} \rho \delta_{sq} + \frac{1}{12} \frac{\mu_\pi^2(D_i)}{m_c^2} - \frac{11}{60} \frac{\mu_G^2(D_i)}{m_c^2} + \frac{17}{6} \frac{\rho_D^3(D_i)}{m_c^3} + \dots \right], \\ \langle E_e^3 \rangle_{D_i} &= \frac{\hat{\Gamma}_0}{\Gamma_{D_i}} \sum_{q=d,s} |V_{cq}|^2 \, m_c^8 \left[\frac{1}{28} + \frac{\alpha_s}{\pi} a_3^{(1)} + \frac{\alpha_s^2}{\pi^2} a_3^{(2)} - \frac{1}{2} \rho \delta_{sq} + \frac{1}{14} \frac{\mu_\pi^2(D_i)}{m_c^2} - \frac{1}{14} \frac{\mu_G^2(D_i)}{m_c^2} + \frac{223}{140} \frac{\rho_D^3(D_i)}{m_c^3} + \frac{1}{7} \frac{\rho_{LS}^3(D_i)}{m_c^3} + \frac{1}{7} \frac{\rho_{LS}^3(D_i)}{m_c^3} + \dots \right], \\ \langle E_e^4 \rangle_{D_i} &= \frac{\hat{\Gamma}_0}{\Gamma_{D_i}} \sum_{q=d,s} |V_{cq}|^2 \, m_c^9 \left[\frac{3}{224} + \frac{\alpha_s}{\pi} a_4^{(1)} + \frac{\alpha_s^2}{\pi^2} a_4^{(2)} - \frac{3}{14} \rho \delta_{sq} + \frac{3}{64} \frac{\mu_\pi^2(D_i)}{m_c^2} - \frac{13}{448} \frac{\mu_G^2(D_i)}{m_c^2} + \frac{481}{560} \frac{\rho_D^3(D_i)}{m_c^3} + \frac{9}{112} \frac{\rho_{LS}^3(D_i)}{m_c^3} + \dots \right], \end{split}$$

- Analytical results for total decay rate and energy moments (NNLO & $\Lambda_{
m QCD}^3/m_c^3$)

CLEO measurements

 $D^0 \to e^+ X$ $D^+ \to e^+ X$ $D_s^+ \to e^+ X$

BESIII measurements

[CLEO, '09]

BESIII measurements

 $[BESIII (567 \text{ pb}^{-1}), '18]$

 $\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e) = (4.06 \pm 0.10_{\text{stat.}} \pm 0.09_{\text{syst}})\%$

 $[BESIII (4.5 fb^{-1}), '23]$

Lorentz boost

$$\langle E_e \rangle_{exp}^{D_s} = 0.437(6) \text{GeV}, \quad \langle E_e^2 \rangle_{exp}^{D_s} = 0.462(5) \text{GeV}, \quad \langle E_e^2 \rangle_{exp}^{D_s} = 0.462(5) \text{GeV}, \quad \langle E_e^2 \rangle_{exp}^{D_s} = 0.455(4) \text{GeV}, \quad \langle E_e^2 \rangle$$

Uncertainties are obtained assuming independent bins

Lab frame

 $\begin{aligned} & (220(5) \text{GeV}^2 \quad \left\langle E_e^3 \right\rangle_{exp}^{D_s} = 0.121(4) \text{GeV}^3, \quad \left\langle E_e^4 \right\rangle_{exp}^{D_s} = 0.072(3) \text{GeV}^4 \\ & (242(5) \text{GeV}^2 \quad \left\langle E_e^3 \right\rangle_{exp}^{D^0} = 0.138(4) \text{GeV}^3, \quad \left\langle E_e^4 \right\rangle_{exp}^{D^0} = 0.084(3) \text{GeV}^4 \\ & (236(4) \text{GeV}^2 \quad \left\langle E_e^3 \right\rangle_{exp}^{D^+} = 0.134(3) \text{GeV}^3, \quad \left\langle E_e^4 \right\rangle_{exp}^{D^+} = 0.081(3) \text{GeV}^4 \end{aligned}$

Rest frame

Global fit

	-					
$\overline{\mathrm{MS}}$ scheme	χ^2 /d.o.f.	D_i	$ \mu_{\pi}^2/\text{GeV}^2 $	$\mu_G^2/{ m GeV^2}$	$ ho_{ m D}^3/{ m GeV^3}$	$ ho_{LS}^3/{ m GeV^3}$
Scenario 1	4.5	$D^{0,+}$	0.09 ± 0.01	0.27 ± 0.14	_	_
		D_s	0.09 ± 0.02	0.39 ± 0.12	_	_
Scenario 2	2.1	$D^{0,+}$	0.11 ± 0.02	0.26 ± 0.14	-0.002 ± 0.002	0.003 ± 0.002
		D_s	0.12 ± 0.02	0.38 ± 0.13	-0.003 ± 0.002	0.005 ± 0.002
1S scheme	$\chi^2/d.o.f.$	D_i	$\mu_{\pi}^2/{ m GeV}^2$	$\mu_G^2/{ m GeV^2}$	$ ho_{ m D}^3/{ m GeV^3}$	$ ho_{LS}^3/{ m GeV^3}$

	-					
1S scheme	$\chi^2/d.o.f.$	D_i	$ \mu_{\pi}^2/\text{GeV}^2 $	$\mu_G^2/{ m GeV}^2$	$ ho_{ m D}^3/{ m GeV^3}$	$ ho_{LS}^3$
Scenario 1	4.9	$D^{0,+}$	0.04 ± 0.01	0.33 ± 0.02	_	-
		D_s	0.06 ± 0.02	0.44 ± 0.02	_	-
Scenario 2	0.33	$D^{0,+}$	0.09 ± 0.02	0.32 ± 0.02	-0.003 ± 0.002	0.0
		D_s	0.11 ± 0.02	0.43 ± 0.02	-0.004 ± 0.002	0.00
		•	•			

 04 ± 0.002 05 ± 0.002

Difference between Scenario 1 & 2 as systematic uncertainties.

$$\mu_{\pi}^{2}(D^{0,+}) = (0.09 \pm 0.05) \text{GeV}^{2},$$

$$\mu_{G}^{2}(D^{0,+}) = (0.32 \pm 0.02) \text{GeV}^{2},$$

$$\rho_{D}^{3}(D^{0,+}) = (-0.003 \pm 0.002) \text{GeV}^{3},$$

$$\rho_{LS}^{3}(D^{0,+}) = (0.004 \pm 0.002) \text{GeV}^{3},$$

Considerable SU(3) and heavy quark symmetry breaking.

Global fit

 $\mu_{\pi}^2(D_s^+) = (0.11 \pm 0.05) \text{GeV}^2,$ $\mu_G^2(D_s^+) = (0.43 \pm 0.02) \text{GeV}^2,$ $\rho_D^3(D_s^+) = (-0.004 \pm 0.002) \text{GeV}^3,$ $\rho_{LS}^3(D_s^+) = (0.005 \pm 0.002) \text{GeV}^3.$

Convergence

Contributions to the inclusive D and Ds decay widths

Answer: convergent expansion of $\alpha_s(m_c)$ and Λ_{QCD}/m_c !

Summary and Prospect

- α_s -expansion and heavy quark expansion are valid in inclusive charm decays
- HQE parameters in inclusive charm decays are determined by data model independently for the first time
- Possible improvements

.

- → Include higher order radiative corrections, $\mathcal{O}(\alpha_s^3)$
- Include higher power corrections, complete dimension-6 and -7 operator
- Extend the study to charmed baryons

Measurements performed in the rest frame of charmed hadrons

• **Direct measurements** of $\langle E_e^n \rangle$, instead of the electron energy spectrum

• Measurements of q^2 moments, good for higher-dimensional operators

• Separate X_d , X_s , to give **first** inclusive measurements of V_{cd} , V_{cs}

Wishlist

Thank you!

Backup

Mass scheme transformation

$$m_{c} = \overline{m}_{c} \left(\mu\right) \left[1 + \frac{\alpha_{s} \left(\mu\right)}{\pi} \left(\frac{4}{3} + \log\left(\frac{\mu^{2}}{\overline{m}_{c}^{2}}\right)\right) + \frac{\alpha_{s}^{2} \left(\mu\right)}{\pi^{2}} \frac{1}{288} \left(112\pi^{2} + 2905 + 16\pi^{2} \log(4) - 48\zeta(3) - 12(2n_{f} - 45) \log^{2}\left(\frac{\mu^{2}}{\overline{m}_{c}^{2}}\right) - 4(26n_{f} - 519) \log\left(\frac{\mu^{2}}{\overline{m}_{c}^{2}}\right) - 2\left(71 + 8\pi^{2}\right) n_{f}\right) + \mathcal{O}(\alpha_{s}^{3})\right]$$

$$m_{c} = m_{c,1S} + m_{c,1S} \frac{\alpha_{s}(\mu)^{2} C_{F}^{2}}{8} \left\{ 1 + \frac{\alpha_{s}}{\pi} \left[\left(-\log\left(\alpha_{s}(\mu)m_{c,1S}C_{F}/\mu\right) + \frac{11}{6}\right)\beta_{0} - 4 + \frac{\pi}{8}C_{F}\alpha_{s} \right] + \dots \right\}$$

CLEO measurements

 $D^0 \rightarrow e^+ X$

 $D^+ \rightarrow e^+ X$

 $3.0 \times 10^6 D^0 \overline{D}^0$ and $2.4 \times 10^6 D^+ D^-$ pairs, and is used to ays. The latter data set contains $0.6 \times 10^6 D_s^{\pm} D_s^{\mp}$ pairs, [CLEO (818pb⁻¹($D^{0,\pm}$), 602pb⁻¹(D_s^{\pm})), '09]

BESIII measurements

1800

1600

Contents/(20 We//c) 1200 1000 800 400 200 0			To be have
0 20	00 400 600	800	1000
	p (MeV/	<i>c</i>)	
$E_{\rm cm} ({\rm MeV})$	$\int \mathcal{L} dt \; (\mathrm{pb}^{-1})$)	$N_{D_s}(\times 1$
4178	$3189.0 \pm 0.9 \pm 3189.0 \pm 3189$	31.9	6.4
4189	$526.7 \pm 0.1 \pm 2$	2.2	1.0
4199	$526.0 \pm 0.1 \pm 2$	2.1	1.0
4209	$517.1 \pm 0.1 \pm 1$	1.8	0.9
4219	$514.6 \pm 0.1 \pm 1$	1.8	0.8
4225 - 4230 [32]	$1047.3 \pm 0.1 \pm 10$.2 [33]	1.3

 $D_s^+ \to e^+ X$

[BESIII, '21]

25

1.3