

New method for determining few-body resonance poles in finite volume

Congwu Wang Fudan Uni & Ruhr Uni Bochum

In Collaboration with:

Lukas Bovermann, Evgeny Epelbaum, Hermann Krebs, and Dean Lee

Frontiers in NLEFT, Beijing, 01/03/2025

Outline

Background

- Resonance in finite volume
- Method and examples
 - The method
 - Example 1: two particles
 - Example 2: three particles

Discussion

- Wave packet propagation velocity
- Twisted boundary conditions
- In a large volume
- Spectral functions
- Summary and outlook

Background

- Resonance in finite volume
- Method and examples
 - The method
 - Example 1: two particles
 - Example 2: three particles

Discussion

- Wave packet propagation velocity
- Twisted boundary conditions
- Spectral functions
- Summary and outlook

(Quantum)resonance

Quasi-bound; Finite lifetime; Barrier tunneling

• Theoretically, a non-physical S-matrix pole in the complex energy plane $(E_0 - i \Gamma/2)$

Experimentally, a peak in the cross section

Hermitien Hamiltonian in Finite Volume (FV)

Stabilization method

eigenvalues:

from: N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, 2011)

• Few-body cases in periodic cubic box are similar:

P. Klos, S. König, H.-W. Hammer, J.E. Lynn, A. Schwenk, PRC 98, 034004 (2018)

"Resonance" embedded in discretized continuum states:

 No exponential divergence (unlike the Gamow/Siegert resonant state)

eigenfunctions:

More localized spatially than the "continuum"

Hermitien Hamiltonian in Finite Volume (FV)

Lüscher method

Difficult when beyond more than two-body resonances

Non-Hermitien Hamiltonian in FV

Complex scaling method:

complexed Hamiltonian $H^{\theta} = H(r \to r e^{i\theta})$

 $H^{\theta}\Psi^{\theta} = E^{\theta}\Psi^{\theta}$

H. Yu, N. Yapa, S. König, PRC 109, 014316 (2024)

Implemented in finite volume (continuum):

Three-body:

this figure does not include any fitted curves"

- Implemented in nuclear models:
- Cluster model ٠
- No-core shell model

A.T., Kruppa, N. Michel, X.-L. Shang, W. Zuo, arXiv:2501.11294 H.-T. Zhang, B. Dong, Z. Wang, Z.-Z. Ren, PRC 105, 054317 (2022) T. Myo, Y. Kikuchi, H. Masui, K. Kato, PTEP 2020, 12A101 (2014)

Challenges:

. .

. . .

- Numerical potential
 - (chiral EFT nuclear potential)
- On lattice
- Three-body resonances

A new method is needed

Background

- Resonance in finite volume
- Method and examples
 - The method
 - Example 1: two particles
 - Example 2: three particles
- Discussion
 - Wave packet propagation velocity
 - Twisted boundary conditions
 - In a large volume
 - Spectral functions
- Summary and outlook

Persistent state method for determining resonance poles in finite-volume Hermitian quantu from time-depen

Hermitian quantum mechanics from time-dependent perspective

> UNIVERSITÄT BOCHUM

Survival amplitude for a resonant state:

- Ansatz: simple persistent state approximating the resonant state
 - Persistent state: compact spatially (e.g., Gaussian) and decaying slowly

Benchmark 1: two particles in 3D

- Toy model: Two spinless particles in s-wave
- Potential: $V(r) = 30 e^{-\left(\frac{r}{2 \text{ fm}}\right)^2} 40 e^{-\left(\frac{r}{1.5 \text{ fm}}\right)^2}$ (MeV), $\mu = 6 * 938.92$ (MeV)

а

Finite volume setup: lattice with a spherical wall

• Spherical wall for restoring rotational symmetry

B. Borasoy, et al., EPJA 34, 185-196 (2007) $V \rightarrow V + \Lambda \, \theta(r - R_w)$, $\Lambda \rightarrow \infty$

Survival amplitudes in FV

Selection of persistent states

Volume "independence"

Interference from background resonance poles

NUVERSITÄT RUB

Benchmark 2: three particles in 1D FV continuum

- Toy model: three-body resonance
 - mass = 938.92 (MeV), $V_{2B}(x) = 30 e^{-(\frac{x}{1 \text{ fm}})^2}$ (MeV), $V_{3B}(x_1, x_2, x_3) = -100 e^{-((x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2)/(2 \text{ fm})^2}$ (MeV)
 - The exact pole value solved by the Gaussian expansion method
 + complex scaling method
 E. Hiyama, Y. Kino, M. Kamimura, PPNP 55(1), 223-307 (2003)
 N. Moiseyev, Phys. Rept. 302, 212293 (1998)
 - Single three-body resonance pole: $E = 8.51 i 1.09 (MeV)_{\odot}$

- FV setup: continuum with periodic boundary condition
 - Solving the eigenvalue problem by the plane-wave based discrete variable representation (DVR)

Survival amplitudes in FV (3 body) Similar to the two-body case

Selection of persistent states

Volume "independence"

Natural generalization of test states to the three-body case:

 $\psi(x_{12}, x_{13}) = e^{-(x_{12}^2 + x_{23}^2)/x_0^2}$

Extracting resonance poles from time evolution

Pole trajectory for varying three-body potential strength

Background

- Resonance in finite volume
- Method and examples
 - The method
 - Example 1: two particles
 - Example 2: three particles

Discussion

- Wave packet propagation velocity
- Twisted boundary conditions
- In a large volume
- Spectral functions
- Summary and outlook

In example of two particles in 1D

Wave-packet propagation in FV

Wave-packet propagation in FV

$x_0 ~({ m fm})$	v	$v_{ m err}$	G.O.F.
0.5	1.37	$1.08\cdot 10^{-2}$	0.996
1	0.71	$2.15\cdot10^{-3}$	0.999
2	0.56	$5.05\cdot10^{-3}$	0.996
4	0.52	$4.64\cdot10^{-3}$	0.996
6	0.51	$1.42\cdot10^{-3}$	0.999

 $\psi(x) = e^{-(x/x_0)^2} \leftrightarrow \tilde{\psi}(k) = e^{-(kx_0/2)^2}$

- broader test state causes lower required volume, while may contain more continuum components.
- "volume" in proportional to "time": effective wave-packet propagation velocity
- allows estimation of the volume needed for the f(t)-fit

Survival amplitudes with twisted boundary conditions $\psi(x+L) = e^{i\theta}\psi(x)$

courtesy of Avik Sarkar

Persistent state method in a large volume

RUHR UNIVERSITÄT BOCHUM

RUB

Extracted resonance poles:

$x_0 \; ({ m fm})$	$E_0~({ m MeV})$	$\operatorname{extrapolation}$	$\Gamma ~({ m MeV})$	extrapolation
2.5	10.586 ± 0.020	$\operatorname{quad.(vol.)}$	1.397 ± 0.020	quad.(vol.)
3.0	10.521 ± 0.017	$\operatorname{quad.(vol.)}$	1.428 ± 0.017	$\operatorname{quad.}(\operatorname{vol.})$
3.5	10.443 ± 0.037	quad.(vol.)	1.484 ± 0.012	lin.(vol.)

Outlook

- (In)elastic scattering simulation
- Resonance poles encoded in: $\langle \psi | e^{-iHt} | \psi \rangle$
- Scattering process simulation by time evolution:

Realistic nuclear resonances

• Resonance poles from: $\langle \psi | e^{-Ht} | \psi \rangle$

Summary

Persistent-state method is proposed and benchmarked in few-body models

Advantages:

- straightforward generalization to few-body resonances
- extendable to scattering processes

Challenges:

- reducing finite-volume effect
- handling multiple narrow resonances

