非弹性暗物质模型的多手段协同探测

卢致廷 Chih-Ting Lu ctlu@njnu.edu.cn

NNU·南京师范大学 NANJING NORMAL UNIVERSITY

中国精确检验与新物理合作组

2025粒子物理标准模型及新物理精细计算研讨会

• Exploring properties of long-lived particles in inelastic dark matter models at Belle II

```
D.W. Kang, P. Ko, CT Lu,
```

JHEP 04 (2021) 269 • e-Print: 2101.02503 [hep-ph]

• Revising inelastic dark matter direct detection by including the cosmic ray acceleration J.C. Feng, X.W. Kang, CT Lu, Y.L.S. Tsai and F.S. Zhang,

JHEP 04 (2022) 080 • e-Print: 2110.08863 [hep-ph]

• Probing inelastic dark matter at the LHC, FASER, and STCF CT Lu, J. Tu and L. Wu,

Phys.Rev.D 109 (2024) 1, 015018 • e-Print: 2309.00271 [hep-ph]

Contents

- 1. Motivation for inelastic DM models
- 2. Review of inelastic DM models
- 3. Search for inelastic DM via Synergistic Multi-Experiment Strategies
- 4. Conclusion and outlook

Contents

- **1. Motivation for inelastic DM models**
- 2. Review of inelastic DM models
- 3. Search for inelastic DM via Synergistic Multi-Experiment Strategies
- 4. Conclusion and outlook

Dark Matter Physics

Weakly interacting massive particles (WIMPs)

 10^{-1}

 10^{-2}

 10^{-3}

10-5

10-6

 10^{-8}

 10^{-9}

10-10

10-11

10-12

10-13 10-14

 10^{4}

1000

section [pb] 10^{-4}

cros 10-7

WIMP.

Very heavy DM

- **Co-annihilation** 1.
- 2. pseudoscalar, axial-vector, ... mediator
- 3. leptophilic

suppressed DM nucleon scattering cross section

JHEP 06 (2020) 033 JHEP 08 (2021) 073

Motivation : Sub-GeV DM

The fermionic DM :

• Vector mediators :

 $\chi\chi \to A'A', \chi\chi \to A' \to f\overline{f}$ (s-wave) $\Rightarrow m_{\chi} \gtrsim 10 \text{GeV}$ from CMB constraint

Solutions : asymmetric DM, inelastic DM, forbidden DM, resonant annihilation, freeze-in mechanism models, etc ...

• Scalar meidators :

$$\chi\chi \to SS, \chi\chi \to S \to f\overline{f}$$
 (p-wave)
 $\Rightarrow m_{\chi} \gtrsim 10 \text{MeV}$ from BBN constraint

Motivation : Inelastic DM

- 1. The inelastic (or excited) DM model with extra $U(1)_D$ gauge symmetry is one of the most popular dark sector models with light DM candidate.
- 2. There are at least two states in the dark sector and there is an inelastic transition between them via the new $U(1)_D$ gauge boson.
- 3. If the mass splitting between these two states are small enough the co-annihilation channel could be the dominant one of DM relic density in early

Universe.

Motivation : Inelastic DM

The constraint from DM and nucleon inelastic scattering is much weaker than the elastic one in the direct detection experiments.

a

A DM mass heavier than O(TeV) is needed to detect an excitation from χ_1 to χ_2 with the mass splitting O(100 keV).

$$v_{
m min}^{
m global}=\sqrt{rac{2\delta}{\mu}}.$$
 Phys.Rev.D 96 (2017) 10, 102007

The constraint from DM and nucleon inelastic scattering is much weaker than the elastic one in the direct detection experiments.

Contents

1. Motivation for inelastic DM models

2. Review of inelastic DM models

3. Search for inelastic DM via Synergistic Multi-Experiment Strategies

4. Conclusion and outlook

Review of inelastic DM models

 $Q_D(\Phi) = +2 \text{ and } Q_D(\chi) = +1.$

 $\mathcal{L}_{\text{scalar}} = |D_{\mu}H|^2 + |D_{\mu}\Phi|^2 - V(H,\Phi),$ $V(H,\Phi) = -\mu_H^2 H^{\dagger}H + \lambda_H (H^{\dagger}H)^2 - \mu_{\Phi}^2 \Phi^* \Phi + \lambda_{\Phi} (\Phi^*\Phi)^2$

 $+ \lambda_{H\Phi} (H^{\dagger}H) (\Phi^*\Phi),$

$$\begin{aligned} \mathcal{L}_{\chi} &= \overline{\chi}(i\partial \!\!\!/ + g_D \not\!\!\!/ - M_{\chi})\chi - \left(\frac{f}{2}\overline{\chi^c}\chi\Phi^* + H.c.\right), \\ \mathcal{L}_{\chi} &= \frac{1}{2}\overline{\chi_2}(i\partial \!\!\!/ - M_{\chi_2})\chi_2 + \frac{1}{2}\overline{\chi_1}(i\partial \!\!\!/ - M_{\chi_1})\chi_1 \\ &- i\frac{g_D}{2}(\overline{\chi_2}\not\!\!\!/ \chi_1 - \overline{\chi_1}\not\!\!/ \chi_2) - \frac{f}{2}h_D(\overline{\chi_2}\chi_2 - \overline{\chi_1}\chi_1), \end{aligned}$$

Review of inelastic DM models

In the unitrary gauge, the scalar fields can be expanded as

$$H(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix} , \quad \Phi(x) = \frac{1}{\sqrt{2}} (v_D + h_D(x))$$

Expand the kinematic mixing term in the first order of epsilon:

$$\mathcal{L}_{Z'f\overline{f}} = -\epsilon e c_W \sum_f x_f \overline{f} Z' f$$
$$x_l = -1, \ x_\nu = 0, \ x_q = \frac{2}{3} \text{ or } \frac{-1}{3}$$

$$\mathcal{L}_{X,gauge} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\sin\epsilon}{2} B_{\mu\nu} X^{\mu\nu}$$

$$m_{Z'} \simeq g_D Q_D(\Phi) v_D$$

Review of inelastic DM models

After the SSB of this $U(1)_D$ gauge symmetry, we expect the accidentally residual Z_2 symmetry, $\chi_1 \rightarrow -\chi_1$, can be left such that χ_1 are stable and become DM candidates in our University.

Gauge interaction :

$$-i\frac{g_D}{2}(\overline{\chi_2}\,/ \chi_1 - \overline{\chi_1}\,/ \chi_2)$$

The term to trigger the mass splitting :

$$-\left(\frac{f}{2}\overline{\chi^c}\chi\Phi^* + H.c.\right)$$

Mass eigenstates and mass splitting :

$$M_{\chi_{1,2}} = M_{\chi} \mp f v_D \qquad \Delta_{\chi} \equiv (M_{\chi_2} - M_{\chi_1}) = 2f v_D$$

Contents

- 1. Motivation for inelastic DM models
- 2. Review of inelastic DM models
- **3.** Search for inelastic DM via Synergistic Multi-Experiment Strategies
- 4. Conclusion and outlook

Search for inelastic DM from four frontier experiments

Intensity Frontier: How to determine the particle nature of DM?

DW Kang, CT Lu, P. Ko	JHEP 04 (2021) 269	e-Print: 2101.02503 [hep-ph]
_		

If the excited DM is long-lived, can we determine its mass at colliders ?

The crossing point from these events and kinematic endpoint measurement $m_{f\bar{f}}^{max}$ can help us to determine the mass of DM and mass splitting. This method is a first application of

"Kinematic focus point" method to the inelastic DM models.

Energy Frontier: How to cover the detection of heavier DM?

Lifetime Frontier: How to detect long-lived particles?

process:

 $pp \rightarrow \chi_2 + \chi_1, \ \chi_2 \text{ travels} \sim 480 \text{m},$ then $\chi_2 \rightarrow \chi_1 f \overline{f}.$

FASER : L = 1.5m, R = 0.1m, FASER 2 : L = 5m, R = 1m. $E_{\rm vis} > 100 {\rm ~GeV}$ the integrated luminosity, \mathcal{L} ,

for FASER and FASER 2 is 150 $\rm fb^{-1}$ and 3 $\rm ab^{-1}$

Projected Sensitivities of Three Frontier Experiments

Cosmic Frontier: How to boost the light inelastic DM?

Can we use the high energy cosmic-ray to boost the light inelastic DM especially for larger mass splitting?

The Cosmic-ray boosted inelastic DM

JC Feng, XW Kang, **CT Lu**, YL Sming Tsai, and FS Zhang JHEP 04 (2022) 080 e-Print: 2110.08863 [hep-ph]

Constraints from PandaX-4T

JC Feng, XW Kang, **CT Lu**, YL Sming Tsai, and FS Zhang JHEP 04 (2022) 080 e-Print: 2110.08863 [hep-ph]

Contents

- 1. Motivation for inelastic DM models
- 2. Review of inelastic DM models
- 3. Search for inelastic DM via Synergistic Multi-Experiment Strategies
- 4. Conclusion and outlook

Conclusion

- The inelastic DM model is one kind of simple UV complete DM model to allow the sub-GeV DM candidate. Besides, this model can easily escape the strong DM direct detection constraints.
- We consider the Energy Frontier (LHC), Lifetime Frontier (FASER), Intensity Frontier (Belle II, STCF) and Cosmic Frontier (DD, ID) experiments to search for inelastic DM for the DM mass from 1 MeV to 210 GeV.
- To cover those blind parameter space with various DM mass and mass splitting, more new search strategies are required. For example, heating neutron stars & cosmic-ray cooling in AGN.

Thank you for your attention

Back-up Slides

Search for DM at the LHC

Motivation : Sub-GeV DM

The scalar DM :

• Vector mediators:

 $\phi \phi \to A'A' \quad (s-wave), \quad \phi \phi \to A' \to f\overline{f} \quad (p-wave)$

Solutions : asymmetric DM, freeze-in mechanism models, etc ...

SIMP, ELDER, Co-SIMP models

- Scalar meidators : Two real scalars model (one for medidator, one for DM candidate)
- Fermion mediators : t-channel models (ex: neutrino portal)

The future bounds from $e^+e^- \rightarrow \phi_1\phi_2(\chi_1\chi_2)$ and $e^+e^- \rightarrow \phi_1\phi_2(\chi_1\chi_2)\gamma$ processes

90% C.L. contours which correspond to an upper limit of 2.3 events with the assumption of background-free

The future bounds from $e^+e^- \rightarrow \phi_1\phi_2(\chi_1\chi_2)$ and $e^+e^- \rightarrow \phi_1\phi_2(\chi_1\chi_2)\gamma$ processes

90% C.L. contours which correspond to an upper limit of 2.3 events with the assumption of background-free

Projected Sensitivities of Three Frontier Experiments

 $\Delta_{\chi} = 0.2 \times M_{\chi_1}$

$$\Delta_{\chi}=0.4 \times M_{\chi_1}$$

Projected Sensitivities of Three Frontier Experiments

 $\Delta_{\chi} = 0.05 \times M_{\chi_1}$

 $\Delta_{\chi}=0.01 \times M_{\chi_1}$

Experimental Results (Cosmic Ray Boosted Sub-GeV DM)

