重味夸克衰变的次次次领头阶微扰 QCD 修正

陈龙 (Long Chen)

山东大学

粒子物理标准模型及新物理精细计算研讨会 2025年3月28-4月1日,保定

Based on on-going work with Xiang Chen, Xin Guan and Yan-Qing Ma

Why Study Top Quark in Particular

• Heaviest fundamental particle in SM

$$m_t = 172.69 \pm 0.30 \,\mathrm{GeV}$$

- Precision test of SM mechanism, and probs for possible BSM physics
- Decay exclusively to b + W before hadronization:

$$\Gamma_t = 1.4 \, \text{GeV} \gg \Lambda_{\text{QCD}}$$

• Convergence of the perturbative QCD series (e.g. renormalon issue)

l

Top Quark Mass m_t and **Decay Width** Γ_t

• PDG average for m_t:

$$172.69 \pm 0.30 \,\text{GeV}$$

 Current best measurement for Γ_t:

$$1.36 \pm 0.02 (\text{stat.})^{+0.14}_{-0.11} (\text{syst.}) \text{ GeV}.$$

 Experimental uncertainties anticipated at future colliders: 20 ~ 26 MeV

The W-helicity fractions in Top Decay

W from $t \rightarrow b + W^+ + X_{QCD}$ is polarized even if the *t*-quark is unpolarized

- The current best measurements: $f_0 = 0.684 \pm 0.005$ (stat.) ± 0.014 (syst.), $f_1 = 0.318 \pm 0.003$ (stat.) ± 0.008 (syst.) and $f_R = -0.002 \pm 0.002$ (stat.) ± 0.014 (syst.).
- Notoriously difficult to be predicted theoretically to high precision

The $B \to X_u \ell \bar{\nu}_\ell$ @ Belle II

- Measurement of $|V_{ub}|$ (and $|V_{cb}|$) at the unprecedented $\mathcal{O}(0.01)$ level
- Clarifying the long-standing discrepancy between the inclusive and exclusive measurements of |V_{uh}|
- Precision determination of the (global) non-perturbative parameters and shape functions for B-mesons

	Statistical	Systematic	Total expt.	Theory	Total
		(reducible, irreducible)			
1 ab^{-1}	2.5	(2.9, 1.6)	4.1	2.5 - 4.5	4.8 - 6.1
$5~{\rm ab}^{-1}$	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8

Precise measurements of both the **inclusive and differential** observables for $B \to X_u \ell \bar{\nu}_\ell$ are crucial to achieve the above goals.

Much Theoretical Work Done So Far

Given the key role played by the top-quark both in SM precision test and searching for BSM, there have been vast amount of works done in literature regarding $t \to b + W^+ + X_{QCD}$.

- The inclusive Γ_t
 - ▶ Up to NNLO in QCD: [Jezabek etc 88; Czarnecki etc 90; Li etc 90; Czarnecki etc 98; Chetyrkin etc 99; Fischer etc 01; Blokland etc 04′05;.....; Czarnecki etc 10; Meng etc 22; Chen etc 22]
 - @NNNLO in QCD: [LC, Chen, Guan, Ma 23; Chen, Li, Li, Wang, Wang, Wu 23; Yan, Wu, Zhou, Li, Shan 24] [Datta, Rana, Ravindran, Sarkar 23 (only virtuals)]
 - ► NLO Electroweak: [Denner Sack 91; Eilam, Mendel Migneron Soni 91; Basso, Dittmaier, Huss, Oggero 15]
- W-helicities $f_{L,R,0}$
 - @NNLO in QCD: [Czamecki, Korner, Piclum 10; Gao, Li, Zhu 12; Brucherseifer, Caola, Melnikov 13; Czarnecki, Groote Korner, Piclum 18]
 - @NNNLO in QCD: [LC, Chen, Guan, Ma 23]
 - ► NLO Electroweak: [Do, Groote, Korner, Mauser 02]
- Differential results
 - ▶ QCD:
 - $\textbf{@NLO} \quad [Fischer, Groote, Korner, Mauser 01; Brandenburg, Si, Uwer 02; Bernreuther, Gonzalez \,, Mellei 14; Kniehl, Nejad 21]$
 - @NNLO [Gao, Li, Zhu 12; Brucherseifer, Caola, Melnikov 13; Campbell, Neumann, Sullivan 20]
 - @NNNLO in QCD: [LC, Chen, Guan, Ma 23]

Cut Diagrams for Heavy-to-light Decay Width

 Γ_t in terms of the **semi-inclusive** $\mathcal{W}_{tb}^{\mu\nu}$

$$\Gamma_t = \frac{1}{2 m_t} \int \frac{\mathrm{d}^{d-1} k}{(2\pi)^{d-1} 2E} \, \mathcal{W}_{tb}^{\mu\nu} \sum_{\lambda}^{L,R,0} \, \varepsilon_{\mu}^*(k,\lambda) \, \varepsilon_{\nu}(k,\lambda) \,,$$

$$\left|\mathcal{M}_{t\to b+W}\right|^2 \Rightarrow \frac{p}{\mu} \frac{k}{p_b} \frac{k}{\nu}$$

$$\mathcal{W}_{tb}^{\mu\nu}(p,k) = W_1 g^{\mu\nu} + W_2 p^{\mu} p^{\nu} + W_3 k^{\mu} k^{\nu} + W_4 (p^{\mu} k^{\nu} + k^{\mu} p^{\nu}) + W_5 i \epsilon^{\mu\nu\rho\sigma} p_{\rho} k_{\sigma},$$

Selection Criteria: the cut diagrams of *t*-quark self-energy function with exactly one (cut) *W* propagator interacting with the *external t*-quark plus (up to 3) QCD loops

Results for the Inclusive Γ_t

The QCD effects on Γ_t in SM can be parameterized as

$$\Gamma_t = \Gamma_0 \left[\mathbf{c}_0 + \frac{\alpha_s}{\pi} \mathbf{c}_1 + \left(\frac{\alpha_s}{\pi} \right)^2 \mathbf{c}_2 + \left(\frac{\alpha_s}{\pi} \right)^3 \mathbf{c}_3 + \mathcal{O}(\alpha_s^4) \right],$$

with $\Gamma_0 \equiv \frac{G_F \ m_W^2 \ m_t \ |V_{tb}|^2}{12\sqrt{2}}$.

At $\mu = m_t/2$, motivated by the QCD radiative energy $m_t - m_W - m_b$, our N3LO result reads: [LC, Chen, Guan, Ma 23]

$$\Gamma_t = 1.48642 - 0.140877 - 0.023306 - 0.007240 \text{ GeV}$$

$$= 1.31500 \text{ GeV}$$

SM Inputs:

$$G_F = 1.166379 \times 10^{-5} \text{GeV}^{-2}$$
, $m_t = 172.69 \text{GeV}$, $m_W = 80.377 \text{GeV}$, $\alpha_s(m_t/2) \approx 0.1189$.

- ▶ The leading-color part of Γ_t agrees with a parallel computation [Chen, Li, Li, Wang, Wang, Wu 23]
- ► Further improvement using (extended) PMC methods [Yan, Wu, Zhou, Li, Shan 24]

QCD Scale Uncertainty of Γ_t in OS scheme

The scale dependence of the fixed-order results for Γ_t in $\mu/m_t \in [0.1, 1]$ (in OS scheme)

- NNLO scale-variation **never** cover the NNNLO result at any scales less than $\mu/m_t = 0.6$.
- Pure $\mathcal{O}(\alpha_s^3)$ correction decreases Γ_t by $\sim 0.8\%$ of the NNLO result at $\mu = m_t$ roughly 10 MeV(exceeding NNLO scale-hand)

Results for $\Gamma_{\rm sl}^{b\to u}$ in $\overline{\rm MS}$ scheme

$$\Gamma_{\rm sl}^{b o u} \equiv \Gamma_0(m_b) {\bf C}_{\rm p} = \overline{\Gamma}_0 \left(1 + 0.3036075 + 0.1365820 + 0.06841766 + 0.034184 \right)$$

Every one more perturbative order higher in the $\overline{\rm MS}$ result, the term is reduced roughly by 1/2.

However, the scale uncertainty of $\bar{\Gamma}_{sl}^{b\to u}$ at N3LO is still [+6%, -8%] (!) for $\mu/\overline{m}_b \in [1/2, 2]$

Result for $\Gamma(B \to X_u \ell \bar{\nu}_\ell)$ in kinetic-mass scheme

In Heavy Quark Expansion theory

$$\Gamma(B \to X_\mu \ell \bar{\nu}_\ell) = \Gamma_0(m_b) \left[\mathbf{C_p} \left(1 - \frac{\mu_\pi^2 - \mu_G^2}{2 \, m_b^2} \right) - 2 \, \frac{\mu_G^2}{m_b^2} + \mathcal{O} \left(\Lambda_{\rm QCD}^3 / m_b^3 \right) \right].$$

We obtain the most accurate theoretical prediction for the inclusive $B \to X_u \ell \bar{\nu}_\ell$ (kine-scheme):

$$\Gamma(B \to X_u \ell \bar{\nu}_\ell) = \frac{|V_{ub}|^2}{|3.82 \times 10^{-3}|^2} \left(6.53 \pm 0.12 \pm 0.13 \pm 0.03\right) \times 10^{-16} \,\text{GeV}.$$

Lepton-pair invariant-mass spectrum $d\Gamma_{sl}^{b\to u}/dq^2$

In the OS scheme, $\delta_{\rm QCD}$ is large and does not converge quickly.

- \triangleright $\mathcal{O}(\alpha_s^3)$ Leading-color integrated form agrees with [Chen, Li, Li, Wang, Wang, Wu 23].
- $ightharpoonup {\cal O}(\alpha_s^3)$ integrated fermionic part agrees with a recent evaluation [Fael, Usovitsch 23] .

Subtlety with Re-expanding non-inclusive Observables

Rewrite $\Gamma_{cl}^{b \to u} = \int_{0}^{m^2} f(q^2, m^2) dq^2$ using an alter. \bar{m} is **NOT** the same as changing mass-renormalization schemes in the usual sense.

Consistency for the integral:

$$\int_0^{m^2} f(q^2, m^2) \, dq^2 =$$

$$\int_0^{\bar{m}^2 + dm} f(q^2, \bar{m}^2 + dm) \, dq^2$$

- q^2 -range bounded by $\bar{m}(\mu)$ (phase-space expanded too)
- Not (necess.) 0 at **new** ends (non-0 high-order derivatives)
- Dirac- δ type boundary(!) term (histogramming in bins)

$d\Gamma_{\rm sl}^{b\to u}/dq^2$ in kinetic-mass scheme

- $\delta_{\rm OCD}$ exhibits the usual expected (regular) behavior
- The particular (crossing) pattern helps to "understand" the puzzle (scale-uncertainty of the total inclusive result not reduced from N2LO to N3LO)
- The boundary-term is not included above (changing the last of 10-bin histograms by 3 \sim 5%) $_{13}$

$d\Gamma_{\rm sl}^{b\to u}/dq^2$ in 1S-scheme

- $\delta_{\rm OCD}$ exhibits the usual expected (regular) behavior
- Similar (crossing) **pattern** also helps to "understand" the puzzle (scale-uncertainty of the total inclusive result not reduced from N2LO to N3LO)
- The boundary-term is not included above (smaller than in the kinetic-mass case)

A Tentative Application to $\Gamma_{sl}^{c \to q}$ (3+1)

• Large QCD coupling at \bar{m}_c :

$$lpha_s^{[4]}(ar{m}_c) pprox 0.38 pprox {2 \over 2} lpha_s^{[5]}(ar{m}_b) pprox {4 \over 2} lpha_s^{[6]}(m_t)$$

Significant running-mass effect:

$$\bar{m}_c(\bar{m}_c) = 1.27 \,\text{GeV}; \; \bar{m}_c(\mu = 2 \,\text{GeV}) = 1.10 \,\text{GeV}$$

$$(\bar{m}_c + \Delta m)^5 \approx \bar{m}_c^5 \left(1 + 5 \frac{\Delta m}{\bar{m}_c} + \cdots\right)$$

To get an idea of the sizes of the perturbative QCD correction factors:

$$\tilde{\Gamma}_0 \, \bar{m}_c^5 (2 \, \text{GeV}) \left(1 + 0.832 + 0.710 + 0.606 \right) = 5.01 \, \tilde{\Gamma}_0$$

$$\tilde{\Gamma}_0 \, \bar{m}_c^5 (2 \times 1.27 \, \text{GeV}) \left(1 + 0.953 + 0.850 + 0.725 \right) = 4.16 \, \tilde{\Gamma}_0$$

At the ref. scale $\mu=2$ GeV (typically chosen for \bar{m}_c), the $\mathcal{O}(\alpha_s^3)$ correction could increase the perturbative NNLO correction by \sim 24%.

The non-perturbative corrections (to higher twists) are important to obtain results for semi-leptonic D-meson decays comparable with the experiments. [→ See talks by Qin]

$d\Gamma_{\rm sl}^{c\to q}/dq^2$ in $\overline{\rm MS}$ -scheme

Neither $\overline{\text{MS}}$ **nor** kinetic mass, unfortunately, works well for $d\Gamma_{\text{sl}}^{c \to q}/dq^2$

The left is for the result with kinetic-mass, slightly better than the right with $\overline{\text{MS}}$ -mass, obtained using respectively standard parameter-settings employed in literature.

$d\Gamma_{\rm sl}^{c\to q}/dq^2$ in 1S-scheme

But, there is still **hope!**

 $[\to \mbox{See} \mbox{ talks}$ by Qin for inclusive results]

(To estimate the uncertainty, the usual choice $\mu=m_{1S}/2$ is too low, and we used $[\overline{m}_c(\overline{m}_c), 2\,m_{1S}]$)

Summary and Outlook

$$\Gamma(B \to X_u \ell \bar{\nu}_\ell) = \frac{|V_{ub}|^2}{|3.82 \times 10^{-3}|^2} (6.53 \pm 0.12 \pm 0.13) \times 10^{-16} \,\text{GeV}.$$

- \square The N3LO predictions for $d\Gamma_{sl}^{b\to u}/dq^2$ and for $d\Gamma_{sl}^{c\to q}/dq^2$ derived in the experimentally used kinetic and 1S scheme, useful to reveal certain puzzling behaviors.
- ⊠ The method in use can be readily applied to the **triple distributions** ("holy-grail") for $B \to X_u \ell \bar{\nu}_\ell$ @ Belle-II (in particular lepton-energy spectrum at N3LO)

Thank you for listening!

Summary and Outlook

- ☑ The first complete N3LO QCD corrections for *t*-decay width (and W-helicity fractions, W-energy distribution etc), the error of which meets the request by future colliders.

$$\Gamma(B \to X_u \ell \bar{\nu}_\ell) = \frac{|V_{ub}|^2}{|3.82 \times 10^{-3}|^2} (6.53 \pm 0.12 \pm 0.13) \times 10^{-16} \,\text{GeV}.$$

- \Box The N3LO predictions for $d\Gamma_{sl}^{b\to u}/dq^2$ and for $d\Gamma_{sl}^{c\to q}/dq^2$ derived in the experimentally used kinetic and 1S scheme, useful to reveal certain puzzling behaviors.
- ⊠ The method in use can be readily applied to the **triple distributions** ("holy-grail") for $B \to X_u \ell \bar{\nu}_\ell$ @ Belle-II (in particular lepton-energy spectrum at N3LO)

Thank you for listening!

Backup Slides

Results for W-energy Distribution

- ▶ In the bulk: QCD corrections are positive and quite sizable: pure $\mathcal{O}(\alpha_s^3)$ correction modifies the lowest order by $7 \sim 14\%$ for $E \in [94, 104]$ GeV.
- ► In the rightmost 1 GeV-bin: QCD corrections up to $\mathcal{O}(\alpha_s^3)$ decrease the Born-level result.
- A change of x-axis $E_X = m_t E_W \rightarrow$ distribution of the total energy of the **hadronic system**.