

Asymptotic grand unification in SO(10) with one extra dimension

方高祥 (HIAS) 2025-03-30

Based on **GXF**, Z.W. Wang, Y.L. Zhou, arXiv:2504.xxxxx

Contents

- 1. Introduction
- 2. Framework
- 3. Gauge running and asymptotic unification
- 4. RGEs of Yukawa couplings
- 5. Conclusion

Introduction

Introduction

Asymptotic unification in 5-dimension spacetime of gauge couplings: these gauge couplings gradually approach the same value in the deep UV limit.

Asymptotic freedom in 5-dimension spacetime of Yukawa couplings: these Yukawa couplings

Whether there exist a realistic 5D SO(10) GUT with more than one Higgs field?

Framework

Breaking chain: 5D
$$SO(10) \xrightarrow{M_{\text{KK}}} 4D$$
 Pati-Salam $(SU(4)_c \times SU(2)_L \times SU(2)_R) \xrightarrow{M_{\text{PS}}} SM$

Energy scale	Symmetry	Fermion	Higgs	
$\mu > M_{ m KK}$	SO(10)	$egin{aligned} \Psi_{f 16} &\sim {f 16} \ \Psi_{f \overline{16}} &\sim {f \overline{16}} \ u_{ m S} &\sim {f 1} \end{aligned}$	$H_{f 10} \sim f 10$ complex $H_{f 120} \sim f 120$ real $H_{f 16} \sim f 16$ $H_{f 45} \sim f 45$, real	
$M_{ m KK} < \mu < M_{ m PS}$	G_{422}	$\psi_L \sim (4, 2, 1)$ $\psi_R \sim (4, 1, 2)$ $\nu_S \sim (1, 1, 1)$	$h_1, h'_1 \sim (1, 2, 2), h_{15} \sim (15, 2, 2)$ $h_{3L} \sim (1, 3, 1), h_{3R} \sim (1, 1, 3)$ $h'_{15} \sim (15, 1, 1), h_{\bar{4}} \sim (\bar{4}, 1, 2)$	
$M_{\rm SM} \ll \mu < M_{\rm KK}$	$G_{ m SM}$	q_L, d_R, u_R $l_L, \nu_R, e_R, \nu_{ m S}$	$h_{ m SM}$	

Table 1. Gauge symmetries and particle contents remnant of the model at different energy scales.

Economical choice to achieve fermion masses

Zero mode No zero mode $\Psi_{16} = \psi_L + \Psi_R^c$ $\Psi_{\overline{16}} = \Psi_L^c + \psi_R$

$$\psi_L = (q_L, l_L) \sim (4, 2, 1), \Psi_R^c = (Q_R^c, L_R^c) \sim (\overline{4}, 1, 2)$$

$$\Psi_L^c = (Q_L^c, L_L^c) \sim (\overline{4}, 2, 1), \psi_R = (q_R, l_R) \sim (4, 1, 2)$$

Boundary conditions (BC) for fields left-handed fermions, scalars \Rightarrow (+,+) of zero modes in UV and IR branes: righg-handed fermions \Rightarrow (-,-)

Framework

Yukawa coupling terms in 5D SO(10):

$$-\mathcal{L}_{Y} = y_{10}\overline{\Psi_{16}}H_{10}\Psi_{\overline{16}} + y_{120}\overline{\Psi_{16}}H_{120}\Psi_{\overline{16}} + y_{16}\overline{\nu_{S}}H_{16}\Psi_{\overline{16}} + \frac{L}{2}\mu_{M}\overline{\nu_{S}}\nu_{S}^{c}\delta(y - \pi R) + \text{h.c.}$$

Yukawa coupling terms in 4D PS:

$$-\mathcal{L}_y \supset y_1 \overline{\psi_L} h_1 \psi_R + \overline{\psi_L} (y_1' h_1' + y_{15} h_{15}) \psi_R + y_4 \overline{\nu_S} h_{\bar{4}} \psi_R + \frac{1}{2} \mu_M \overline{\nu_S} \nu_S^c + \text{h.c.}$$

Dirac mass matrices of fermions: $c = v/v_{EW}$

Dirac mass matrices of fermions:
$$c = v/v_{\rm EW}$$
 $y_t = \sqrt{2} \, y_{10} c_{10}^u + \sqrt{2} \, y_{120} (c_{120}^{d'} + \frac{1}{\sqrt{3}} c_{120}^d)$, Yukawa matching relation from $SO(10)$ to PS: $y_b = \sqrt{2} \, y_{10} c_{10}^d + \sqrt{2} \, y_{120} (c_{120}^{d'} + \frac{1}{\sqrt{3}} c_{120}^d)$, $y_{10} = \frac{1}{\sqrt{2}} y_1, y_{16} = y_4$, $y_t = y_1 c_{10}^u + y_1' c_{120}^{d'} + \frac{1}{2\sqrt{3}} y_{15} c_{120}^d$, $y_{10} = \frac{1}{\sqrt{2}} y_1, y_{16} = y_4$, $y_t = y_1 c_{10}^d + y_1' c_{120}^{d'} + \frac{1}{2\sqrt{3}} y_{15} c_{120}^d$, $y_t = \sqrt{2} \, y_{10} c_{10}^d + \sqrt{2} \, y_{120} (c_{120}^{d'} - \sqrt{3} c_{120}^d)$, $y_{120} = \frac{1}{\sqrt{2}} y_1' = \frac{1}{2\sqrt{2}} y_{15}$ $y_t = y_1 c_{10}^d + y_1' c_{120}^d - \frac{\sqrt{3}}{2} y_{15} c_{120}^d$, $y_t = y_1 c_{10}^u + y_1' c_{120}^d - \frac{\sqrt{3}}{2} y_{15} c_{120}^d$. SO(10)

Inverse seesaw:
$$\begin{pmatrix} 0 & m_{\rm D} & 0 \\ m_{\rm D} & 0 & m_{\rm S} \\ 0 & m_{\rm S} & \mu_{\rm M} \end{pmatrix}$$
 \longrightarrow $m_{\nu} = \mu_{\rm M} \frac{m_{\rm D}^2}{m_{\rm S}^2}, m_{\rm S} = y_{16} M_{\rm PS}$

Gauge running and asymptotic unification

RG running for gauge couplings at different energy scales:

$$2\pi \frac{\mathrm{d}\alpha_i}{\mathrm{d}t} = b_i^{\mathrm{SM}} \alpha_i^2 \longrightarrow 2\pi \frac{\mathrm{d}\alpha_i}{\mathrm{d}t} = b_i^{\mathrm{PS}} \alpha_i^2 \longrightarrow 2\pi \frac{\mathrm{d}\alpha_i}{\mathrm{d}t} = b_i^{\mathrm{PS}} \alpha_i^2 + (S(t) - 1)b_{\mathbf{10}}\alpha_i$$

$$M_Z \xrightarrow{} M_{\mathrm{PS}} \xrightarrow{} M_{\mathrm{KK}} \xrightarrow{}$$

Express KK states contribution in a continuous approximation:

Define effective 't Hooft coupling with respect to KK excitations:

$$S(t) = \begin{cases} 1 & \text{for } \mu < M_{\text{KK}}, \\ \mu/M_{\text{KK}} = M_Z e^t/M_{\text{KK}} & \text{for } \mu > M_{\text{KK}}. \end{cases} \qquad \tilde{\alpha}_i(t) = \alpha_i(t)S(t)$$

$$\tilde{\alpha}_i = \frac{2\pi}{e^{-t+c_i} - b_{10}} \qquad 2\pi \frac{\mathrm{d}\tilde{\alpha}_i}{\mathrm{d}t} = 2\pi \tilde{\alpha}_i + b_{10}\tilde{\alpha}_i^2 \qquad 2\pi \frac{\mathrm{d}\alpha_i}{\mathrm{d}t} = b_i^{\text{PS}}\alpha_i^2 + (S(t) - 1)b_{10}\alpha_i$$

$$\tilde{\alpha}_4, \tilde{\alpha}_{2L}, \tilde{\alpha}_{2R} \xrightarrow{\text{UV}} \tilde{\alpha}_{10}^{\text{UV}} = -\frac{2\pi}{b_{10}} \qquad b_{10} < 0 \text{ is crucial for gauge couplings existing asymptotically safe fixed point}$$

Gauge running and asymptotic unification

 β -coefficient of SO(10) gauge group above the compactification scale $M_{\rm KK}$:

$$b_{10} = -\left(\frac{11}{3} - \frac{1}{6}\right)C_2(SO(10)) + \frac{4}{3}\sum_F T(F_i) + \frac{1}{6}\sum_S T(S_i)$$

 $H_{10} \sim 10$, complex

$$H_{\mathbf{120}} \sim \mathbf{120}, \text{real}$$
 $\longrightarrow b_{\mathbf{10}} = -5 \longrightarrow \tilde{\alpha}_4, \tilde{\alpha}_{2L}, \tilde{\alpha}_{2R} \stackrel{\text{UV}}{\longrightarrow} \tilde{\alpha}_{\mathbf{10}}^{\text{UV}} = \frac{2\pi}{5}$

 $H_{45} \sim 45$, real

Figure 1. Running of the gauge couplings with $M_{\rm PS}=10^6~{\rm GeV}$ and $M_{\rm KK}=10^{10}~{\rm GeV}$.

5D effective gauge coupling:

$$\frac{\Omega(d)}{(2\pi)^d} 4\pi \tilde{\alpha} \bigg|_{d=5} = \frac{8\pi^2}{3(2\pi)^5} 4\pi \tilde{\alpha} = \frac{2}{15\pi} \sim 0.04 \ll 1$$

Well under perturbative control

RGEs of Yukawa couplings

Running of Yukawa couplings:

Only consider Yukawa couplings of the third generation fermions for simplicity

$$-\mathcal{L}_{Y} = y_{10}\overline{\Psi_{16}}H_{10}\Psi_{\overline{16}} + y_{10}(\overline{\psi_{L}}H_{6}\Psi_{L}^{c} + \overline{\Psi_{R}^{c}}H_{6R}\psi_{R}) + y_{10}(\overline{\psi_{L}}H_{10}\Psi_{L}^{c} + \overline{\Psi_{R}^{c}}H_{\overline{10}}\psi_{R}) + h.c. + y_{120}\overline{\Psi_{16}}H_{120}\Psi_{\overline{16}} + h.c.$$

$$+y_{16}\overline{\nu_{S}}H_{16}\Psi_{\overline{16}} + h.c.$$

$$2\pi \frac{d\alpha_{yr}}{dt} = 2\pi \frac{d\alpha_{yr}}{dt}\Big|_{PS} + (S(t) - 1) 2\pi \frac{d\alpha_{yr}}{dt}\Big|_{KK} + y_{10}(\overline{\psi_{L}}H_{10}\Psi_{R}^{c} + \overline{\psi_{L}}(y_{1}'h_{1}' + y_{15}h_{15})\psi_{R}) + y_{10}(\overline{\psi_{L}}H_{10}\Psi_{R}^{c} + \overline{\psi_{L}}(y_$$

SO(10) Yukawa couplings \implies PS decomposition

RGEs of Yukawa couplings

Explicit unification: all Yukawa couplings have already been fully unified into their SO(10) values at KK scale

$$\frac{1}{2}\alpha_{y1}, \frac{1}{4}\alpha_{y6} = \alpha_{y10},
\frac{1}{2}\alpha_{y1'}, \frac{1}{8}\alpha_{y15}, \frac{1}{8}\alpha_{y10}, \frac{1}{16}\alpha_{y6'} = \alpha_{y120},
2\pi \frac{d\tilde{\alpha}_{y10}}{dt} = \left[2\pi + 42\tilde{\alpha}_{y10} + 24\tilde{\alpha}_{y120} - \frac{81}{8}\tilde{\alpha}_4 - \frac{45}{8}(\tilde{\alpha}_{2L} + \tilde{\alpha}_{2R})\right]\tilde{\alpha}_{y10}
2\pi \frac{d\tilde{\alpha}_{y120}}{dt} = \left[2\pi + 10\tilde{\alpha}_{y10} + 136\tilde{\alpha}_{y120} - \frac{129}{8}\tilde{\alpha}_4 - \frac{45}{8}(\tilde{\alpha}_{2L} + \tilde{\alpha}_{2R})\right]\tilde{\alpha}_{y120}$$

RGEs of Yukawa couplings

One-loop Yukawa RGE in 5D SO(10):

$$2\pi \frac{d\tilde{\alpha}_{y10}}{dt} = \left[2\pi + 42\tilde{\alpha}_{y10} + 24\tilde{\alpha}_{y120} - \frac{171}{8}\tilde{\alpha}_{10}\right]\tilde{\alpha}_{y10}$$
$$2\pi \frac{d\tilde{\alpha}_{y120}}{dt} = \left[2\pi + 10\tilde{\alpha}_{y10} + 136\tilde{\alpha}_{y120} - \frac{219}{8}\tilde{\alpha}_{10}\right]\tilde{\alpha}_{y120}$$

Figure 2. Stream plot of Yukawa couplings $\tilde{\alpha}_{y10}$, $\tilde{\alpha}_{y120}$ in 5D SO(10) GUT.

4 4

Asymptotically free region

Scan Yukawa couplings

Free parameters: $\{y_{10}(M_{KK}), y_{120}(M_{KK})\}$

evolve couplings from $M_{\rm KK}$ to $M_{\rm PS}$ through one-loop Yukawa RGE in SO(10)

VEV constraint: $(c_{\mathbf{10}}^u)^2 + (c_{\mathbf{10}}^d)^2 + 2(c_{\mathbf{120}}^d)^2 + 2(c_{\mathbf{120}}^{d'})^2 = 1$

Initial values for one-loop Yukawa RGE in PS to evolve couplings from the EW scale to M_{PS} :

G.Y. Huang, S. Zhou, 2009.04851

 $y_{10}(M_{\text{KK}}) \in (0.3757, 0.5699)$ $y_{120}(M_{\text{KK}}) \in (0.0822, 1.2519)$ $y_b(M_{\text{KK}}) \in (0.0072, 0.0179)$ $y_{\tau}(M_{\text{KK}}) \in (0.0072, 0.0177)$ $y_t(M_{\text{KK}}) \in (0.5344, 0.8101)$ $y_{\nu}(M_{\text{KK}}) \in (0.5344, 0.8098)$

Benchmark point

$$\mu > M_{\text{KK}} \frac{2\pi \frac{\mathrm{d}\tilde{\alpha}_{y10}}{\mathrm{d}t} = \left[2\pi + 42\tilde{\alpha}_{y10} + 24\tilde{\alpha}_{y120} - \frac{81}{8}\tilde{\alpha}_4 - \frac{45}{8}(\tilde{\alpha}_{2L} + \tilde{\alpha}_{2R})\right]\tilde{\alpha}_{y10}}{2\pi \frac{\mathrm{d}\tilde{\alpha}_{y120}}{\mathrm{d}t} = \left[2\pi + 10\tilde{\alpha}_{y10} + 136\tilde{\alpha}_{y120} - \frac{129}{8}\tilde{\alpha}_4 - \frac{45}{8}(\tilde{\alpha}_{2L} + \tilde{\alpha}_{2R})\right]\tilde{\alpha}_{y120}}$$

Negative gauge contribution ultimately surpassing the positive Yukawa contribution

Asymptotically free

	$y_{10}(M_{\rm KK})$ 0.376	$y_{120}(M_{\rm KK})$ 0.082		
Inputs	M_{PS} $10^6~\mathrm{GeV}$	$M_{ m KK}$ $10^{10}~{ m GeV}$	$\mu_{ m M}$ $10~{ m eV}$	$y_{16}(M_{\rm KK})$ 10^{-3}
Outputs	c_{10}^{u} 0.999	c_{10}^{d} 0.007	$c^{d}_{120} \\ 0.0002$	$c_{120}^{d'}$ 0.0317
	$y_1(M_{PS}) = 0.677$	$y_1'(M_{PS}) = 0.174$	$y_{15}(M_{PS}) = 0.338$	m_{ν} 0.09 eV
	$y_b(M_{\rm KK}) = 0.0075$	$y_{\tau}(M_{\rm KK}) = 0.0074$	$y_t(M_{\rm KK})$ 0.534	$y_{\nu}(M_{\rm KK})$ 0.534

Table 2. Inputs and predictions of VEVs, Yukawa couplings, charged fermion masses and neutrino masses of one point.

Figure 4. Running of the Yukawa couplings for the benchmark point with $M_{\rm PS}=10^6$ GeV and $M_{\rm KK}=10^{10}$ GeV. Solid line (with H_{45}), dashed line (without H_{45})

Conclusion

- 1. 5D *SO*(10) GUT with PS as an intermediate scale can realize asymptotic unification of gauge couplings, which means these couplings gradually approach the same value in the deep UV limit.
- 2. Asymptotic freedom of the 't Hooft couplings of the Yukawa couplings can be realized.
- 3. 5D SO(10) GUT with PS as an intermediate scale can recover experimental data on the masses of quarks and leptons.
- 4. We have first calculated one-loop Yukawa RGEs in SO(10) group and its decomposition to PS group.
- 5. As the energy scale runs toward the UV limit, the 't Hooft couplings of all gauge couplings approach the UV fixed point $-2\pi/b_{10}$ regardless of their initial values. A negative b_{10} is crucial for realizing asymptotic unification of gauge couplings, which limits the redundancy of Higgs content in SO(10) GUTs.
- 6. Separate left-handed and right-handed chiral fields into Ψ_{16} and $\Psi_{\overline{16}}$, proton decay is naturally forbidden.

Thanks!